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Abstract

Based on the extragradient-like method combined with shrinking projection, we propose two algorithms, the
first algorithm is obtained using sequential computation of extragradient-like method and the second algorithm

is obtained using parallel computation of extragradient-like method, to find a common point of the set of fixed
points of a nonexpansive mapping and the solution set of the equilibrium problem of a bifunction given as a sum

of the finite number of Hölder continuous bifunctions. The convergence theorems for iterative sequences generated

by the algorithms are established under widely used assumptions for the bifunction and its summands.
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1. Introduction

Let H be real Hilbert space and C be a nonempty closed convex subset of H. For a bifunction f : C ×C → R, the
problem

find z∗ ∈ C such that f(z∗, z) ≥ 0, ∀z ∈ C (1.1)

is called equilibrium problem (Fan inequality [9]) of f on C, denoted by EP(f, C). The set of all solutions of EP(f, C)
is denoted by SEP(f, C) and is given by SEP(f, C) = {z∗ ∈ C : f(z∗, z) ≥ 0, ∀z ∈ C}. Various algorithms have been
proposed to solve (1.1), see for example [1, 6, 10, 22, 26]. Following the introduction of the equilibrium problem, many
iterative algorithms are proposed to find x̄ ∈ FixT

⋂
SEP(f, C) where T : C → C is a nonexpansive mapping and

FixT = {x ∈ C : Tx = x} is the set of fixed points of T ; see [2, 3, 20, 23, 24]. Recall that a mapping T : C → C is
said to be nonexpansive if ‖T (x)− T (y)‖ ≤ ‖x− y‖, ∀x, y ∈ C.

For many years, equilibrium problems and fixed point problems become an attractive fields for many researchers
both in theory and applications, see in [7, 28], and due to the importance of the solutions to such problems, many
researchers are working in this area and studying on existence and approximation of the solutions to such problems.
The problem under consideration in this paper is

find x∗ ∈ FixT such that

N∑
i=1

fi(x
∗, y) ≥ 0 ∀y ∈ C, (1.2)

where fi : C × C → R is bifunction for i ∈ I = {1, . . . , N} and T : C → C is nonexpansive mapping. Let Ω denotes

the solution set of (1.2), i.e., Ω = SEP
(∑N

i=1 fi, C
)⋂

FixT where SEP
(∑N

i=1 fi, C
)

is the solution of the equilibrium
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problem EP
(∑N

i=1 fi, C
)
:

find x∗ ∈ C such that

N∑
i=1

fi(x
∗, y) ≥ 0, ∀y ∈ C. (1.3)

Recently, the problem of finding a common point of the solution set of the equilibrium problem EP
(∑N

i=1 fi, C
)

becomes an attractive field for many researchers (see [12, 15–17, 19]). In [17], the weakly convergent algorithm is
proposed for EP(f1 +f2, C) using parallel or sequential computation of resolvent operator defined in [6]. Unlike results
in [12, 15, 17, 19], Moudafi in [16] used Barycentric projected-subgradient method to generate strongly convergent

splitting algorithm for solving equilibrium problems EP
(∑N

i=1 fi, C
)

under suitable assumptions.
Here we recall some useful notions.
Let C be a subset of a real Hilbert space H and f : C × C → R is a bifunction. Then, f is said to be

(i): τ -Hölder continuous on C with constant L > 0 if there exists τ ∈ (0, 1] such that at least one of the following
is satisfied:
(a) |f(x, y)− f(z, y)| ≤ L‖x− z‖τ , ∀x, y, z ∈ C;
(b) |f(x, y)− f(x, z)| ≤ L‖y − z‖τ , ∀x, y, z ∈ C.
We call f is τ -Hölder continuous in the first argument (resp. in the second argument) if f satisfies (a) (resp.
f satisfies (b)).

(ii): Lipschitz-type continuous on C if there exist two positive constants c1, c2 such that

f(x, y) + f(y, z) ≥ f(x, z)− c1‖x− y‖ − c2‖y − z‖, ∀x, y, z ∈ C.

(iii): new type of Lipschitz continuous (defined in [19]) on C with constant L > 0 if

|f(x, y) + f(y, z)− f(x, z)| ≤ L‖x− y‖‖y − z‖, ∀x, y, z ∈ C.

