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Abstract 

This paper proposes an optimized adaptive combined hierarchical sliding mode controller (ACHSMC) for a class of 

under-actuated time-varying systems in presence of uncertainties and noise. For this purpose, the un-modeled dynamics 

and friction force are modeled as additive and multiplicative uncertainties, respectively. A combined hierarchical sliding 

mode controller (CHSMC) is designed using two layers of sliding manifolds. Then, the controller is adapted by 

considering a time-varying coefficient of the second layer sliding manifold of CHSMC system. The stability of this 

controller is approved by Lyapunov theorem. Finally, this method is performed on an under-actuated crane model that 

has two subsystems: trolley and payload can be controlled by a single input signal and the first layer sliding manifold 

parameter of ACHSMC is optimized by genetic algorithm (GA) to save energy of input signal. The simulation results 

show the stability and robust performance of the proposed controller against input noise and additive and multiplicative 

uncertainties and time varying parameters of the system compared to CHSMC method. 
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1. Introduction 

In recent decades, many works have been presented to 

control of under-actuated nonlinear systems such as crane 

system [1], inertia-wheel pendulum [2-4] and etc. [5]. 

Also, fuzzy method has been applied to control under-

actuated systems in both theoretical analysis and practical 

application reviewed in [6]. The efforts [7, 8] have 

designed the fuzzy controllers for nonlinear overhead 

crane systems with input delay, actuator saturation and 

dead-zone compensation and a fuzzy-tuned PID anti-

swing controller has been studied for the crane in [9]. 

One of the robust designs is SMC that includes 

switching manifold [10-13]. In [14], a second-order 

sliding mode (SOSM) controller has controlled an 

overhead crane system affected by external perturbations. 

The two control approaches of SMC with nonlinear 

sliding manifold and vibration strain rate feedback (SRF) 

have been used for flexible spacecraft attitude control in 

research [15]. 

The SMC is insensitive to variety of system 

uncertainties, disturbances, unknown inputs and 

perturbations. This feature actually provides capability 

more than controller resistance and ensures asymptotic 

stability of the system by the Lyapunov theorem. The 

fractional-order SMC has been designed for nonlinear 

systems with uncertainty in [16-18]. The research [19] has 

controlled an isolated bridge with columns of irregular 

heights by a separated multilevel sliding mode controller 

(SMSMC) with three corresponding control signal. The 

research [20] has proposed a controller that is the 

combination of continuous terminal sliding mode control 

and adaptive control for a class of nonlinear systems in 

presence of perturbation. Nevertheless, a hierarchical 

SMC (HSMC) can be designed by a single control signal 

to describe degree of importance of each system state 

variable and it is suitable for under-actuated systems [21, 

22]. In addition, an incremental HSMC approach has been 

proposed in [23]. To improve crane control performance, 

[24] has used sliding manifold with time-varying 

parameter. Design of adaptive SMC is a good choice for 

time-varying models. The work [25] has used a controller 

based on SMC by using Chebyshev neural network that 

its weights are tuned in real-time by using robust adaptive 

techniques. In [26], an adaptive model reference with 

HSMC has been developed for uncertain systems with 

time delay and dead-zone input. Qian et al. have presented 

an adaptive HSMC for the class of under-actuated systems 

in [27, 28].  

In this paper, the definition of hierarchical sliding 

manifolds is considered as a separate linear combination 

of the main state variables and their derivatives for the 

system that makes it possible to easily evaluate between 
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the main variables and the derivatives (i.e. system 

velocities) in the upper layer of ACHSMC system. The 

proposed definition of ACHSMC manifolds is a new 

method of controller design which is created as a 

combined process of state variables based on their 

importance in achieving design goals that at the same time, 

due to the time-varying nature of the system, an adaptive 

law is added to control algorithm. It is emphasized that 

this method is completely different from previous works 

that have used hierarchical incremental or aggregated 

methods. The purposed design method is presented for the 

under-actuated time-varying nonlinear systems that can 

overcome the complexity of such systems and satisfy the 

design objectives by designing the appropriate adaptive 

and switching control laws. Also, the model of uncertain 

mechanical systems is formulated in presence of 

uncertainty by modeling friction force and other un-

modeled dynamics as multiplicative and additive 

uncertainties.  

