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Abstract - \

Based on the extragradient-like method combined with shrinking projection, we propose two algorithms, the
first algorithm is obtained using sequential computation of extragradient-like method and the second algorithm
is obtained using parallel computation of extragradient-like method, to find a common point of the set of fixed
points of a nonexpansive mapping and the solution set of the equilibrium problem of a bifunction given as a sum
of the finite number of Hélder continuous bifunctions. The convergence theorems for iterative sequences generated
by the algorithms are established under widely used assumptions for the bifunction and its summands.
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1. INTRODUCTION

Let H be real Hilbert space and C' be a nonempty closed convex subset of H. For a bifunction f : C' x C — R, the
problem

find z* € C such that f(z*,2) >0, Vz € C (1.1)

is called equilibrium problem (Fan inequality [9]) of f on C, denoted by EP(f,C). The set of all solutions of EP(f,C)
is denoted by SEP(f,C) and is given by SEP(f,C) = {z* € C: f(2*,z) > 0, Vz € C'}. Various algorithms have been
proposed to solve (1.1), see for example [1, 6, 10, 22, 26]. Following the introduction of the equilibrium problem, many
iterative algorithms are proposed to find z € FizT (|SEP(f,C) where T : C — C is a nonexpansive mapping and
FiaT = {x € C : Tx = z} is the set of fixed points of T see [2, 3, 20, 23, 24]. Recall that a mapping T : C — C'is
said to be nonexpansive if ||T(z) — T(y)|| < ||l — y||, Vz,y € C.

For many years, equilibrium problems and fixed point problems become an attractive fields for many researchers
both in theory and applications, see in [7, 28], and due to the importance of the solutions to such problems, many
researchers are working in this area and studying on existence and approximation of the solutions to such problems.
The problem under consideration in this paper is

N
find 2* € FizT such that Z filz*,y) >0 Vy € C, (1.2)
i=1

where f; : C x C' — R is bifunction for ¢ € I = {1,...,N} and T : C' — C is nonexpansive mapping. Let ) denotes
the solution set of (1.2), i.e., 2 = SEP( Zivzl fi»C) N FiaT where SEP( Zi\; fi, ©) is the solution of the equilibrium
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problem EP( ZZI\LI fi C):

N
find 2* € C such that Y _ fi(z",y) >0, Vy € C. (1.3)

=1

Recently, the problem of finding a common point of the solution set of the equilibrium problem EP(Zi\Iz1 fi,C)
becomes an attractive field for many researchers (see [12, 15-17, 19]). In [17], the weakly convergent algorithm is
proposed for EP(f; + fo, C) using parallel or sequential computation of resolvent operator defined in [6]. Unlike results
in [12, 15, 17, 19], Moudafi in [16] used Barycentric projected-subgradient method to generate strongly convergent
splitting algorithm for solving equilibrium problems EP( sz\; fi, C) under suitable assumptions.

Here we recall some useful notions.

Let C be a subset of a real Hilbert space H and f : C' x C'— R is a bifunction. Then, f is said to be

(1): 7-Hélder continuous on C' with constant L > 0 if there exists 7 € (0, 1] such that at least one of the following
is satisfied:
(a) |f(:v,y) - f(zvy)l < LH.%‘ - Z||T7 Vx,y,z € C§
(b) [£(z,y) — f(z.2)| < Llly — 2|7, Y.z € C.
We call f is 7-Holder continuous in the first argument (resp. in the second argument) if f satisfies (a) (resp.
f satisfies (b)).

(ii): Lipschitz-type continuous on C if there exist two positive constants ¢, ¢o such that

f(‘ray) + f(yaz) 2 f(x,z) - 01”.73 - y” - CQ”Z/ - ZH? vmayvz eC.
(iii): new type of Lipschitz continuous (defined in [19]) on C with constant L > 0 if

|f(xay) +f(yaz) - f($,Z)| < L”.I‘ _y””y_ Z”a anyaz eC.

It is well shown in [19] that the new type of Lipschitz type continuous bifunction is Lipschitz type continuous
bifunction. When I = {1,2}, Hai and Vinh in [12] and Pham and Trinh in [19] used proximal operator for fi and fs
which is similar to extragradient algorithm:

{ y* = argmin{\. f1 (z*,y) + L||z* —y||? : y € C}, (1.4)
28 = argmin{ A\ f2(y*,y) + 5% —yll* 1 y € C},
and
{ y* = argmin{\ fi (2", y) + 5)|2* —yl? 1y € C}, (1.5)
2% = argmin{\;, fo (2%, y) + §||33k —y||? 1y € C},

in solving (1.2). Pham and Trinh in [19], considered the problem (1.2) when f; is 79-Holder continuous in the first or
second argument and f is the new type of Lipschitz continuous. On the other hand, Hai and Vinh in [12] obtained
a weakly convergent algorithm to some point p € SEP(f1 + f2,C) under certain assumptions where f; and fo are
Holder continuous (in the first or second argument).