It is well shown in [19] that the new type of Lipschitz type continuous bifunction is Lipschitz type continuous
bifunction. When I = {1, 2}, Hai and Vinh in [12] and Pham and Trinh in [19] used proximal operator for f1 and f2

which is similar to extragradient algorithm:{
yk = arg min{λkf1(xk, y) + 1

2‖x
k − y‖2 : y ∈ C},

zk = arg min{λkf2(yk, y) + 1
2‖y

k − y‖2 : y ∈ C}, (1.4)

and {
yk = arg min{λkf1(xk, y) + 1

2‖x
k − y‖2 : y ∈ C},

zk = arg min{λkf2(xk, y) + 1
2‖x

k − y‖2 : y ∈ C}, (1.5)

in solving (1.2). Pham and Trinh in [19], considered the problem (1.2) when f1 is τ1-Hölder continuous in the first or
second argument and f2 is the new type of Lipschitz continuous. On the other hand, Hai and Vinh in [12] obtained
a weakly convergent algorithm to some point p ∈ SEP (f1 + f2, C) under certain assumptions where f1 and f2 are
Hölder continuous (in the first or second argument).

One of the purposes of this paper is to show that if some appropriate additional step of iteration is performed
in algorithms proposed in [12], then one has algorithms, possibly under weaker assumptions, converging strongly to
some point solving (1.2). Inspired by the practical application of equilibrium problems and motivated by results in
[12, 17], we propose two strongly convergent algorithms for solving the problem (1.2) where the first one starts with the
sequential extragradient method and the second one starts with the parallel extragradient method. To obtain a strong
convergence result, we took some additional steps of the iteration involving resolvent operator and shrinking projection
method in the algorithms proposed in [12]. Our algorithms may be computationally expensive than algorithms in [17]
and [12] as there is the additional step of an iteration involving resolvent operator and shrinking projection, see more
about the resolvent operator and shrinking projection-type results in [5, 13, 17, 23, 27]. Despite this, our algorithms
generate a sequence strongly converging to the solution set Ω of the problem (1.2). It is also clear to see that the
problem (1.2) is general for the problem considered in [12].
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This paper is organized as follows. Section 2 briefly explains the necessary mathematical background. Section 3

presents the proposed algorithms and proves that it converges to SEP
(∑N

i=1 fi, C
)⋂

FixT under certain assumptions.
Some applications are provided in section 4.

2. Preliminary

In this section, we recall some definitions and results for further use. Let H be a real Hilbert space with the inner
product 〈., .〉 and the induced norm ‖.‖. Let C be a nonempty closed convex subset of H. We write xk → x means
that the sequence {xk} strongly converges to x as k → ∞. The metric projection on C is a mapping PC : H → C
defined by

PC(x) = arg min{‖y − x‖ : y ∈ C}, x ∈ H.

Lemma 2.1. [25] Let C be a closed convex subset of H. Given x ∈ H and a point z ∈ C, then z = PC(x) if and only
if 〈x− z, y − z〉 ≤ 0 ∀y ∈ C.

Lemma 2.2. [18] Let C be a nonempty closed convex subset of a real Hilbert space H and let PC is a metric projection
on C. Then,

‖x− PC(y)‖2 + ‖PC(y)− y‖2 ≤ ‖x− y‖2 ∀x ∈ C, y ∈ H.

Let C be a subset of a real Hilbert space H and f : C × C → R be a bifunction. Then, f is said to be

(i): strongly monotone on C, if there is M>0 (shortly M-strongly monotone on C) iff

f(x, y) + f(y, x) ≤ −M‖y − x‖2, ∀x, y ∈ C,

(ii): monotone on C iff f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C,
(iii): pseudomonotone on C with respect to x ∈ C iff

f(x, y) ≥ 0 implies f(y, x) ≤ 0, ∀y ∈ C.

Clearly, (i)⇒ (ii)⇒(iii) for every x ∈ C.
For a subset C of a real Hilbert space H, IdC is mapping from C onto C given by IdC(x) = x for all x ∈ C.

Lemma 2.3. [11] Suppose C is closed convex subset of a Hilbert space H and U : C → C be nonexpansive mapping.
Then,

(i): If U has a fixed point, then FixU is a closed convex subset of H.
(ii): IdC − U is demiclosed, i.e., whenever {xn} is a sequence in C weakly converging to some x ∈ C and the

sequence {(IdC − U)xn} strongly converges to some y, it follows that (IdC − U)x = y.