One of the advantages of this method is that the design 

purpose is achieved by adjusting fewer parameters in the 

sliding layers than other hierarchical methods, including 

aggregated and incremental approaches, due to the 

derivative relationship in the first layer of the sliding 

manifold of the ACHSMC method. In addition, this paper 

has the generality of the proposed method on a class of 

nonlinear systems, not just a specific system such as [23, 

27, 28]. Stability analysis and achieving acceptable 

performance of the ACHSMC system requires significant 

skill and accuracy in controller design for the under-

actuated time-varying nonlinear systems. In this work, the 

required designs of the switching and adaptive laws are 

done with several purposes, which are: (1) Ensuring the 

system stability, (2) reducing chattering, (3) system 

robustness and proper performance in the presence of 

existing uncertainties, and (4) optimization of control 

signal. 

This paper is organized as follows: The dynamic of a 

group of mechanical systems is introduced and the 

frictional force and other uncertainties are modeled in 

section 2. In section 3, the combined HSMC is defined by 

intermediate variable. The proposed ACHSMC system is 

designed in section 4 and its stability is approved and 

optimized by the GA.  The CHSMC method is given with 

the proof of stability in order to compare with the results 

of the optimized ACHSMC method in section 5. Finally, 

the simulation results for a crane system, the conclusions 

and recommendation are presented in section 6, 7 and 8. 
 

2. Uncertainty modeling and problem formulation   

The general form of a class of under-actuated 

mechanical systems is given by (1). 

{
 
 
 

 
 
 

�̇�1(𝑡) = 𝑥2(𝑡)

�̇�2(𝑡) = 𝑓1(𝑋) + 𝑏1(𝑋)(𝑢𝑎𝑐𝑡(𝑡))

�̇�3(𝑡) = 𝑥4(𝑡)

�̇�4(𝑡) = 𝑓2(𝑋) + 𝑏2(𝑋)(𝑢𝑎𝑐𝑡(𝑡))
⋮

�̇�2𝑛−1(𝑡) = 𝑥2𝑛(𝑡)

�̇�2𝑛(𝑡) = 𝑓𝑛(𝑋) + 𝑏𝑛(𝑋)(𝑢𝑎𝑐𝑡(𝑡))

 

 

 

(1) 

where 𝑋(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡)… 𝑥2𝑛(𝑡)]
𝑇 ∈ ℜ2𝑛  is the 

system state vector which is available, 𝑢𝑎𝑐𝑡(𝑡) ∈ ℜ is the 

actuating force applied to the system, 𝑓𝑖(𝑋) and 𝑏𝑖(𝑋), 

𝑖 = 1, 2, … , 𝑛 are unknown continuous nonlinear system 

functions. 

 

2.1. Modeling of multiplicative frictional uncertainty  

It is assumed that frictional force 𝑢𝑓𝑟𝑖𝑐(𝑡) is applied to 

the system as uncertainty and so,  

the resultant force 𝑢(𝑡) defined in (2). 

𝑢(𝑡) = 𝑢𝑎𝑐𝑡(𝑡) − 𝑢𝑓𝑟𝑖𝑐(𝑡) (2) 

where 𝑢𝑓𝑟𝑖𝑐(𝑡) is described in (3). 

𝑢𝑓𝑟𝑖𝑐(𝑡) = (∆𝑏𝑖)𝑢(𝑡) (3) 

here ∆𝑏𝑖  are the control gains of system. Therefore, the 

system state equations are rewritten as (4). 

{
 
 
 

 
 
 

�̇�1(𝑡) = 𝑥2(𝑡)

�̇�2(𝑡) = 𝑓1(𝑋) + 𝑏1(𝑋)(1 + ∆𝑏1)𝑢(𝑡)

�̇�3(𝑡) = 𝑥4(𝑡)

�̇�4(𝑡) = 𝑓2(𝑋) + 𝑏2(𝑋)(1 + ∆𝑏2)𝑢(𝑡)
⋮

�̇�2𝑛−1(𝑡) = 𝑥2𝑛(𝑡)

�̇�2𝑛(𝑡) = 𝑓𝑛(𝑋) + 𝑏𝑛(𝑋)(1 + ∆𝑏𝑛)𝑢(𝑡)

 

 

 

(4) 

The control gains ∆𝑏𝑖  have the certain bounds, but 

there are unknown and modeled such as multiplicative 

uncertainty with input signal [10]. The boundaries are 

as 0 <  ∆𝑏𝑖min ≤ ∆𝑏𝑖 ≤ ∆𝑏𝑖max . Therefore, the 

estimation of control gains ∆�̂�𝑖  is chosen as geometric 

means of boundaries is defined in (5). 