One of the purposes of this paper is to show that if some appropriate additional step of iteration is performed
in algorithms proposed in [12], then one has algorithms, possibly under weaker assumptions, converging strongly to
some point solving (1.2). Inspired by the practical application of equilibrium problems and motivated by results in
[12, 17], we propose two strongly convergent algorithms for solving the problem (1.2) where the first one starts with the
sequential extragradient method and the second one starts with the parallel extragradient method. To obtain a strong
convergence result, we took some additional steps of the iteration involving resolvent operator and shrinking projection
method in the algorithms proposed in [12]. Our algorithms may be computationally expensive than algorithms in [17]
and [12] as there is the additional step of an iteration involving resolvent operator and shrinking projection, see more
about the resolvent operator and shrinking projection-type results in [5, 13, 17, 23, 27]. Despite this, our algorithms
generate a sequence strongly converging to the solution set Q of the problem (1.2). It is also clear to see that the
problem (1.2) is general for the problem considered in [12].
oG
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This paper is organized as follows. Section 2 briefly explains the necessary mathematical background. Section 3
presents the proposed algorithms and proves that it converges to SEP ( Zf\]:l fis C’) () FizT under certain assumptions.
Some applications are provided in section 4.

2. PRELIMINARY

In this section, we recall some definitions and results for further use. Let H be a real Hilbert space with the inner
product (.,.) and the induced norm ||.||. Let C' be a nonempty closed convex subset of H. We write ¥ — z means
that the sequence {z*} strongly converges to = as k — co. The metric projection on C is a mapping Pc : H — C
defined by

Po(z) =argmin{||ly —z||: y € C}, = € H.
Lemma 2.1. [25] Let C be a closed convex subset of H. Given x € H and a point z € C, then z = Po(z) if and only
if (x—2z,y—2) <0 VyeC.
Lemma 2.2. [18] Let C be a nonempty closed convex subset of a real Hilbert space H and let Pe is a metric projection
on C. Then,
lo = Pe)|* + [Pe(y) —yl* < llo —ylI* Yz e C,y e H.
Let C be a subset of a real Hilbert space H and f : C' x C' — R be a bifunction. Then, f is said to be
(i): strongly monotone on C, if there is M >0 (shortly M-strongly monotone on C) iff
Fla,y) + fly,2) < —Mlly — ||, Y,y € C,
(ii): monotone on C iff f(x,y) + f(y,z) <0, Vz,y € C,
(iii): pseudomonotone on C with respect to x € C iff
f(z,y) > 0 implies f(y,z) <0, Vy € C.
Clearly, (i)= (ii)=-(iii) for every z € C.
For a subset C of a real Hilbert space H, Idc is mapping from C onto C given by Idc(x) = « for all z € C.

Lemma 2.3. [11] Suppose C is closed convex subset of a Hilbert space H and U : C — C' be nonezpansive mapping.
Then,
(i): If U has a fized point, then FizU is a closed convex subset of H.
(ii): Ide — U is demiclosed, i.e., whenever {xz,} is a sequence in C weakly converging to some x € C and the
sequence {(Idc — U)x,} strongly converges to some y, it follows that (Ide — U)x = y.

d
Lemma 2.4. [/] Let {z1,...,xzq4} C H, {\1,...,Aa} CR with >, \; = 1. Then,
=1

K3

v 5y )
:Z/\i||xi||2—22)\i)\j%.
i=1

d
H Z)\il“i
i=1 i=1 j=1
Given X € [0,1], z,y € H where H is Hilbert space. Then using Lemma 2.4, we have
Az + (1= Nyl = Mz ]* + (1 = Nyll* = A1 = Nz - yl*
Let function ¥ : H — R be a function and x € H. Then, the subdifferential of ¥ at x is defined by
0V(r)={we H: (w,y—z) <V(y)—¥(z), Yyec H}.

We recall that the normal cone of C' at x € C' is defined as follows:

Ne(z)={we H: (w,y—=x) <0, Vy e C}.
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Lemma 2.5. [8] Let C be a convex subset of a real Hilbert space H and g : C' — R be a convex and subdifferentiable
function on C. Then, x* is a solution to the following convexr problem

min{g(x) : x € C},

if and only if 0 € Og(x*) + N (a*), where dg(x*) denotes the subdifferential of g and No(x*) is the normal cone of C
at x*.

For a closed convex subset C' of H and for bifunctions f; : CxC — R, € [ and f = Zf\[:l fi consider the assumptions
given bellow.

Assumption 1

(A1): f is monotone on C; for each y € C, f(.y) is upper semicontinuous;
(A2): for each z,y,z € C, limsup f(Ax + (1 — Ny, 2) < f(y, 2).

A—0+F
Assumption 2
(B1): forallz € C, fi(zx,z) =0,i €1,
(B2): for each = € C, the bifunction f;(z,.) is lower semicontinuous, convex and subdifferentiable on C, i € I.

From Assumption 1 and Assumption 2 above we have

(C1): forallz € C, f(x,z) =0,
(C2): f is monotone on C,
(C3): for each x,y,z € C,

limsup f(/\l‘ + (1 - )‘)y, Z) < f(ya Z),

A—0F
(C4): for each x € C, the bifunction f(z,.) is convex and lower semicontinuous.

The following two results are from Equilibrium Programming in Hilbert Spaces.

Lemma 2.6. [0, Lemma 2.12] Let f satisfies (C1)-(C4). Then, for each r > 0 and x € H, there exists v € C' such
that

1
f(v7y)+;<v—y,y—:r> >0, VyeC.