Lemma 2.4. [4] Let {x1, . . . , xd} ⊂ H, {λ1, . . . , λd} ⊂ R with
d∑
i=1

λi = 1. Then,

∥∥∥ d∑
i=1

λixi

∥∥∥2

=

d∑
i=1

λi‖xi‖2 −
d∑
i=1

d∑
j=1

λiλj
‖xi − xj‖2

2
.

Given λ ∈ [0, 1], x, y ∈ H where H is Hilbert space. Then using Lemma 2.4, we have

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

Let function Ψ : H → R be a function and x ∈ H. Then, the subdifferential of Ψ at x is defined by

∂Ψ(x) = {w ∈ H : 〈w, y − x〉 ≤ Ψ(y)−Ψ(x), ∀y ∈ H}.

We recall that the normal cone of C at x ∈ C is defined as follows:

NC(x) = {w ∈ H : 〈w, y − x〉 ≤ 0, ∀y ∈ C}.
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Lemma 2.5. [8] Let C be a convex subset of a real Hilbert space H and g : C → R be a convex and subdifferentiable
function on C. Then, x∗ is a solution to the following convex problem

min{g(x) : x ∈ C},

if and only if 0 ∈ ∂g(x∗) +NC(x∗), where ∂g(x∗) denotes the subdifferential of g and NC(x∗) is the normal cone of C
at x∗.

For a closed convex subset C of H and for bifunctions fi : C×C → R, i ∈ I and f =
∑N
i=1 fi consider the assumptions

given bellow.

Assumption 1

(A1): f is monotone on C; for each y ∈ C, f(.y) is upper semicontinuous;
(A2): for each x, y, z ∈ C, lim sup

λ→0+

f(λx+ (1− λ)y, z) ≤ f(y, z).

Assumption 2

(B1): for all x ∈ C, fi(x, x) = 0, i ∈ I,
(B2): for each x ∈ C, the bifunction fi(x, .) is lower semicontinuous, convex and subdifferentiable on C, i ∈ I.

From Assumption 1 and Assumption 2 above we have

(C1): for all x ∈ C, f(x, x) = 0,
(C2): f is monotone on C,
(C3): for each x, y, z ∈ C,

lim sup
λ→0+

f(λx+ (1− λ)y, z) ≤ f(y, z),

(C4): for each x ∈ C, the bifunction f(x, .) is convex and lower semicontinuous.

The following two results are from Equilibrium Programming in Hilbert Spaces.

Lemma 2.6. [6, Lemma 2.12] Let f satisfies (C1)-(C4). Then, for each r > 0 and x ∈ H, there exists v ∈ C such
that

f(v, y) +
1

r
〈v − y, y − x〉 ≥ 0, ∀y ∈ C.

Lemma 2.7. [6, Lemma 2.12] Let f satisfies (C1)-(C4). Then, for each r > 0 and x ∈ H, define a mapping (called
resolvant of f), given by

T fr (x) = {v ∈ C : f(v, y) +
1

r
〈y − v, v − x〉 ≥ 0, ∀y ∈ C}.

Then the followings holds:

(i): T fr is single-valued;
(ii): T fr is a firmly nonexpansive, i.e., for all x, y ∈ H,

‖T fr (x)− T fr (y)‖2 ≤ 〈T fr (x)− T fr (y), x− y〉;

(iii): Fix(T fr ) = SEP (f,D), where Fix(T fr ) is the fixed point set of T fr ;
(iv): SEP(f,D) is closed and convex.

3. Main Result

In this section, using extragradient and shrinking projection method we propose two algorithms for solving (1.2)
and analyse the strong convergence of the sequences generated by the algorithms by assuming that the solution set Ω
is nonempty.
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3.1. Shrinking projection and sequential extragradient method. Assume that

(a1): f =
∑N
i=1 fi satisfy Assumption 1,

(a2): each fi satisfy Assumption 2 for all i ∈ I,
(a3): f1 is τ1-Hölder continuous in the first or in second argument with constant Q1 and fi is τi-Hölder continuous

in the first argument with constant Qi for each i ∈ I − {1}.

Lemma 3.1. Ω is closed convex subset of H.

Proof. By Lemma 2.3, FixT is closed convex subset of H.

Let {uk} be a sequence in SEP(f, C) = SEP
(∑N

i=1 fi, C
)

such that uk → x∗. For each y ∈ C, from the upper
semicontinuity of f(., y), we have

0 ≤ lim sup
k→∞

f(uk, y) ≤ f(x∗, y).