∆�̂�𝑖 = (∆𝑏𝑖𝑚𝑖𝑛∆𝑏𝑖𝑚𝑎𝑥)
1
2 

(5) 

Finally, the estimated nonlinear system functions 

�̂�𝑖0(𝑋) are obtained as (6). 

�̂�𝑖0(𝑋) = 𝑏𝑖(𝑋)(1 + ∆�̂�𝑖) (6) 

2.2. Modeling of additive parametric uncertainty and 

noise 

The nonlinear system functions 𝑝𝑖  and 𝑛𝑖  are additive 

uncertainty and input noise of the system as (7). 

|𝑓𝑖 − (𝑝𝑖 + 𝑛𝑖)| = |𝑓𝑖 − 𝑓𝑖| ≤ 𝐹𝑖  (7) 

where 𝑓𝑖 are the average of the system dynamics  and the 

uncertainty is limited by the known functions 𝐹𝑖. 
 

3. Combined hierarchical sliding manifold 

description 

The system state equations in (4) can be divided to two 

groups. One group is composed of the main state variables 

and the other group are the main variables derivatives 

respectively [𝑥1, 𝑥3, … , 𝑥2n−1]and [𝑥2, 𝑥4, … , 𝑥2n]. Now, 

if it is assumed 𝑋𝑑 = [𝑥1,𝑑  𝑥2,d, … , 𝑥2n,d]
𝑇 is desired state 

vector, then matching errors can be considered for these 

groups as (8). 
 

𝑒2𝑖−1 = 𝑥2𝑖−1 − 𝑥2𝑖−1,𝑑, 𝑒2𝑖 = 𝑥2𝑖 − 𝑥2𝑖,𝑑 (8) 

In order to design a combined hierarchical sliding 

manifold, first an intermediate variable 𝑧 which is a linear 

combination of the matching errors of the main state 

variables is defined in first layer as (9).  
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𝑧 =∑𝑐2𝑖−1𝑒2𝑖−1

𝑛

𝑖=1

 
(9) 

where 𝑐2𝑖−1  are the first layer coefficients. Also, the 

derivative of 𝑧  

that includes the matching errors of the second groups of 

states is expressed as (10). 

�̇� = ∑𝑐2𝑖𝑒2𝑖

𝑛

𝑖=1

 
(10) 

In the second layer, 𝑠  is constructed by the 

intermediate variable and its derivative, which is 

determined by (11).  

𝑠 = 𝛼(𝑡)𝑧 + �̇� (11) 

here 𝛼(𝑡)  is assumed the second layer time-varying 

parameter and can be positive or negative, so sliding 

manifold 𝑠 could be in any quadrant in its phase plane. 

The schematic of two layer combined sliding manifold is 

illustrated in Fig. 1. 

   ̇ 

 1  3 

s 

 2  4 …  2 −1 …  2  

 

  2th layer 

 

  1th layer   

 

 

 

 =∑  2 −1 2 −1

 

 =1

 

Intermediate variable    

 

Combined sliding manifold     

  =  ( ) +  ̇ 

 ̇ =∑  2  2 

 

 =1

 

Derivative of    

   

 

Fig. 1. Combined hierarchical sliding manifold. 

 

4. Stability analysis and design of ACHSMC system 

In this section, for stability of the system, a Lyapunov 

function candidate is defined in (12). By taking time 

derivative of 𝑉, �̇� is obtained as (13). 

𝑉 =
𝑠2

2
 

(12) 

�̇� = 𝑠�̇� = 𝑠(�̇�(𝑡)𝑧 + 𝛼(𝑡)�̇� + �̈�) = 𝑠(�̇�(𝑡)𝑧 +
𝛼(𝑡)∑ 𝑐2𝑖𝑒2𝑖

𝑛
𝑖=1 + ∑ 𝑐2𝑖�̇�2𝑖

𝑛
𝑖=1 ) 

(13) 

By substituting (4) and (8) in (13), �̇�  is obtained as 

(14). 

