تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,984 |
تعداد دریافت فایل اصل مقاله | 15,217,502 |
شبیهسازی سطح آب زیرزمینی دشت سلسله استان لرستان با استفاده از الگوریتمهای فراکاوشی نوین | ||
هیدروژئومورفولوژی | ||
دوره 8، شماره 28، آذر 1400، صفحه 145-162 اصل مقاله (1.35 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2021.47162.1598 | ||
نویسنده | ||
حمیدرضا باباعلی* | ||
استادیار گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد خرم آباد | ||
چکیده | ||
در سال های اخیر افت منابع آب زیرزمینی به عنوان مهمترین چالش در مسائل مدیریت منابع آب مطرح است. اولین گام در جهت مدیریت آب زیرزمینی، شـبیهسازی سطح آب زیرزمینی و شناسایی عوامل مؤثر بر سطح آب زیرزمینی است. از این رو در این پژوهش جهت شبـیهسازی سطح آب زیرزمینی دشت سلسله واقع در استان لرستان از مدل ترکیبی رگرسیون بردار پشتیبان (SVR) با موجک و الگوریتمهای فرا ابتـکاری گرگ خاکـستری (GWO) و خفاش (BA) در مقیاس زمانـی ماهانه طی دوره ی آماری 2020-2010 استفاده شـد. مـعیارهای ضریب همبستگی (R2)، مـجذور میانگین مربعات خطا (RMSE) ، میانگین مطلق خطا (MAE)، ضریب بهرهوری نش-ساتکلیف (NSE)، درصد بایاس (PBIAS) برای ارزیابی و مقایسه ی عملکرد مدلها مورد استفاده قرار گرفت. نتایج نشان داد هر سه مدل هیبریدی، در الگوهای ترکیبی نتایج بهتری نسبت به سایر الگوهای تعیینشده دارند. همچنین، با توجه به معیارهای ارزیابی مشخص شد که از بین مدلهای بهکاررفته در شبیه سازی سطح آب زیرزمینی، مدل رگرسیون بردار پشتیبان-موجک با ضریب تعیین (988/0-975/0R2=)، ریـشه ی میانگین مربعات خطا (146/0-112/0RMSE=)، میانـگین قدرمطلق خطا (m093/0-076/0MAE=) ضریب نش ساتکلیف (978/0-963/0NS=) و درصد بایاس (001/0PBIAS=) در مرحله ی صحت سنجی عملکرد بهتری نسبت به سایر مدل ها از خود نشان داده است. | ||
کلیدواژهها | ||
افت سطح آب؛ رگرسیون بردار پشتیبان؛ دشت سلسله؛ استان لرستان | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Adamowski, J., Chan, H. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4), 28-40. https://doi.org/10.1016/j.jhydrol.2011.06.013. Amuda, A., Brest, J., Mezura-Montes, E. (2013). Structured Population Size Reduction Differential Evolution with Multiple Mutation Strategies on CEC 2013 real parameter optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, Cancun, Mexico, 1925–1931. Ashmaul Husna, N.E., Hefzul bari, S., Shouroy, H., Rahman, T. (2016). Ground water level prediction using artificial neural network, International Journal of Hydrology Science and Technology, 6(4):371-381. https://doi.org/10.1016/j.jhydrol.2004.12.001. Bahmani, R., Taha, B.M., Ouarda, J. (2021) Groundwater level modeling with hybrid artificial intelligence techniques. Journal of hydrology, 595:460-475. Basak, D., Pal, S., and Patranabis, D.C. (2007). Support vector regression. Neural Inf Process, 11(2), 203-225. Chen, S.T., and Yu, P.S. (2007). Real-time probabilistic forecasting of flood stages, Journal of Hydrology, 340(2), 63-77. Daneshvar Vosoghi, F., Monafian Azar, V. (2017). Using Hybrid Wavelet-Support Vector Machine and Wavelet-Neural Network Models for Groundwater Level Prediction in Ardabil Plain, Journal of Hydrogeomorphology, 5, 45-64. Dehghani, R., Torabi, H. (2021). Application of novel hybrid artificial intelligence algorithms to groundwater simulation. International Journal of Environmental Science and Technology, 18(12),4075-4090 Ebtehaj, I., Bonakdari, H. (2014). Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers. Water Resources Management, 28:4765–4779. https://doi.org/10.1007/s11269-014-0774-0. Hamel, L. (2009). Knowledge discovery with support vector Machines, hoboken, N.J. John Wiley. Jalali, M., Kamangar, M., Razmi, R. (2018). Prediction of the Water Table Surface Model using the Hyperbolic Tangent Function of the Neural, Network Case Study: Sarkhoon Plain, Journal of Hydrogeomorphology, 6, 101-119. Khosravi, K., Pham, B.T., Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., Prakash, I., Tien Bui, D. (2018). A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 627:744-755. https://doi.org/10.1016/j.scitotenv.2018.01.266. Kisi, O., Dailr, A.H., Cimen, M., Shiri, J. (2012). Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology, 450:48–58. https://doi.org/10.1016/j.jhydrol.2012.05.031. Li, H., Lu, Y., Zheng, C., Yang, M., Li, S. (2019). Groundwater Level Prediction for the Arid Oasis of Northwest China Based on the Artificial Bee Colony Algorithm and a Back-propagation Neural Network with Double Hidden Layers. Water Resources Management and Governance, 11(4):2-20. https://doi.org/10.3390/w11040860. Melesse, A.M., Ahmad, S., McClain, M.E., Wang, X., Lim, Y.H. (2011). Suspended sediment load prediction of river systems: An artificial neural network approach. Agric. Water Manag, 98:855-866. https://doi.org/10.1016/j.agwat.2010.12.012. Milan, S.G., Roozbahani, A., Arya Azar, N., Javadi, S. (2021) Development of adaptive neuro fuzzy inference system –Evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation, Journal of hydrology, 598:574-592. Ostu, N. (1979). A Threshold Selection Method from Gray-Level Histograms [J]. IEEE Transactions on Systems Man and Cybernetics, 9 (1): 62-66. Rajaee, T., Mirbagheri, S.A., Zounemat-Kermani, M., Nourani, V. (2009). Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci. Total Environ, 407:4916–4927. https://doi.org/10.1016/j.scitotenv.2009.05.016. Senthil Kumar, A.R., Sudheer, K.P., Jain, S.K., Agarwal, P.K. (2004). Rainfall–runoff modeling using artificial neural network: comparison of networks types. Hydrol. Process, 19 (6):1277–1291. https://doi.org/10.1002/hyp.5581. Sreekanth, P.D., Geethanjali, N., Sreedevi, P.D., Shakeel, A., Ravi Kumar, N., Kamala Jayanthi, PD. (2009). Forecasting groundwater level using artificial neural networks, Current Science, 96(7), 99-112. https://www.jstor.org/stable/24104683 Steyl, G. (2009). Application of Artificial Neural Networks in the Field of Geohydrology. University of the Free State, South Africa. Thendiyath, R., Madan, K., Deo, R., Vandana, A. (2019). Development and Evaluation of Hybrid Artificial Neural Network Architectures for Modeling Spatio-Temporal Groundwater Fluctuations in a Complex Aquifer System. Water Resources Management, 33(7):2381-2397. https://doi.org/10.1007/s11269-019-02253-4. Vapnik, V., and Chervonenkis, A. (1991). The necessary and sufficient conditions for consistency in the empirical risk minimization method, Pattern Recognition and Image Analysis, 1(3), 283-305. Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. Springer, New York. Vapnik, V.N. (1998). Statistical learning theory. Wiley, New York. Wang, D., Safavi, A.A., and Romagnoli, J.A. (2000). Wavelet-based adaptive robust M-estimator for non-linear system identification, AIChE Journal, 46(4), 1607-1615. Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O., Lee, K.K. (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrol , 396(4):128–138 Zare, M., Koch, M. (2018). Groundwater level fluctuations simulation and prediction by ANFIS- and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: Application to the Miandarband plain. Journal of Hydro-environment Research, 18:63-76. https://doi.org/10.1016/j.jher.2017.11.004 Ziya Kaya, Y., Unes, F., Demirci, M., Tasar, B. (2018). Groundwater Level Prediction Using Artificial Neural Network and M5 Tree Models. Air and Water Components of the Environment Conference. DOI: 10.24193/AWC2018_23.
| ||
آمار تعداد مشاهده مقاله: 416 تعداد دریافت فایل اصل مقاله: 268 |