Hence, x∗ ∈ SEP (f, C) implying that SEP (f, C) is closed. Let x∗1, x∗2 ∈ Ω and γ ∈ [0, 1]. Then for all y ∈ C we have

f(y, γx∗1 + (1− γ)x∗2) ≤ γf(y, x∗1) + (1− γ)f(y, x∗2) ≤ 0.

For each γ ∈ [0, 1] set

pγ = γx∗1 + (1− γ)x∗2.

Take σ ∈ (0, 1]. Then by the convexity of f(σy + (1− σ)pγ , .) one has

0 = f(σy + (1− σ)pγ , σy + (1− σ)pγ)
≤ σf(σy + (1− σ)pγ , y) + (1− σ)f(σy + (1− σ)pγ , pγ)
= σf(σy + (1− σ)pγ , y) + (1− σ)f(σy + (1− σ)pγ , γx

∗
1 + (1− γ)x∗2)

≤ σf(σy + (1− σ)pγ , y), ∀y ∈ C.

Letting σ → 0 and by and using the Assumption 1 (A2) it follows that f(pγ , y) ≥ 0, ∀y ∈ C. It means that
pγ ∈ SEP (f, C).

Thus, SEP
(∑N

i=1 fi, C
)

is convex. Hence, SEP
(∑N

i=1 fi, C
)

is closed and convex subset of H.
Therefore, Ω is closed convex subset of H. �

Algorithm 3.1
Initialization: Choose x0 ∈ C. Let C = C0 = D0, {λk}, {rk}, {δk}, and {αk} be real sequences such that
0<λk, rk ≥ r>0, 0<δk<1, 0<αk<1.

Step 1: Solve N strongly convex optimization programs

yki = arg min{λkfi(yki−1, y) +
1

2
‖yki−1 − y‖2 : y ∈ C}, i ∈ I,

where yk0 = xk. If xk = yk1 = . . . = ykN , then take vk = xk and go to Step 3. Otherwise, go to Step 2.
Step 2: Find vk such that

vk ∈ T frk(ykN ) = {v ∈ C : f(v, y) +
1

rk
〈y − v, v − ykN 〉 ≥ 0, ∀y ∈ C}.

Step 3: Find tk = δkv
k + (1− δk)T (vk).

If xk = yk1 = . . . = ykN and tk = T (xk), stop. Otherwise, go to Step 4.
Step 4: Evaluate sk = αkx

k + (1− αk)tk.
Step 5: Evaluate

xk+1 = PCk+1∩Dk+1
(x0)

where

Ck+1 = {y ∈ Ck : ‖sk − y‖2 ≤ ‖xk − y‖2 + Lηk},

Dk+1 = {y ∈ Dk : ‖tk − y‖ ≤ ‖vk − y‖ ≤ ‖ykN − y‖},
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for ηk =
∑N
i=2

∑i−1
j=1 λ

τi
2−τj

+1

k +
∑N
i=1 λ

2
2−τi
k , L = 2QM such that Q = max{Qi : i ∈ I} and M = max{Q

τi
2−τj :

i, j ∈ I}.
Step 6: Set k := k + 1 and go to Step 1.

Lemma 3.2. For the sequences {xk}, {sk} and {yki } generated by Algorithm 3.1, we have

(i): ‖ykN − y‖2 ≤ ‖xk − y‖2 −
N∑
i=2

‖yki−1 − yki ‖2 + 2f(xk, y) + Lηk, ∀y ∈ C

(ii):

‖sk − x∗‖2 ≤ ‖xk − x∗‖2 − (1− αk)

N∑
i=2

‖yki−1 − yki ‖2 + Lηk − δk(1− αk)(1− δk)‖T (vk)− vk‖2, ∀x∗ ∈ Ω,

(iii): ‖sk − x∗‖2 ≤ ‖xk − x∗‖2 − (1− αk)‖vk − ykN‖2 + Lηk, ∀x∗ ∈ Ω,

where ηk =
∑N
i=2

∑i−1
j=1 λ

τi
2−τj

+1

k +
∑N
i=1 λ

2
2−τi
k , L = 2QM such that Q = max{Qi : i ∈ I} and M = max{Q

τi
2−τj : i, j ∈

I}.