�̇� = 𝑠(�̇�(𝑡)𝑧 + 𝛼(𝑡)∑𝑐2𝑖𝑒2𝑖

𝑛

𝑖=1

+∑𝑐2𝑖𝑓𝑖

𝑛

𝑖=1

+∑𝑐2𝑖𝑏𝑖(1 + ∆𝑏𝑖)

𝑛

𝑖=1

(𝑢𝑠𝑤)

−∑𝑐2𝑖�̇�2𝑖,𝑑)

𝑛

𝑖=1

 

 

 

(14) 

 Now, by considering the modeled multiplicative 

frictional uncertainty (5), the switching control law is 

defined as (15). 

𝑢𝑠𝑤 = −
𝑘 𝑠𝑔𝑛(𝑠)

∑ 𝑐2𝑖�̂�𝑖0(𝑋)
𝑛
𝑖=1

 
(15) 

In (15), the discontinuous switching control law can 

cause chattering, leading to unpredictable instability, so it 

is used the smoothing function method in this paper to 

reduce chattering while trying to preserve good 

robustness properties around the sliding manifold. 

Therefore, the control law  𝑢𝑠𝑤 is obtained as (16). 

𝑢𝑠𝑤 = −
𝑘𝑠

(|𝑠| + 𝜀)(∑ 𝑐2𝑖�̂�𝑖0(𝑋))
𝑛
𝑖=1

 
(16) 

here 𝜀  is a small positive constant. The adaptive 

parameter �̇�(𝑡) is derived in (17) by assumption  �̇� = 0 

and considering the modeled additive parametric 

uncertainty (7). 

�̇� = −(‖𝑧‖2 + 𝛿)−1(𝛼(𝑡)∑𝑐2𝑖𝑒2𝑖

𝑛

𝑖=1

+∑𝑐2𝑖𝑓𝑖

𝑛

𝑖=1

−∑𝑐2𝑖�̇�2𝑖,𝑑)𝑧

𝑛

𝑖=1

 

 

(17) 

δ is a small positive constant. Then, by Substituting (16) 

and (17) into (14), �̇� is obtained as (18). 

�̇� = s (∑𝑐2𝑖𝑏𝑖0(𝑋)

𝑛

𝑖=1

) × 

((∑𝑐2𝑖�̂�𝑖0(𝑋)

𝑛

𝑖=1

)

−1

(−𝑘
𝑠

|𝑠| + 𝜀
)) 

 

(18) 

By assumption 𝑘  in (19), �̇�  is negative definite and 

asymptotic stability of this system is approved. 

𝑘 ≥ (∑𝑐2𝑖�̂�𝑖0(𝑋)

𝑛

𝑖=1

)(∑𝑐2𝑖𝑏𝑖0(𝑋)

𝑛

𝑖=1

)

−1

×    (𝐹1 + 𝑐𝐹2) 

 

(19) 

Finally, the optimized value of 𝑐 is derived for each 

mass transferring by the crane from initial point to 

destination point. For this purpose, the GA is used. 

 

5. CHSMC method 

If it is supposed that 𝜶(𝒕) = 𝜶 is a constant parameter 

in (11), this algorithm is not adaptive and it is CHSMC 

method. The combined control law is designed as (20) for 

the CHSMC method. 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑠𝑤  (20) 

which 𝑢𝑒𝑞  is equivalent control law. To obtain the 

equivalent control law 𝑢𝑒𝑞 , the derivative of 𝑠  is taken 

with respect to time 𝑡 and the system model is substituted 

in it. Then, the law 𝑢𝑒𝑞  can be deduced from �̇� = 0 as (21). 

𝑢𝑒𝑞 = −
∑ 𝑐2𝑖𝑓𝑖
𝑛
𝑖=1 + 𝛼∑ 𝑐2𝑖𝑒2𝑖

𝑛
𝑖=1

∑ 𝑐2𝑖𝑏𝑖0(𝑋)
𝑛
𝑖=1

 
(21) 

The stability of this method is proved by selecting 

Lyapunov function candidate (12). By substituting the 
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control law (20) and the equivalent control law (21) in the 

derivative of 𝑽, �̇�  is achieved as (22). 

