تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,057 |
تعداد دریافت فایل اصل مقاله | 15,214,002 |
مدلسازی و پیادهسازی اجزا محدود رفتار خمشی ناهمسانگرد محرکهای الاستومر دیالکتریک تقویت شده با الیاف زاویهدار متقاطع | ||
مهندسی مکانیک دانشگاه تبریز | ||
دوره 52، شماره 1 - شماره پیاپی 98، اردیبهشت 1401، صفحه 303-312 اصل مقاله (531.51 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.43908.2824 | ||
نویسندگان | ||
احسان الهیاری1؛ مسعود عسگری* 2 | ||
1دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران | ||
2دانشیار، گروه مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران | ||
چکیده | ||
هدف از ارائه این مقاله، بررسی و توسعه روابط ساختاری حاکم بر الاستومرهای دیالکتریک تقویتشده با الیاف با استفاده از نرمافزار المان محدود است زیرا الاستومرهای دیالکتریک دستهای از مواد هستند که در صورت قرارگیری در میدان الکتریکی، با تغییرشکل همراه میشوند. در نتیجه با توجه به این ویژگی و کاربرد گسترده در عضلات مصنوعی بررسی رفتار آنها بسیار حائز اهمیت است. در گام اول به توسعه و محاسبات مقادیر تنش با استفاده از ناپایاها پرداخته میشود. در ادامه با توجه به غیرخطی بودن رفتار ماده نیاز است تا مدول مماسی که یکی از اجزای بسیار مهم در تحلیل مدل المان محدود است محاسبه شود. در نهایت با توجه به نتایج مشاهده میشود که تاثیر زاویه جهتگیری الیاف بر روی مقادیر تنش غیرقابل انکار است. اینکه چگونه با افزایش زاویه جهتگیری الیاف، میزان خمش ماده ناهمسانگرد افزایش پیدا خواهد کرد. همچنین افزایش ولتاژ اعمالی بدون توجه به هر نوع جهتگیری الیاف، با افزایش میزان تنش کرشهف در راستای نشان داده شده در شکل همراه است. | ||
کلیدواژهها | ||
الاستومر دیالکتریک؛ الیاف؛ روابط ساختاری؛ ناهمسانگردی؛ ولتاژ | ||
مراجع | ||
[1] Cohen Y., Leary S., Yavrouian A., Oguro K., Tadokoro S., Harrison J., Smith J. and Su J., Challenges to the transition of IPMC artificial muscle actuators to practical application, 1999.
[2] حسینی س. م. و بینازاده ط.، مدلسازی و کنترل سیستم دینامیکی در حضور عملگر و سنسور بر اساس رویکرد سیستمهای آشفته تکین. مجله مهندسی مکانیک دانشگاه تبریز، 1400.
[3] Cohen Y., Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, Vol. 5. SPIE press Bellingham, WA, 2004.
[4] Cohen Y., Biomimetics: biologically inspired technologies. CRC Press, 2005.
[5] Kornbluh R., Pelrine R. and Joseph J., Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sens. Actuat, Vol. 64, pp. 77–85, 1998.
[6] Pelrine R., Kornbluh R., Pei Q., Stanford S., Oh S., Eckerle J., Full R, Marcus., Rosenthal A. and Meijer K., Dielectric elastomer artificial muscle actuators: toward biomimetic motion. Smart Structures and Materials 2002:Electroactive polymer actuators and devices (EAPAD), 2002, Vol. 4695, pp. 126–138.
[7] Pelrine R., Kornbluh R., Pei Q. and Joseph J, High-speed electrically actuated elastomers with strain greater than 100%. Science, Vol. 287, No. 5454, pp. 836–839, 2000.
[8] Lampani L., Finite element modeling of dielectric elastomer actuators for space applications, 2010.
[9] Dorfmann A. and Ogden R. W., Nonlinear electroelasticity. Acta Mechanica, Vol. 174, No. 3–4, pp. 167–183, 2005.
[10] Goulbourne N., Mockensturm E. and M. Frecker., A nonlinear model for dielectric elastomer membranes. Journal of Applied Mechanics, Vol. 72, No. 6, pp. 899–906, 2005.
[11] Mockensturm E. M. and Goulbourne N., Dynamic response of dielectric elastomers. International Journal of Non-Linear Mechanics, Vol. 41, No. 3, pp. 388–395, 2006.
[12] Chen S. E., He Z. C. and Li E., Comparisons between the dynamic and quasi-static performances of a dissipative dielectric elastomer under pure shear mode. Smart Materials and Structures, Vol. 26, No. 10, 2017.
[13] Kim T., Liu Y. and Leng J., Cauchy stresses and vibration frequencies for the instability parameters of dielectric elastomer actuators. Journal of Applied Polymer Science, Vol. 135, No. 21, 2018.
[14] Brochu P. and Pei Q., Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular rapid communications, Vol. 31, No. 1, pp. 10–36, 2010.
[15] Madden J. D. W., Vandesteeg N. A., and Anquetil P. A., Artificial muscle technology: physical principles and naval prospects. IEEE Journal of oceanic engineering, Vol. 29, No. 3, pp. 706–728, 2004.
[16] Carpi F. and Smela E., Biomedical applications of electroactive polymer actuators. John Wiley & Sons, 2009.
[17] Mirfakhrai T., Madden J. D. W. and Baughman R. H., Polymer artificial muscles. Materials today, Vol. 10, No. 4, pp. 30–38, 2007.
[18] Oates. W, Miles P., Gao W., Clark J., Mashayekhi S. and M. Y. Hussaini., Rate dependent constitutive behavior of dielectric elastomers and applications in legged robotics. in Electroactive Polymer Actuators and Devices (EAPAD), Vol. 1, 2016.