Lemma 2.7. [6, Lemma 2.12] Let f satisfies (C1)-(C4). Then, for each r > 0 and x € H, define a mapping (called
resolvant of f), given by

1
Tl(@)={veC: flo,y) + —(y—v,v—2) 20, ¥y € C}.
Then the followings holds:

(i): T/ is single-valued;
(ii): T7 is a firmly nonexpansive, i.c., for all x,y € H,

IT (2) = T (9)|I* < (T (2) = T (y), @ — )3

(iii): Fir(T]) = SEP(f, D), where Fix(T}) is the fized point set of T ;
(iv): SEP(f,D) is closed and convez.

3. MAIN RESULT

In this section, using extragradient and shrinking projection method we propose two algorithms for solving (1.2)
and analyse the strong convergence of the sequences generated by the algorithms by assuming that the solution set €2
is nonempty.

(=)
BEE
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3.1. Shrinking projection and sequential extragradient method. Assume that
(al): f= Zfil fi satisfy Assumption 1,
(a2): each f; satisfy Assumption 2 for all ¢ € I,
(a3): fy is 7i-Holder continuous in the first or in second argument with constant 7 and f; is 7;-Hélder continuous
in the first argument with constant @Q; for each i € I — {1}.

Lemma 3.1. Q is closed convex subset of H.

Proof. By Lemma 2.3, FixT is closed convex subset of H.
Let {u*} be a sequence in SEP(f,C) = SEP(Z?]:1 fi,C’) such that u¥ — 2*. For each y € C, from the upper
semicontinuity of f(.,y), we have

0 <lim sup f(u",y) < f(z*,y).

k—o0

Hence, * € SEP(f,C) implying that SEP(f,C) is closed. Let a7, 25 € Q and v € [0,1]. Then for all y € C' we have

fQys vt + (L =7)az) <vf(y,27) + (1 =) f(y,23) < 0.
For each v € [0,1] set

Take o € (0, 1]. Then by the convexity of f(oy + (1 — o)p,,.) one has
0= f(oy+ (1 —0)py,0y+(1—0)py)
<ofloy+ (1 —0)py,y)+ (1 —0)f(oy+ (1 —0)py,py)
=of(oy+ (1 —0)py,y) + (1 —0o)f(oy + (1 — o)py,yai + (1 —v)z3)
<of(oy+(1—0)py,y), VyeC.

Letting 0 — 0 and by and using the Assumption 1 (A2) it follows that f(p,,y) > 0, Vy € C. It means that
p, € SEP(f.C).

Thus, SEP( ZZJ\LI fi, C) is convex. Hence, SEP( Zf\;l fi, C) is closed and convex subset of H.

Therefore, €2 is closed convex subset of H. O

Algorithm 3.1
Initialization: Choose 2° € C. Let C = Cy = Dy, {\}, {rx}, {0k}, and {ax} be real sequences such that
0<>\k, r > r>0, O<5k<1, O<ap<1.

Step 1: Solve N strongly convex optimization programs
. 1 .
yi = argmin{ fi(y1,y) + 5y —wl* sy €CYoiel,

where yf = 2%, If 28 = y¥ = ... = y&, then take v* = 2¥ and go to Step 3. Otherwise, go to Step 2.
Step 2: Find v* such that

W ETL (k) = (v C: fny) + —ly—vv—uk) 20, Wy C).
k

Step 3: Find tF = 50 + (1 — &)1 (V).
If 2% = y¥ = ... = y% and t* = T(2*), stop. Otherwise, go to Step 4.
Step 4: Evaluate s* = agz® + (1 — ay)t*.
Step 5: Evaluate
M = PCkJrlkaJrl (‘TO)
where

O ={y € Cr : [Is* —yl* < ll=* —y[|* + Ln},
Dit1={y € Dy : [It* —yll < [[v* — ol < llyx —wl},
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) o +1 = T
for ny, = ZiVZQ Z;;ll )\; T+ Zivzl A, 1, L =2QM such that Q = max{Q; : i € I} and M = max{Q> 7 :
i,7 €1}

Step 6: Set k:=k + 1 and go to Step 1.

Lemma 3.2. For the sequences {z*}, {s*} and {y¥} generated by Algorithm 3.1, we have
N
@: llyy —ll* < lla* —yl* - 22 lyi-y =y lI1* +2f (2", y) + Loy, Yy e C
(ii):
N
Is* = &) < la* = 2P = (1= ar) Y lyky = 117 + Lo = 0k(1 = ap) (1 = 5) [T (") = o*|1%, Va* €,
=2

(iif): [|s* — 2% < Jla* — ¥ = (1 — ap) 0" — y&|I* + Lo, Va* € Q,

where g, = Zi\;Q Z;;ll )\,%H —1—21-]\;1 )\ﬁ, L =2QM such that Q = max{Q; : 1 € I} and M = max{QQIii*j 11,j €
I}.
Proof. (i) Using Lemma 2.5 and

yi = argmin{\ fi(yl1,y) + %Ilyf—l —yl:y el
one has

0€ 8{Akfi(yfuy) + %Ilyz’il - yllg}(yf) +Ne(yy).
There exists w; € fi(yF |, yF) and ¢; € No(yF) such that

0=New; +yF —yl | +a.