Proof. (i) Using Lemma 2.5 and

yki = arg min{λkfi(yki−1, y) +
1

2
‖yki−1 − y‖2 : y ∈ C},

one has

0 ∈ ∂
{
λkfi(y

k
i−1, y) +

1

2
‖yki−1 − y‖2

}
(yki ) +NC(yki ).

There exists wi ∈ ∂fi(yki−1, y
k
i ) and qi ∈ NC(yki ) such that

0 = λkwi + yki − yki−1 + qi.

From the definition of the normal cone and qi ∈ NC(yki ), we have

〈yki−1 − λkwi − yki , y − yki 〉 ≤ 0, ∀y ∈ C. (3.1)

Moreover, from wi ∈ ∂fi(yki−1, y
k
i ), we have

〈wi, y − yki 〉 ≤ fi(yki−1, y)− fi(yki−1, y
k
i ) ∀y ∈ H. (3.2)

From (3.1) and (3.2), we have

〈yki−1 − yki , y − yki 〉 ≤ λk(fi(y
k
i−1, y)− fi(yki−1, y

k
i )), ∀y ∈ C. (3.3)

The result above together with

2〈yki−1 − yki , y − yki 〉 = ‖yki−1 − yki ‖2 + ‖yki − y‖2 − ‖yki−1 − y‖2,

yields

‖yki − y‖2 ≤ 2λk(fi(y
k
i−1, y)− fi(yki−1, y

k
i ))− ‖yki−1 − yki ‖2 + ‖yki−1 − y‖2 (3.4)

for all y ∈ C. Taking y = yki−1 in (3.4) and using fi(x, x) = 0 and τi-Hölder continuity of fi in the first or second
argument with constant Qi, we get

‖yki−1 − yki ‖2 ≤ −λkfi(yki−1, y
k
i ) = |λkfi(yki−1, y

k
i )| ≤ λkQi‖yki−1 − yki ‖τi . (3.5)

Hence, for each i ∈ I, we have

‖yki−1 − yki ‖ ≤ (λkQi)
1

2−τi . (3.6)
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Noting xk = yk0 and using condition (a3) together with (3.5) and (3.6) gives

2λk

( N∑
i=1

(
fi(y

k
i−1, y)− fi(yki−1, y

k
i )
))

= 2λk

( N∑
i=1

(
fi(y

k
i−1, y)− fi(yki−1, y

k
i )
)

+

N∑
i=2

fi(x
k, y)−

N∑
i=2

fi(x
k, y)

)
≤ 2λk

( N∑
i=1

fi(x
k, y) +

N∑
i=2

∣∣fi(yki−1, y)− fi(yk0 , y)
∣∣+

N∑
i=1

∣∣fi(yki−1, y
k
i )
∣∣)

≤ 2λk

( N∑
i=1

fi(x
k, y) +

N∑
i=2

i−1∑
j=1

∣∣fi(ykj , y)− fi(ykj−1, y)
∣∣+

N∑
i=1

∣∣fi(yki−1, y
k
i )
∣∣)

≤ 2λk

( N∑
i=1

fi(x
k, y) +

N∑
i=2

i−1∑
j=1

Qi‖ykj − ykj−1‖τi +

N∑
i=1

Qi‖yki−1 − yki ‖τi
)

≤ 2λk

( N∑
i=1

fi(x
k, y) +

N∑
i=2

i−1∑
j=1

Qi(λkQj)
τi

2−τj +

N∑
i=1

Qi(λkQi)
τi

2−τi

)

≤ 2λkf(xk, y) + 2λk

( N∑
i=2

i−1∑
j=1

Qi(λkQj)
τi

2−τj +

N∑
i=1

Qi(λkQi)
τi

2−τi

)
. (3.7)

Let Q = max{Qi : i ∈ I} and M = max{Q
τi

2−τj : i, j ∈ I}. From (3.7), we have

2λk

(∑N
i=1

(
fi(y

k
i−1, y)− fi(yki−1, y

k
i )
))
≤ 2λkf(xk, y) + L

(∑N
i=2

∑i−1
j=1 λ

τi
2−τj

+1

k +
∑N
i=1 λ

2
2−τi
k

)
(3.8)

where L = 2QM . Thus, combining (3.4), (3.7), and (3.8) it follows

‖ykN − y‖2 ≤ ‖xk − y‖2 −
N∑
i=1

‖yki−1 − yki ‖2 + 2λk

( N∑
i=1

(
fi(y

k
i−1, y)− fi(yki−1, y

k
i )
))