�̇� = 𝑠(𝛼∑𝑐2𝑖𝑒2𝑖

𝑛

𝑖=1

+∑𝑐2𝑖𝑓𝑖

𝑛

𝑖=1

+∑𝑐2𝑖𝑏𝑖0(𝑋)

𝑛

𝑖=1

(𝑢𝑠𝑤 + 𝑢𝑒𝑞) 

 

(22) 

For the purpose of system stability, the switching law 

𝒖𝒔𝒘 is defined as follows: 

𝑢𝑠𝑤 = −𝜅𝑠 − 𝜂
𝑠

|𝑠| + 𝛿
 (23) 

where κ, δ and η are positive constant coefficients. 

6. Simulation results and discussions 

In this section, the crane system in Fig. 2 is used to 

verify the performance of the proposed controller. 

Apparently, the system consists of two subsystems: 

trolley and payload. The payload is suspended from the 

trolley by a cable. 

𝐿′  

𝐿′  

𝑢𝑎𝑐𝑡  
𝑢𝑓𝑟𝑖𝑐  

𝜃 

M 

𝑚′  

 

 

 

Fig. 2.  The model of crane system. 

 

Other symbols in Fig. 2 are described as the trolley mass 

M, the swing angle of the payload with respect to the 

vertical line θ, the trolley position 𝑥 respect to the origin. 

𝑚′(𝑡) and 𝐿′(𝑡) are time-varying payload  mass and cable 

length that considered as (24) and (25). 

𝑚′ = 𝑚 +
2𝑀

𝑇
𝑡 

(24) 

𝐿′ = 𝐿(1 +
1

𝑇
𝑡) 

(25) 

Equations (24) and (25) show time-variant parameters 

from 𝑇 = 0 to 15 second and after of this time are fixed. 
Dynamic model of the crane system in the state space 

domain is considered in (26) from [20]. Here, 𝑥1 = 𝑥 , 

𝑥3 = 𝜃 , 𝑥2  is the trolley velocity; 𝑥4  is the angular 

velocity of the payload. 

{

�̇�1 = 𝑥2
�̇�2 = 𝑓1(𝑋) + 𝑏10(𝑋)𝑢

�̇�3 = 𝑥4
�̇�4 = 𝑓2(𝑋) + 𝑏20(𝑋)𝑢

 

 

(26) 

 

Also, the estimation of dynamics 𝑓1 and 𝑓2 are as (27).  

𝑓1 =
𝑚𝐿′𝑥4

2 sin 𝑥3 +𝑚
′𝑔 sin 𝑥3 cos 𝑥3

𝑀 +𝑚′ sin2 𝑥3
 

𝑓2

= −
(𝑀 +𝑚′)𝑔 𝑠𝑖𝑛 𝑥3 +𝑀𝐿

′𝑥4
2 𝑠𝑖𝑛 𝑥3 𝑐𝑜𝑠 𝑥3

(𝑀 +𝑚′ 𝑠𝑖𝑛2 𝑥3)𝐿
′

 

 

(27) 

 

Furthermore, the nonlinear system functions 𝑏1  and 𝑏2 

are defined as (28).  

𝑏1 =
1

𝑀 +𝑚′ sin2 𝑥3
 

𝑏2 =
cos 𝑥3

(𝑀 +𝑚′ 𝑠𝑖𝑛2 𝑥3)𝐿
′
 

 

(28) 

The parameters of the crane model and initial and 

destination state vectors are given in Table I. 

 

Table I. Physical parameters and desirable and initial 

vectors. 
Parameters 

and Vectors 
Value 

Trolley mass M 

(kg) 
1 

Payload mass m 

(kg) 
0.8 

Cable length L 
(m) 

0.305 

Acceleration of 

gravity g (
𝑚

𝑠2
) 

9.81 

Initial state vector 

𝑥0 
[0 𝑚  0 𝑚 𝑠−1  0 𝑟𝑎𝑑  0 𝑟𝑎𝑑 𝑠−1] 

Destination state 

vector 𝑥𝑑 
[1 𝑚  0 𝑚 𝑠−1  0 𝑟𝑎𝑑  0 𝑟𝑎𝑑 𝑠−1] 

Additive 

uncertainties 
𝐹1 = 𝐹2 = 2 

Multiplicative 

uncertainties 
∆𝑏1 = ∆𝑏2 = 0.1 

Weight of input 
white noise 

0.01 

 

By normalizing (9) and (10) and due to the fact that 

the first layer sliding coefficients are considered constant, 

the intermediate variable  𝑧  and its derivative  𝑧 ̇ are 

expressed as (29) and (30). 