From the definition of the normal cone and ¢; € N¢(yF), we have

(yioy = Mewi —yly —yk) <0, Wy eC. (3.1)
Moreover, from w; € df;(y¥_1,yF), we have

(wiyy —yi) < fiyir,y) = filyia,uf) Yy € H. (3.2)
From (3.1) and (3.2), we have

Wiy = vty =) < Melfiwin,y) = filyia,w)), Yy € C. (3.3)

The result above together with
k k k k k k k
20y =iy — ) = Iyl = uf 1P+ llyf = yll® = Nyl — ol
yields
ly =yl < 2Xe(filyio1sy) = filyion, vi)) — lyima — vi 12 + gty — yll? (34)

for all y € C. Taking y = y* | in (3.4) and using f;(z,7) = 0 and 7;-Holder continuity of f; in the first or second
argument with constant Q);, we get

gy =y 12 < —Xefiwly, uF) = e fi(uioy, yo)| < MeQillyly — yf

Hence, for each i € I, we have

lyf .y —yf | < (Qi) = (3.6)

(3.5)

(=)=
E)NE
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Noting z* = y& and using condition (a3) together with (3.5) and (3.6) gives

N N N N
2)\k(z (filyiry) — fi(yf_pyf))) = 2>\k(z (filylorsy) = filyfonub)) + > fila,y) - Zfi(m’“,y))
=1 i=1 1=2 =2
N
§2>\k(z,fl 7y +Z‘fz yz 1Y f’b yOa |+Z|f’b yz 17y2)‘)
2;1 N 1—1 -
<2\ (Zfz Ty +Zz‘f1 y], = fil y] Y ""Z‘fl yz l?yz)’)
=1 =2 1 =1
N N Z*l N
< 2Ak(Zfz(x’“7y) YD QillyE — b T+ QillyE - yfll”)
i=1 =2 j=1 i=1
N N Z 1
<o (S AF ) + 30 Q@) +ZQ1 NeQi) T )
i=1 =2 1
N zj 1
<of@h )+ 20 (D QunQ) T 74T ) BCR)
1=2 j=1 =1

Let Q@ =max{Q;:¢1 €I} and M = max{QriU‘ 4,7 € I't. From (3.7), we have

2 (S (il w) = L)) <20 f @8 ) + L( 2, S0
where L = 2QM. Thus, combining (3.4), (3.7), and (3.8) it follows

i
27'+

XA (38)

N N
Iy —yll> <" —ul> = > lul, — w1 + %c(z Fiyio1,y) = Filyis, vl )))
=1 =1

N
<l =yl = D Nyt — w5 1P + 20 F (@, ) + Lo (3.9)
i=1
T4 2
where 7y, = Zz 9 Z 4 Zfil Ay 7. Since Q C C, take y = z* € Q in (3.9). From the pseudomonotonicity
of f, we obtain
N
lyk = 2II* < ll2* — 2> = >~ llyky — o I1° + Lo, Vo™ € Q. (3.10)
i=1
(i1) Let «* € Q. Then,
1
J@y)+ —(y—atat —a") = Zfz z*,y) y €

Thus by definition of T , 2* = T} (2*) and hence

PP =T (R) = T ()P < (T (k) — T (27), ke — 2%)

o <1}
< Tt (k) = T @)l — =)

implying that
[ — o) < llyx — |- (3.11)
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By definition of t* and Lemma 2.4, we have
I[85 —a*? = [|ox0* + (1= 6)T (%) — 2*||?
= [Iop (0" = 2*) + (1 = ) (T(") — 2*)|?
= Opllo” — 2P + (1= 61T (") — ™) = 8 (1 = 1) | T (v*) — v*||?
= ST (") = TP = 61 (1 — 61T (") — 0"

)

S A s )
= 0|l — 2| = k(1 = ) | T (v*) — 0¥

)

(

41
+(1

Sgllv* — [ + (1
S(1
)

IN

= " =) = 0 (1 = o) IT(v°) — o*|I*. (3.12)
Again by definition of s*, and using (3.10), (3.11), and (3.12), we have

PP <anlld® =P+ (1 - gl - 27|

< agllz® = 2|2 + (1= ) (Jv* = 2*[* = 6 (1 = 30) [T (") = v*[|?)

s

N 2
<k =P = (L= ) Y iy = yE I+ (1= aw) LATT = 6(1 = an) (1 = ) | T(0*) — "2,

(#i) By Lemma 2.7,

[ —a*||* = ||T?€ (yk N) — T;ZJ; (36*)||2k
S <U - m*ay .’L'*>
= 5(Ilv* - *||2+||y’fv—ff*||2— [v% = yx (%)
implying that
l* =2 < llyk — 2*|* = [lv* — v |12 (3.13)
Then, by definition of s* and Lemma 2.4 combined with results in (3.12), (3.13), and (3.10) results
Is* —a*|* < allz® =2t |P + (1 - ) [t" — 27|
< agllzt =2t P+ (1 - ) ot -2
<l =2t = (1= aw)ll* — yNI* + Lok (3.14)
This ends the proof of the Lemma. O

Remark 3.3. For k =0 we have x* € C = Cy = Dy. From (3.11) and (3.12), we see that for all x* € Q
[¢* = a*[| < [|o* —2*|| < llyxy —2*[l, k>0
and from (3.14), we also see that for all x* € Q
Is* = a*? < la* = 2*|* + Lo, k> 0.