≤ ‖xk − y‖2 −
N∑
i=1

‖yki−1 − yki ‖2 + 2λkf(xk, y) + Lηk (3.9)

where ηk =
∑N
i=2

∑i−1
j=1 λ

τi
2−τj

+1

k +
∑N
i=1 λ

2
2−τi
k . Since Ω ⊂ C, take y = x∗ ∈ Ω in (3.9). From the pseudomonotonicity

of f , we obtain

‖ykN − x∗‖2 ≤ ‖xk − x∗‖2 −
N∑
i=1

‖yki−1 − yki ‖2 + Lηk, ∀x∗ ∈ Ω. (3.10)

(ii) Let x∗ ∈ Ω. Then,

f(x∗, y) +
1

rk
〈y − x∗, x∗ − x∗〉 = f(x∗, y) =

N∑
i=1

fi(x
∗, y) ≥ 0, ∀y ∈ C.

Thus by definition of T frk , x∗ = T frk(x∗) and hence

‖vk − x∗‖2 = ‖T frk(ykN )− T frk(x∗)‖2 ≤ 〈T frk(ykN )− T frk(x∗), ykN − x∗〉
≤ ‖T frk(ykN )− T frk(x∗)‖‖ykN − x∗‖

implying that

‖vk − x∗‖ ≤ ‖ykN − x∗‖. (3.11)
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By definition of tk and Lemma 2.4, we have

‖tk − x∗‖2 = ‖δkvk + (1− δk)T (vk)− x∗‖2

= ‖δk(vk − x∗) + (1− δk)(T (vk)− x∗)‖2

= δk‖vk − x∗‖2 + (1− δk)‖T (vk)− x∗‖2 − δk(1− δk)‖T (vk)− vk‖2

= δk‖vk − x∗‖2 + (1− δk)‖T (vk)− T (x∗)‖2 − δk(1− δk)‖T (vk)− vk‖2

≤ δk‖vk − x∗‖2 + (1− δk)‖vk − x∗‖2 − δk(1− δk)‖T (vk)− vk‖2

= ‖vk − x∗‖2 − δk(1− δk)‖T (vk)− vk‖2. (3.12)

Again by definition of sk, and using (3.10), (3.11), and (3.12), we have

‖sk − x∗‖2 ≤ αk‖xk − x∗‖2 + (1− αk)|‖tk − x∗‖2

≤ αk‖xk − x∗‖2 + (1− αk)(‖vk − x∗‖2 − δk(1− δk)‖T (vk)− vk‖2)

≤ ‖xk − x∗‖2 − (1− αk)

N∑
i=1

‖yki−1 − yki ‖2 + (1− αk)Lλ
2

2−τ
k − δk(1− αk)(1− δk)‖T (vk)− vk‖2.

(iii) By Lemma 2.7,

‖vk − x∗‖2 = ‖T frk(ykN )− T frk(x∗)‖2
≤ 〈T frk(ykN )− T frk(x∗), ykN − x∗〉
≤ 〈vk − x∗, ykN − x∗〉
= 1

2 (‖vk − x∗‖2 + ‖ykN − x∗‖2 − ‖vk − ykN‖2)

implying that

‖vk − x∗‖ ≤ ‖ykN − x∗‖2 − ‖vk − ykN‖2. (3.13)

Then, by definition of sk and Lemma 2.4 combined with results in (3.12), (3.13), and (3.10) results

‖sk − x∗‖2 ≤ αk‖xk − x∗‖2 + (1− αk)‖tk − x∗‖2

≤ αk‖xk − x∗‖2 + (1− αk)‖vk − x∗‖2

≤ ‖xk − x∗‖2 − (1− αk)‖vk − ykN‖2 + Lηk. (3.14)

This ends the proof of the Lemma. �

Remark 3.3. For k = 0 we have x∗ ∈ C = C0 = D0. From (3.11) and (3.12), we see that for all x∗ ∈ Ω

‖tk − x∗‖ ≤ ‖vk − x∗‖ ≤ ‖ykN − x∗‖, k ≥ 0

and from (3.14), we also see that for all x∗ ∈ Ω

‖sk − x∗‖2 ≤ ‖xk − x∗‖2 + Lηk, k ≥ 0.