𝑧 =  𝑒1  +  𝑐𝑒3 (29) 

 𝑧 ̇ =  𝑒2  +  𝑐𝑒4 
(30) 

The GA is used to optimize the energy of input control 

signal by specifying the constant variable 𝑐 . The 

population size is 8 chromosomes. The crossover, 

mutation percentages and the selection pressure are 

relatively equal to 0.8, 0.3 and 10. The GA selection 

method can be chosen as roulette wheel or random 

selection in MATLAB software. By using GA algorithm 

for optimized ACHSMC, the value of 𝑐 is derived as 0.02.  

Finally, the optimized ACHSMC method is compared 

with CHSMC to verify suitable performance of the 

proposed controller. For this purpose, the coefficients 𝑐 

and 𝛼of the two layers are considered equal to 0.242 and 

0.487 in (21) for the CHSMC simulation. The time-

varying parameter 𝛼(𝑡)  in the optimized ACHSMC is 

seen in Fig. 3. According to (9) the importance of the 

trolley position error is very greater than payload angle 

error, so effect of this selection, will be seen in Figs. 4 and 

5. 
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Fig. 3.  Time-varying 𝛼(𝑡) for ACHSMC. 

 
Fig. 4.  Crane trolley position. 

 

 

According to Fig. 4, the crane trolley reaches to 

destination point about 5 second, while this time for 

CHSMC is about 14 second. Fig. 5 shows although, the 

maximum payload angle deviation does not change much 

in the optimized ACHSMC method compared to the 

CHSMC method, but the payload angle becomes 

convergent to zero faster than CHSMC method. 

In Fig. 6, the optimal input control signal 𝑢  is 

smoothed and adapted by optimized ACHSMC and Fig. 7 

shows the hierarchical sliding manifold of ACHSMC is 

very smoother rather than another method. 

 
Fig. 5.  Swing angle of payload θ. 

 
Fig. 6.  Control signal. 

 
Fig. 7.  Sliding manifold. 

 

7.  Conclusion 

In this paper, an optimized robust controller was 

designed for a class of under-actuated time-varying 

systems in presence of uncertainties. The SMC is a good 

controller with robust performance. The un-modeled 

dynamics are modeled as additive uncertainties and 

friction force is modeled as multiplicative uncertainty. In 

the ACHSMC method first, a sliding surface was defined 

in first layer that was a linear combination of original state 

variables and another sliding surface was its derivative. 

Next, two surface were combined by a sliding manifold in 

second layer in the proposed method. For load 

transferring, its mass and cable length are time variant. 

Therefore, one of the innovations of the paper is the 

design of the adaptive and switching control laws in a way 

that ensures the system stability and the reduction of 

chattering.  

By using the optimized ACHSMC approach, the 

purposed system has been able to maintain its robustness 

despite the existing additive and multiplicative 

uncertainties and the applied noise. The simulation of this 

controller was performed on the crane system to confirm 

the proper performance of the designed controller. Also, 

to save energy of input signal, the parameter of the first 

layer sliding manifold was optimized by genetic 

algorithm. The optimized ACHSMC method was 

compared with CHSMC by MATLAB simulation. The 

results showed the optimized ACHSMC method has 

better behaviors such as optimal signal control, smooth 

sliding manifold, and robust performance rather than 

CHSMC method. 
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8. Recommendation 

Since in many cases, it is not possible or economical 

to measure all state variables in real applications, it is 

suggested to design an observer such that estimates the 

unmeasurable states of a system based only on the 

measured outputs and inputs and then, the proposed 

optimized ACHSMC method is designed based on the 

estimated states. Also, this method can be developed as 

optimized fractional order ACHSMC method to enhance 

control performance. To achieve this purpose, intelligent 

designs such as fuzzy neural networks are also efficient. 
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