Therefore, Q C Cx N Dy, k > 0.
Let

Ep={y € Dp_1:[[t" —y| < [o" —yll} VE>1,

Fr={y € Dy : 0" =yl < llyk —wl} VE>1.
Thus, Dy, = Dyx_1 N Ex N Fy, for k > 1. Note that Ey and Fy, are either the halfspaces or the whole space H for all
k > 1. Hence, they are closed and convex. Since Dy = C, Ej, and Fy are closed and convex for all k > 1, Dy, is also

closed and convex k > 0. Moreover, for each k, Cy, is closed and convex, (see Lemma 1.3 in [14]).
Therefore, Cy, N Dy is nonempty closed and convex subset of H. It is easy to see that

.CCk1NDpy1 CcCynNDyC...CcCinD; CcCynDy=C.

Remark 3.4. (a): Since the problems in step 1 are strongly conver and C is nonempty, they are uniquely

solvable.
[c[m]
(0] €]
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(b): If condition 1 and 2 is satisfied, [ satisfies (C1)-(C4) and hence by Combettes and Hirstoaga in [6], for
each ry and for each x € C' the mapping Tﬂ; 1s single-valued.
(c): From remark 3.3, CyNDy, is nonempty closed and convex subset of H, for each k. Moreover, ) # Q C CrNDy
for all k > 0 and hence Pc, . ,nD,,, is well defined.
Hence, Algorithm 3.1 is well defined.

Remark 3.5. (a): Ifz* =yk = ... = ok, then from (3.4) we have f;(y¥_,,y) >0, Vy € C, hence Zf\il fi(zk y) >
0, Yy € C, implying that z* € SEP( Zil fi,C). Moreover,
1
f(‘rkvy) —+ E<y_xk7$k _y]k{/'> = f(l'k,y) > 0’ vy cC.
Hence, v* =T/ (yk) = ",
(b): Ifa* =yb =... =yl and t* = T(a*) then 2* € SEP( Zil fi,C) and z* € FiaT, i.e., x* € Q. Therefore,
Algorithm 3.1 terminates at step 3 when x* = y¥ = ... = y& and t* = T(z).

By the argument of Remark 3.5, we can conclude that if Algorithm 3.1 terminates at some iterate k, then 2* is the
solution of (1.2). Otherwise, if Algorithm 3.1 does not stop, then we have the following strong convergence Theorem.
Theorem 3.6. If the real sequences {au}, {0}, {\r} satisfy the following restrictions:

(i): 0 < liminf §; < limsupdg < 1,
k—o0 k—00

(ii): limsup oy < 1,
k—o00
(iii): for each i€ {2,3,...,N} and j € {1,2,...,N — 1}

(iv): for each i€l

2
lim )\;7” =0,
k—+oo

then the sequences {z*}, {y%}, {t*}, {s¥} and {v*} generated by Algorithm 3.1 strongly converge to some point p €
where p = Pq(x9).

Proof. The Theorem is proved through claims.
Claim 1: The sequences {x*}, {v*}, {y¥} (i € I), {t*} and {s*} converge to some point p in C.
Proof of claim 1: Put w = Po(2°) (we note that Q is closed and convex). From Q C Cj N Dy, and ¥ = Pg,np, (2°)
for all k£ > 0, we get

2% — 2°l| < flw — 2.
Also from z* = Pe,np, (2°) and 2kt € Cyp1 N Dyy1 C Cy N Dy, we have

la* — %) < 4 — 9],
It follows that the sequence {||z* — z°||} is bounded and nondecreasing. Hence limy_, o ||2* — 2| exists. For m > k
we have 2™ € C,, N D,,, C C;, N Di. Now by applying Lemma 2.2, we have
lz™ = 2*|* < fla™ — 2% — ||l2* — 27|

Since limy,_s 4 oo || — 20| exists, it follows that {z*} is a Cauchy sequence, and hence there exists p € C' such that
limg_, oo ¥ = p. Putting m = k + 1, in the above inequality, we have

lim |z* T —2F|| =0
k—4o00

In view of zF*! = PCHmDHl(»TO) € Ck41 N Dgy1 C Cryq and n — 0, we see that

||Sk _ €Ek+1H2 < ”xlc _ (Ek+1||2 + Lnk
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It follows that ||s* — 2**1|| — 0. This implies that s* — p. As a result of the inequalities ||s* — 2*|| < ||s* — 2**1|| +
l|lzF — 25|, we have

1i k_ k| — 1
Jim s — 2k =0 (3.15)
Note that
la* — 2| = ||s* = 2*||* + Lop< (|2* — 2% + ||s* — 2*[)([|2* —2*|| = |s* = 2*|)) + Ly
< (=" — 2| + lIs" — =*[)]|«” — ™[ + L.
From Lemma 3.2 (ii) and from (3.16) above
N * *
(1 —ap) 3ol Iy = yF 1> < (2 = a¥|| + [|s* — 2|} [J2* — s*[| + Lo, (3.17)
(1 — ar)(L = ) [IT(v*) — v < (|l2* — 2*|| + [|s* — 2*[)]|2* — s*|| + Lok (3.18)
and
(1= ap)lv® = yxl® < (2% = 2*|| + ||s* =) [l«* — || + L. (3.19)
ombining (3.19), (3.17), (3.18), an . together with ap € (0,1), 0 < liminf o < limsupor < 1, limsupay <1,
Combini 3.15), (3.17), (3.18 d (3.19 h ith 0,1),0 l'k'fé <l 0 1, i 1
—00 k—o0 k—o0
e — 0 and s*, 2% — p, we get
. ko k| — 1 By _ k| — 1 k_ k| —
e e o A G R R N T (3.20)
Since ||z% — y¥|| = |y — y¥|| < Eézl lyy_y — y}ll for each i € I, and using (3.20), we have
lim ||z —¢¥| =0, Viel (3.21)
k—+oo