Therefore, Ω ⊂ Ck ∩Dk, k ≥ 0.
Let

Ek = {y ∈ Dk−1 : ‖tk − y‖ ≤ ‖vk − y‖} ∀k ≥ 1,

Fk = {y ∈ Dk−1 : ‖vk − y‖ ≤ ‖ykN − y‖} ∀k ≥ 1.

Thus, Dk = Dk−1 ∩ Ek ∩ Fk, for k ≥ 1. Note that Ek and Fk are either the halfspaces or the whole space H for all
k ≥ 1. Hence, they are closed and convex. Since D0 = C, Ek and Fk are closed and convex for all k ≥ 1, Dk is also
closed and convex k ≥ 0. Moreover, for each k, Ck is closed and convex, (see Lemma 1.3 in [14]).
Therefore, Ck ∩Dk is nonempty closed and convex subset of H. It is easy to see that

. . . ⊂ Ck+1 ∩Dk+1 ⊂ Ck ∩Dk ⊂ . . . ⊂ C1 ∩D1 ⊂ C0 ∩D0 = C.

Remark 3.4. (a): Since the problems in step 1 are strongly convex and C is nonempty, they are uniquely
solvable.
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(b): If condition 1 and 2 is satisfied, f satisfies (C1)-(C4) and hence by Combettes and Hirstoaga in [6], for
each rk and for each x ∈ C the mapping T frk is single-valued.

(c): From remark 3.3, Ck∩Dk is nonempty closed and convex subset of H, for each k. Moreover, ∅ 6= Ω ⊂ Ck∩Dk

for all k ≥ 0 and hence PCk+1∩Dk+1
is well defined.

Hence, Algorithm 3.1 is well defined.

Remark 3.5. (a): If xk = yk1 = . . . = ykN , then from (3.4) we have fi(y
k
i−1, y) ≥ 0, ∀y ∈ C, hence

∑N
i=1 fi(x

k, y) ≥
0, ∀y ∈ C, implying that xk ∈ SEP

(∑N
i=1 fi, C

)
. Moreover,

f(xk, y) +
1

rk
〈y − xk, xk − ykN 〉 = f(xk, y) ≥ 0, ∀y ∈ C.

Hence, vk = T frk(ykN ) = xk.

(b): If xk = yk1 = . . . = ykN and tk = T (xk) then xk ∈ SEP
(∑N

i=1 fi, C
)

and xk ∈ FixT , i.e., xk ∈ Ω. Therefore,

Algorithm 3.1 terminates at step 3 when xk = yk1 = . . . = ykN and tk = T (xk).

By the argument of Remark 3.5, we can conclude that if Algorithm 3.1 terminates at some iterate k, then xk is the
solution of (1.2). Otherwise, if Algorithm 3.1 does not stop, then we have the following strong convergence Theorem.

Theorem 3.6. If the real sequences {αk}, {δk}, {λk} satisfy the following restrictions:

(i): 0 < lim inf
k→∞

δk ≤ lim sup
k→∞

δk < 1,

(ii): lim sup
k→∞

αk < 1,

(iii): for each i ∈ {2, 3, . . . , N} and j ∈ {1, 2, . . . , N − 1}

lim
k→+∞

λ
τi

2−τj
+1

k = 0,

,
(iv): for each i ∈ I

lim
k→+∞

λ
2

2−τi
k = 0,

then the sequences {xk}, {ykN}, {tk}, {sk} and {vk} generated by Algorithm 3.1 strongly converge to some point p ∈ Ω
where p = PΩ(x0).

Proof. The Theorem is proved through claims.
Claim 1 : The sequences {xk}, {vk}, {yki } (i ∈ I), {tk} and {sk} converge to some point p in C.
Proof of claim 1: Put w = PΩ(x0) (we note that Ω is closed and convex). From Ω ⊂ Ck ∩Dk and xk = PCk∩Dk(x0)
for all k ≥ 0, we get

‖xk − x0‖ ≤ ‖w − x0‖.
Also from xk = PCk∩Dk(x0) and xk+1 ∈ Ck+1 ∩Dk+1 ⊂ Ck ∩Dk, we have

‖xk − x0‖ ≤ ‖xk+1 − x0‖.
It follows that the sequence {‖xk − x0‖} is bounded and nondecreasing. Hence limk→+∞ ‖xk − x0‖ exists. For m > k
we have xm ∈ Cm ∩Dm ⊂ Ck ∩Dk. Now by applying Lemma 2.2, we have