[19] O’Halloran A., O’malley F. and McHugh P., A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics, Vol. 104, No. 7, p. 71101, 2008.
[20] Romasanta L. J., López-Manchado M. A. and Verdejo R., Increasing the performance of dielectric elastomer actuators: A review from the materials perspective. Progress in Polymer Science, Vol. 51, pp. 188–211, 2015.
[21] حیدری م.، و هادیان جزی ش.، کنترل فعال ارتعاشات یک تیر هوشمند دوار با استفاده از وصلههای پیزوالکتریک. مجله مهندسی مکانیک دانشگاه تبریز، دوره 48، شماره 3، صفحه 67-76. 1397.
[22] خزایی م.، و کاظمی نصرآبادی م.، استحکام کششی کامپوزیت کربن-اپوکسی تقویت شده با سیم آلیاژ حافظهدار. مجله مهندسی مکانیک دانشگاه تبریز، دوره 50، شماره 1، صفحه 81-98. 1399.
[23] ملکی م.، و فروتن م.، بررسی ارتعاش آزاد و پاسخ استاتیکی تیر مدرج هدفمند پیزوالکتریک براساس نظریه الاستیسیته دوبعدی. مجله مهندسی مکانیک دانشگاه تبریز، دوره 48، شماره 3، صفحه 319-328. 1397.
[24] Kiser J., Manning M., Adler D. and Breuer K., A reduced order model for dielectric elastomer actuators over a range of frequencies and prestrains. Applied Physics Letters, Vol. 109, No. 13, p. 133506, 2016.
[25] Huang Z., Jin X., Ruan R. and Zhu W., Typical dielectric elastomer structures: dynamics and application in structural vibration control. Journal of Zhejiang University-SCIENCE A, Vol. 17, No. 5, pp. 335–352, May 2016.
[26] Zhu J., Stoyanov H., Kofod G. and Suo Z., Large deformation and electromechanical instability of a dielectric elastomer tube actuator. Journal of Applied Physics, Vol. 108, No. 7, p. 74113, 2010.
[27] Joglekar M. M., An energy-based approach to extract the dynamic instability parameters of dielectric elastomer actuators. Journal of Applied Mechanics, Vol. 81, No. 9, p. 91010, 2014.
[28] Cohen Y., Cardoso V. F., Ribeiro C. and Lanceros-Méndez S., Electroactive polymers as actuators. Advanced Piezoelectric Materials (Second Edition), pp. 319–352, 2017.
[29] Jiménez S. M. A. and McMeeking R. M., A constitutive law for dielectric elastomers subject to high levels of stretch during combined electrostatic and mechanical loading: Elastomer stiffening and deformation dependent dielectric permittivity. International Journal of Non-Linear Mechanics, Vol. 87, pp. 125–136, 2016.
[30] He L., Lou J., Du J. and Wang J., Finite bending of a dielectric elastomer actuator and pre-stretch effects. International Journal of Mechanical Sciences, Vol. 122, pp. 120–128, 2017.
[31] Xu B., Mueller R., Klassen M. and Gross D., On electromechanical stability analysis of dielectric elastomer actuators. Applied Physics Letters, Vol. 97, No. 16, p. 162908, 2010.
[32] Choi H. R., Junk K., Ryew S. and Nam J., Biomimetic soft actuator: design, modeling, control, and applications. IEEE/ASME transactions on mechatronics, Vol. 10, No. 5, pp. 581–593, 2005.
[33] Rajamani A., Grissom M. D., Rahn C. D. and Zhang Q., Wound roll dielectric elastomer actuators: fabrication, analysis, and experiments. IEEE/ASME Transactions On Mechatronics, Vol. 13, No. 1, pp. 117–124, 2008.
[34] Yong H., He X. and Zhou Y., Electromechanical instability in anisotropic dielectric elastomers. International Journal of Engineering Science, Vol. 50, No. 1, pp. 144–150, 2012.
[35] He L., Lou J., Du J. and Wu H., Voltage-driven nonuniform axisymmetric torsion of a tubular dielectric elastomer actuator reinforced with one family of inextensible fibers. European Journal of Mechanics-A/Solids, 2018.
[36] Hossain M. and Steinmann P., Modelling electro-active polymers with a dispersion-type anisotropy. Smart Materials and Structures, Vol. 27, No. 2, p. 25010, 2018.
[37] Bergström J. and Bergström J., Elasticity/Hyperelasticity. Mechanics of Solid Polymers, pp. 209–307, 2015.
[38] Reddy J. N., Principles of Continuum Mechanics: A Study of Conservation Principles with Applications. Cambridge: Cambridge University Press, 2010.
[39] Spencer A. J .M., Continuum theory of the mechanics of fibre-reinforced composites, Vol. 282. Springer, 1984.
[40] Holzapfel G. A., Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica, Vol. 37, No. 4, pp. 489–490, 2002.
[41] Nguyen N. and Waas A. M., Nonlinear, finite deformation, finite element analysis. Zeitschrift für angewandte Mathematik und Physik, Vol. 67, No. 3, p. 35, 2016.
[42] Son S., Nonlinear Electromechanical Deformation of Isotropic and Anisotropic Electro-Elastic Materials. Virginia Tech, 2011.
[43] Mehta J., Chandra Y. and Tewari R. P., The Use of Dielectric Elastomer Actuators for Prosthetic, Orthotic and Bio-Robotic Applications. Procedia computer science, Vol. 133, pp. 569–575, 2018. | ||
آمار تعداد مشاهده مقاله: 239 تعداد دریافت فایل اصل مقاله: 164 |