From (3.20) and (3.21) and z*, s* — p, we get that y¥, v¥ — p.
Since 2! = P¢,, ,np,., we have "' € Cj11 N Dy4q. Thus, by definition of Dy 1, we have

[£* = 2| < Jlo® = 2T < lyy — 2.
Using [[th — 21| < |loF — 2k Y|, [k — 2| < ||ok — p|| + ||2*+ — p|| and zF, v* — p, we obtain t* — p.

Clatm 2: p € Q.
Proof of claim 2: By v* =T/ (y&)

1
Fk y) + E“’ —v*0F —yR) >0, weC.

Since f is monotone on C, we also have
1
—(y — 0" 0 —yX) > fly,0"), vy e C.
Tk
Since v* — yk — 0, v¥ — p and by the lower semicontinuity and the convexity of of f(y,.) we have f(y,p) < 0 for
each y € C.
Let y € C and 7 € (0.1). Then, using convexity of f(y,.), we have

0=/f(w+@L=7)p,vy+ (1 —7)p)

<yfw+ A=y + A=) f(y+ 1 =7)p,p)

<vf(wy+ (1 =7)py), VyeCl.
Letting v — 0 and using (A2) of Assumption 1 it follows that f(p,y) > 0, Vy € C. It means that p € SEP(f,C).
Moreover, (3.20), v — p and demiclosedness of T' gives p € FizT. Therefore, p € Q = SEP( Zfil fi,C) N FiaT.
Claim 3: p = Po(2°).
Proof of claim 3: Since ¥ = Pg, np, (2°), by Lemma 2.1, we have

<x0 —xk,y—xk> <0 Vy € Cp N Dy.

(=)=
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Since Q C C; N Dy, we have
(z° —py—p) <0 VyeQ.

Now by Lemma 2.1, we obtain that p = Pq(2°).
This completes the proof. O

Remark 3.7. (i): Fori,jel,

.
1< —*

2
+1<2 and 1<2 < 2.

7Tj —T;

It is easy to choose a sequence {\} satisfying conditions (4ii) and (iv), for example, A\, = k% with v € (0, +00).

(ii): If 7, = 7, then the conditions (iii) and (iv) in Theorem 3.6 is reduced to only one condition

_2
lim A;7" =0.
k—+oco

(iii): If 7, = 7, alternatively we can also proceed as
N N 2
lyn = yll® < ll2* = yl* =D llwfy = uflIP + 20 Y fila® y) + AT
i=2 i=2

where I = 2N Ei_lQ'Qﬁ—i—ZN QQ%
= 2i=2 2.j=1 Wil i=1 @ildi -

Letting T = Idc in Algorithm 3.1, then from Theorem 3.6 we obtain the following result solving (1.3) by assuming
conditions (al), (a2) and (a3) are satisfied.

Corollary 3.7.1. Let {r}, {axr} and {\;} be real sequences such that ri > r>0, 0<ar<l, 0<Ag. If {ax} and {\}
satisfy the restrictions (i), (iii) and (iv) in Theorem 3.6, then the sequences {z*}, {y%}, {s*} and {vF} generated by
iterative algorithm

el = Co = Dy,

b = yf,

yi = argmin{\efi(yl 1, 9) + 5llyla —yl? 1y €CY Qe

vt € T (yh),

sk = apa? + (1 — ap)v¥,
Crr1={y € Ci + ||s* —yl? < [|l2* — y|1* + L},
Dyy1={y € Di : [0* —yll < llyx — yll},

gttt = PCk+1f‘|Dk+1 (xo)v

strongly converge to p € SEP( Zi\il fi C) where p = PSEP(ZN 4 c) (29).
i=1Ji>

Note that in Corollary 3.7.1

N i—1 T4 N S
Nk = Z Z /\,j_Tj + Y A7 and L =2QM
i=2 j=1 i=1

where Q = max{Q;:i € I} and M = max{Qrif ti,5 €T}

3.2. Shrinking projection and parallel extragradient method. Assume that

(b1): f= Zf\il fi satisfy Assumption 1,
(b2): each f; satisfy Assumption 2 for all i € I,
(b3): f; is 7;-Holder continuous in the first or in second argument with constant @; for i € I.
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The solution set Q of problem (1.2) is closed convex subset of H by the same reasoning as in Lemma 3.1.

In the following, we use the computation of intermediate approximations parallelly instead of sequentially.

Algorithm 3.2

Initialization: Choose 2° € C. Let Cyp = Dy = C and {\}, {r&}, {0k}, {ax} are real sequences such that
0<Ag, 1 >1r>0, 0<dr<l, O<ai<l.

Step 1: Solve N strongly convex optimization programs
. 1 .
yF = argmin{ )\ f; (2", y) + ink —yl|*:yecC}, iel
If 2% = yk = ... = y%,, then take v* = 2¥ and go to Step 4. Otherwise, go to Step 2.

