تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,756 |
تعداد دریافت فایل اصل مقاله | 15,217,386 |
بررسی پتانسیل آنتاگونیستی باکتریهای اپیفیت همراه با درختان میوه دانهدار در استان آذربایجان غربی بر علیه Erwinia amylovora و ارزیابی تنوع ژنتیکی آنها | ||
پژوهش های کاربردی در گیاهپزشکی | ||
دوره 11، شماره 1، فروردین 1401، صفحه 109-120 اصل مقاله (1.03 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/arpp.2021.13500 | ||
نویسندگان | ||
حبیب نوجوان چیچکلوی منصور1؛ عباسعلی روانلو* 2؛ سعید طریقی1 | ||
1بخش گیاهپزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
2بخش تحقیقات بیماریهای گیاهان، موسسه تحقیقات گیاه پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران. | ||
چکیده | ||
چکیده در شاخ و برگهای درختان میوه دانه دار، باکتریهای اپیفیت زیادی وجود دارند که خاصیت آنتاگونیستی آنها علیه عامل بیماری آتشک (Erwinia amylovora) اثبات شده است. به منظور شناسایی، بررسی پتانسیل آنتاگونیستی و تنوع ژنتیکی باکتریهای اپیفیت آنتاگونیستی همراه با درختان میوه دانه دار در استان آذربایجان غربی، از باغات سیب، گلابی و به در سه نوبت بهار، تابستان و پاییز سال 1393 نمونهبرداری به عمل آمد. پس از جداسازی باکتریهای اپیفیت و انجام آزمون آنتاگونیستی، شناسایی جدایهها صورت گرفت. جدایه ها در دو گروه باکتریهای گرم منفی (Pantoea agglomerans، Pseudomonas fluorescens) و گرم مثبت دسته بندی شدند. تنوع ژنوتیپی جدایه های Pantoea و Pseudomonas از مناطق مختلف با استفاده از روش Rep-PCR مورد بررسی قرار گرفت. جدایه ها با استفاده از برنامه نرم افزاری NTYsys به روش UPGMA و ضریب تشابه جاکارد مورد بررسی قرار گرفتند. تجزیه و تحلیل اطلاعات بدست آمده بر اساس نشانگر BOX1 نشان دهنده وجود 10 گروه با حداقل شباهت 75 درصد در میان جدایه های Pseudomonas و وجود 9 گروه در میان جدایه های Pantoea با حداقل شباهت 70 درصد بود. نتایج تنوع ژنتیکی بالایی را در میان سویه های آنتاگونیست اپیفیت درختان میوه دانه دار در استان آذربایجان غربی نشان داد. | ||
کلیدواژهها | ||
واژه های کلیدی: اپیفیت؛ آتشک؛ دانه دار؛ Pantoea agglomerans؛ Pseudomonas fluorescens | ||
مراجع | ||
References
Bringel F, Couee I, 2015. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Frontiers in Microbiology 6 (486): 1–14. Carmona-Hemandez S, Reyes-Perez JJ, Chiquito-Contreras RG, Rincon-Enriquez G, Cerdan-Cabrera CR, et al., 2019. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: a review. Agronomy 9 (121): 1–15. Darvishnia M, Mirzaei-najafgholi H, Aeini M, Joshaghani A, 2020. Identification and genotypic characteristics of Erwinia amylovora isolates, the causal agents of fire blight on pome fruit trees in Hamadan province. Plant Protection (Scientific Journal of Agriculture) 43 (4): 1–18 (in Persian with English abstract). Dawson SL, Fry JC, Dancer BN, 2002. A comparative evaluation of five typing techniques for diversity of fluorescent pseudomonads. Journal of Microbiological Methods 50(1): 9–22. Deletoile A, Decre D, Courant S, Passet V, Audo J, et al., 2009. Phylogeny and identification of Pantoea species and typing of Pantoea agglomerans strains by multilocus gene sequencing. Journal of Clinical Microbiology 47: 300–310. Dias M, Miguel MG, Durate WF, Silva CF, Schwan RF, 2015. Epiphytic bacteria biodiversity in Brazilian Cerrado fruit and their cellulolytic activity potential. Annual Microbiology 58: 83–103. Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, et al., 2018. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition 16: 1–16. Erdogan O, Ikten H, Baysal O, 2011. Molecular Diversity Within Pseudomonas fluorescens Strains Reflects Their Antagonistic Effect Differentiations to Verticillium dahliae on Cotton. Romanian Biotechnological Letters 16(4): 6412–6418. Fahy PC, Persley CJ, 1983. Plant Bacterial Disease, A Diagnostic Guide. Academic Press Sidney. Australia. 393 pp. Geider K, Jakovljevic V, Mohammadi M, Jock S, 2005. Characterization of epiphytic bacteria from Australia and Europe as possible fire blight antagonists. Biocontrol of Bacterial Plant Diseases, 1st Symposium., Darmstadt, Germany. p. 245–248. Guang-Hai J, Zhi-Gang X, Shi-Guang Z, 2002. Preliminary Analysis of Genetic Diversity of Xanthomonas oryzae pv.oryzicola and Xanthomonas leersiae Stains in China by Rep-PCR. Acta Phytopathologica Sinica 32 (1): 26–32. Haiyun L, Jianmei C, Bo L, Xuefang Z, Rongfeng X, 2011. Genetic diversity analysis of Ralstonia solanacearum based on BOX-PCR and REP-PCR. Journal of Agriculture Biotechnology 19 (6):1099–1109. Hakim Rabet S, Ketabchi S, 2021. The effect of compost fertilizers, vermicompost and their tea on bacterial vascular wilt and growth indices in tomato seedlings. Journal of Applied Research in Plant Protection 9(4): 61–74. Hugh R, Leifson E, 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrate by versus gram negative bacteria. Journal of Bacteriology 66 (1): 24–26. Johnson KB, Sawyer TL, Stockwell VO, Temple TN, 2009. Implications of Pathogenesis by Erwinia amylovora on Rosaceous Stigmas to Biological Control of Fire Blight. Phytopathology 99 (2):128–138. Kado CI, 2010. Plant Bacteriology. APS Press, New York. 336 pp. Keshtkar AR, Khodakaramian G, Rouhrazi K, 2016. Isolation and characterization of Pseudomonas syringae pv. syringae which induce leaf spot on walnut. European Journal of Plant Pathology 146: 837–846. Klement Z, Farkas GL, Loverkovich H, 1964. Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology 54: 474–477. Kovacs N, 1956. Identification of Pseudomonas pyocyana by the oxidase reaction. Nature 178: 703–708. Kumar R, Thirumali N, Arasu V, Gunasekaran P, 2002. Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Current Science 82 (12): 1463–1466. Lelliott RA, Stead DE, 1987. Methods for the Diagnosis of Bacterial disease of plants. Blackwell Scientific Publication. Oxford. Boston. Lina F, Haiyan Z, Xiaofang Z, Lanfang W, Jinhao Z, et al., 2016. Genetic diversity analysis of rep-PCR genomic fingerprinting of Lysobacter spp. African Journal of Microbiology Research 10(34): 1388–1396. Lornzini M, Zapparli G, 2020. Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi. International Journal of Food Microbiology 319:108505. Manceau C, Lalamde JC, Lachaud G, 1990. Bacterial colonization of flowers and leaf surface of pear tree. Acta Horticulture 273: 73–81. Mandal L, Kotasthane AS, 2012. Genetic Diversity Analysis of the Pseudomonas fluorescent Isolates in Chhattisgarh Region of India. Journal of Pure and Applied Microbiology 6 (3): 1481–1484. Mcmanus PS, Jones AL, 1995. Genetic fingerprinting of Erwinia amylovora strains from tree-fruit crops and Rubus spp. Phytopathology 85: 1547–1553. Mina D, Pereira JA, Linoneto T, Baptista P, 2020. Epiphytic and endophytic bacteria on olive tree phyllosphere: exploring tissue and cultivar effect. Microbial Ecology 80(1):145-57. Ming X, Huaqun Y, Yi L, Jie L, Xueduan L, 2008. Repetitive sequence-based polymerase chain reaction to differentiate close bacteria strains in acidic sites. Transactions of Nonferrous Metals Society of China 18: 1392–1397. Moradi-Amirabad Y, Khodakaramian G, 2017. Isolation and characterization of Erwinia piriflorinigrans causal agent flower necrosis of red poppy. Australasian Plant Pathology 46: 611– 616. O’brien PA, 2017. Biological control of plant diseases. Australasian Plant Pathology (46): 293–304. Petruta CC, Catalina V, Matilda C, Sorina D, Manuela C, et al., 2008. In vitro inhibition of Erwinia amylovora Romanian isolates by new antagonistic bacterial strains. Plant Pathology 29: 120–128. Pusey PL, Stockwell VO, Mazzola M, 2009. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology 99: 571–581. Rezzonico F, Smits TH, Montesinos E, Frey JE, Duffy B, 2009. Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiology 9 (204): 1–18. Sammer UF, Volksch B, Mollmann U, Schmidtke M, Spiteller M, et al., 2009. 2-Amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine, an effective peptide antibiotic from the epiphyte Pantoea agglomerans 48b/90. Applied Environmental Microbiology 75: 7710–7717. Sarris PF, Trantas EA, Mpalantinaki E, Ververidis F, Goumas DE, 2012. Pseudomonas viridiflava, a Multi Host Plant Pathogen with Significant Genetic Variation at the Molecular Level. PLoS ONE 7 (4): 1–12. Schaad NW, Joneas JB, Chun C, 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. Aps press, New York. 397 pp. Singh D, Rathaur PS, Singh A, Raghuwanshi R, 2015. Genetic diversity of Xanthomonas campestris pv. campestris isolated from Brassica crops using RAPD and Rep-PCR. Indian Journal of Agricultural Sciences 85 (6): 792–796. Suslow TV, Schroth MN, Isaka M, 1982. Application of a rapid method for gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 72: 917–928. Texeira ACO, Marques ASA, Ferreira MASV, 2009. Low genetic diversity among pathogenic strains of Erwinia psidii from Brazil. Brazilian Journal of Microbiology 40: 678–684. Van Der Zwet T, Orolazahalbrendt N, Zeller W, 2011. Fire Blight: History, Biology and Management. APS Press, St Paul, MN, USA. 421 pp. Versalovic J, Schneider M, Debruijn FJ, Lupski JR, 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction-Methods. Molecular and Cell Biology 5: 25–40. Walterson AM, Stavrinides J, 2015. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews 39: 968–984. | ||
آمار تعداد مشاهده مقاله: 1,177 تعداد دریافت فایل اصل مقاله: 438 |