Step 2: Evaluate
1N
E_ L k-
F = N;yi

Step 3: Find v* such that
1
FeT! (ZF)y={velC: flv,y)+ T—(y—v,v —2M >0, vyeCl.
k

Step 4: Find t* = 6vF + (1 — 6;)T(vF).
If 2% = yk = ... = y% and t* = T'(z*), stop. Otherwise, go to Step 5.
Step 5: Evaluate s* = agpz® + (1 — az)t".
Step 6: Evaluate
ght! = PCk+1ﬂDk+1 (xO)
where
Crr1={y € Oy« [|Is* —y|I” < [l«* — yl* + Lo},

Diy1={y € Dp: It" —yll < " —yll < 12" -y},

2 Ti
for wy, = Zi\il AN, L= QQTM such that Q = max{Q; : ¢ € I'} and M = max{Q?> " :i € [}.
Step 7: Set k:=k + 1 and go to step 1.

Lemma 3.8. For the sequences {x*}, {2*}, {v*} and {s*} generated by Algorithm 3.2, we have

N
@)z 125 —yl* < 2" —ylP* — & Zl lz* =y II* + 23 f(2*,y) + Low, ¥y € C,
1=

N

(i): [|s" —2*|? < flo* —2*? = (1 — ) x 2 llo* =y I? = 0k(1 = 61T () — & I + Lok, Vo™ €
i=1

(iii): [|s* — "> < |2 — 2% = (1 — an) 0¥ = 2F||* + Lwy, V2™ € Q,

2 -
where wy, = Zfil AN, L= % such that Q@ = max{Q; : 1 € I} and M = max{Q* 7 :i € I}.

Proof. (i) By the defintion of ¥, we obtain

N
1
12 — 2*|| < N >l =" (3.22)
i=1

From step 1 of Algorithm 2, we have
(f —a® 2" —y) < N(fila®,y) = file® ) — le* = yf 1%, vy e O, (3.23)

(=)=
E)NE
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forall¢ € 1.
Setting y = ¥ in (3.23), we have

2% =41 < =Mefila®, yi) < efule®, yi)| < MeQullz® — y7 |,

for all i € 1.
Thus,
2% — gkl < (\@:) T, Viel (3.24)
Using (3.23) and (3.24) and condition (b3), we have for y € C,
N N
Yoy —at a2t —y) < N (e ) — ik yl)

i=1 i=1

= aw(f@", Zfz “u))
)\k(f z",y) +Z|f1 AR )
(

<
< M(f@y) +ZQZIIm ™)
< AM(JE’%@/HQMZA;‘LW (3.25)

=1

where Q@ = max{Q; : i € I} and M = maX{Q"‘ziiﬂ‘ NS I}. Hence, the result follows from

(2P — kb —y) Z —aF 2k —y), Vyec,

and

125 = ylI* = 2% — 2| + [la* — y|* + 20" —a* 2" —y), e,

together with (3.22) and (3.25). The results (ii) and (iii) are obtained using the same technique as in Lemma 3.2. [

Remark 3.9. (a) If ok = yF = ... = yk, then we have f;(y¥ 1,y) >0, Vy € C, hence Zfil filz* y) >0, Yy e
C, implying that 2* € SEP( Ef\il fi, C’). Moreover,

1
f(‘rk’y)+ 7<y7xk7xk 72k> = f(xkay) Z 07 Vy eC.
k

Hence, v* =T/ (%) = a*.
(b) If a*F =yb = ... =k and t* = T(z*) then 2% € SEP( Zf\;l fi,C) and a* € FiaT, i.e., 2% € Q.
Therefore, Algorithm 3.2 terminates at Step 4 when z* = y¥ = ... = y& and t* = T(2").
Theorem 3.10. If the real sequences {a}, {0k}, {\&} satisfy the following restrictions:
(i): 0< hm mf 0, <limsupdy < 1,

k—o0
(ii): hmsup ap <1,
k— oo ,
iii): for eachi eI lim A7 =0
(ii): f L dim AT =,

then sequences {x*}, {2*}, {v*}, {tk} and {s*} generated by Algorithm 3.2 strongly converge to p € Q where p =
PQ(SCO).
an
(o] < |
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Proof. We omitted the proof as it is similar to the proof of Theorem 3.6. (]

Letting T = Idc in Algorithm 3.2, then from Theorem 3.10 we obtain the following algorithm solving (1.3) by
assuming conditions (bl), (b2) and (b3) are satisfied.

Corollary 3.10.1. Let {ri}, {ax} and {\i} be real sequences such that ri > r>0, 0<ap<l, 0<Xg. If {ar} and
{\r} satisfy the restrictions (i) and (i) in Theorem 3.10, then the sequences {z*}, {2*}, {v*} and {s*} generated
by iterative algorithm

20 eC = Co = Dy,

yy = argmin{\. f;(a*,y) + 3ll2* —y|* 1y € O}, i€ L,

2= % Zfil yr

vk e Tg; (zk),

sk = aga® + (1 — ag)v¥,
Cir1={y € Cr: [|Is* —ylI*> < [l2* —y|* + Lo},
Dyy1 = {y € Dy« [[v* —yll < [|l2* —yll},

ahth = PCk+1ﬁDk,+1 (l‘ )7

strongly converge to p € SEP(Z:?L1 fi, C) where p = Psppisy | 1.0 (x9).

Remark 3.11. Comparing Hélder continuity conditions (a3) in Algorithm 3.1 and (b3) in Algorithm 3.2, we can
see that the condition (b3) is a bit more relazed Holder continuity condition than (a8), because in condition (a3) at
least N — 1 bifunctions must be Holder continuous in the first argument out of N Holder continuous bifunctions as a
summand of the main bifunction.

4. APPLICATION
Lemma 4.1. [14, Proposition 4.34] Suppose C is closed convexr subset of a Hilbert space H and U; : C — C
be nonexpansive mappings for j € J = {1,...,N'} such that ﬂ?’:l[FixUj} # 0. Let U(x) = Zjvzl 0;U;(x) with
0<6; <1 for every j € J and Zj\; 0; =1. Then, U is nonexpansive and FizU = ﬂf\:l [FizU;).

The following are some typical problems for equilibrium problem and a finite family of nonexpansive mappings in
a Hilbert space that can be reformulated as problem (1.2).

4.0.1. Equilibrium problems and a finite family of monexpansive mappings. Let I = {1,...,N}, J =
{1,...,N'} and H is a real Hilbert spaces. Suppose C' be nonempty closed convex subset of H, f; : C x C — R
be bifunctions for each i € I, and T} : C' — C be nonexpansive operators for each j € J. Consider the problem

x* € FixTy, Vj e J,

SN filat,y) >0, Wy e C. (4.1)

find z* € C such that {

Take {601,0s,...,0n/} C (0,1] such that Z;V:II 0; = 1. Set T'(z) = Zj\; 0;Tj(x). By Lemma 4.1, T is nonexpansive
and FizT = ﬂ;.V:/l[Fiij]. Therefore,

N’ N N
(JQF@J:TJ) mSEP(;fi,C) = FmTﬂSEP(;fi,C> =0,

and hence, problem (4.1) is of the form (1.2).

(=)=
E)NE
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4.0.2. Equilibrium problem over the intersection of closed convex sets. Let {C1,...,Cn} be finite collection
of closed convex subsets of a real Hilbert space H such that (;.;C; # 0 where J = {1,...,N'}. Let C be closed
convex subset of H containing J;.;C; and f; : C x €' — R be bifunctions for ¢ € I € {1,...,N}. Consider the
problem

N
find z* € D := ﬂ C; such that Zfi(x*,y) >0, YyeC. (4.2)
jeJ i=1

In this case, we can take T; = P¢, for each j € J, i.e., T} is the projection map on C; which is nonexpansive, hence
using Lemma 4.1, we can reformulate the problem (4.2) in to problem (1.2).

4.0.3. Common solution of equilibrium problem and maximal monotone operator. Let U; : H — 2 be
maximal monotone operators and f; : H x H — R be bifunctions for each j € J ={1,...,N'},ie I ={1,...,N}
where H is a real Hilbert space. Consider the problem of finding x* € H with a property

N
0 € Uj(z*), Vj € J such that Zfz(x*7y) >0, Yy e H. (4.3)
i=1

It is well-known (see e.g. [21]) that the operator T; = (U; 4+ eldy)~" with € > 0 is defined everywhere, single-valued,
nonexpansive on the whole space and its fixed point set coincides with the solution set of the inclusion 0 € M;(z*).
Therefore, Algorithm 3.1 and Algorithm 3.2 solves problem (4.1), (4.2), and (4.3) if the required assumptions are
satisfied.

4.0.4. Example. Consider the problem (1.2) for H = R, feasible set C' = [—1,1], a bifunctions f; : C x C — R,
f= Zf;l fi, a nonexpansive mapping 71" : C' — C given by

filz,y) = 2z —2*)(y — z) and fi(z,y) = pix(y —x) forie {2,...,N},

andT:ZN/ LTy wherep; >0, { =1+...+ N’ and Tj(z) =

j=1¢ x, j€J={1,...,N'}. Note that

Ai(ey) = Aila,2)] =20 - a?)(y — ) = (20— 2”)(= — @) < Quly — 2|

and for i € {2,...,N}, we have

[filz,y) = filz,9)| = lpiz(y — 2) — piz(y — 2)| < pilyl + & + 2[)|z — 2| < Qilz — 2]

where Q1 = max{|2z — 22| : # € C}, Q; = max{p;(|y| + |z +2|) : x,y,2 € C} fori € {2,...,N}. Thus, f; is 1-Holder
continuous in the first argument on C with Q; = 3 and for ¢ € {2,..., N}, each f; is 1-Hélder continuous in the first
argument on C' with @; = 3p;. It is also easy to show that each f; is 1-Holder continuous in the second argument on
Cforie {2,...,N}. Note that FizT = {0} and SEP( YN, f;,C) = {0}. Therefore, Q = {0}.

5. CONCLUSION

Using sequential and parallel computation of extragradient-like method combined with shrinking projection we have
proposed two algorithms for finding a common element of the set of common fixed points of a nonexpansive mapping
and solutions of equilibrium problems for monotone bifunction f where f is the sum of a finite number of Hoélder
continuous bifunctions. One advantage of our result is that we can also apply it to solve problems that can’t be solved
by proposed algorithms in [12], i.e., we can apply our result to solve the equilibrium problem EP(f, C) for a bifunction
f that can be written as a sum of more than two Holder continuous bifunctions and can’t be written as a sum of two
Holder continuous bifunctions (problem (1.3) for N > 2).

(&)
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