‖xm − xk‖2 ≤ ‖xm − x0‖2 − ‖xk − x∗‖2

Since limk→+∞ ‖xk − x0‖ exists, it follows that {xk} is a Cauchy sequence, and hence there exists p ∈ C such that
limk→+∞ xk = p. Putting m = k + 1, in the above inequality, we have

lim
k→+∞

‖xk+1 − xk‖ = 0

In view of xk+1 = PCk+1∩Dk+1
(x0) ∈ Ck+1 ∩Dk+1 ⊂ Ck+1 and ηk → 0, we see that

‖sk − xk+1‖2 ≤ ‖xk − xk+1‖2 + Lηk.
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It follows that ‖sk − xk+1‖ → 0. This implies that sk → p. As a result of the inequalities ‖sk − xk‖ ≤ ‖sk − xk+1‖+
‖xk − xk+1‖, we have

lim
k→+∞

‖sk − xk‖ = 0 (3.15)

Note that

‖xk − x∗‖2 − ‖sk − x∗‖2 + Lηk≤ (‖xk − x∗‖+ ‖sk − x∗‖)(‖xk − x∗‖ − ‖sk − x∗‖) + Lηk
≤ (‖xk − x∗‖+ ‖sk − x∗‖)‖xk − sk‖+ Lηk.

(3.16)

From Lemma 3.2 (ii) and from (3.16) above

(1− αk)
∑N
i=1 ‖yki−1 − yki ‖2 ≤ (‖xk − x∗‖+ ‖sk − x∗‖)‖xk − sk‖+ Lηk, (3.17)

δk(1− αk)(1− δk)‖T (vk)− vk‖2 ≤ (‖xk − x∗‖+ ‖sk − x∗‖)‖xk − sk‖+ Lηk (3.18)

and

(1− αk)‖vk − ykN‖2 ≤ (‖xk − x∗‖+ ‖sk − x∗‖)‖xk − sk‖+ Lηk. (3.19)

Combining (3.15), (3.17), (3.18), and (3.19) together with αk ∈ (0, 1), 0 < lim inf
k→∞

δk ≤ lim sup
k→∞

δk < 1, lim sup
k→∞

αk < 1,

ηk → 0 and sk, xk → p, we get

lim
k→+∞

‖yki−1 − yki ‖ = lim
k→+∞

‖T (vk)− vk‖ = lim
k→+∞

‖vk − ykN‖ = 0. (3.20)

Since ‖xk − yki ‖ = ‖yk0 − yki ‖ ≤
∑i
j=1 ‖ykj−1 − ykj ‖ for each i ∈ I, and using (3.20), we have

lim
k→+∞

‖xk − yki ‖ = 0, ∀i ∈ I. (3.21)

From (3.20) and (3.21) and xk, sk → p, we get that yki , vk → p.
Since xk+1 = PCk+1∩Dk+1

we have xk+1 ∈ Ck+1 ∩Dk+1. Thus, by definition of Dk+1, we have

‖tk − xk+1‖ ≤ ‖vk − xk+1‖ ≤ ‖ykN − xk+1‖.
Using ‖tk − xk+1‖ ≤ ‖vk − xk+1‖, ‖vk − xk+1‖ ≤ ‖vk − p‖+ ‖xk+1 − p‖ and xk, vk → p, we obtain tk → p.
Claim 2 : p ∈ Ω.
Proof of claim 2: By vk = T frk(ykN )

f(vk, y) +
1

rk
〈y − vk, vk − ykN 〉 ≥ 0, ∀y ∈ C.

Since f is monotone on C, we also have

1

rk
〈y − vk, vk − ykN 〉 ≥ f(y, vk), ∀y ∈ C.

Since vk − ykN → 0, vk → p and by the lower semicontinuity and the convexity of of f(y, .) we have f(y, p) ≤ 0 for
each y ∈ C.
Let y ∈ C and γ ∈ (0.1). Then, using convexity of f(y, .), we have

0 = f(γy + (1− γ)p, γy + (1− γ)p)
≤ γf(γy + (1− γ)p, y) + (1− γ)f(γy + (1− γ)p, p)
≤ γf(γy + (1− γ)p, y), ∀y ∈ C.

Letting γ → 0 and using (A2) of Assumption 1 it follows that f(p, y) ≥ 0, ∀y ∈ C. It means that p ∈ SEP (f, C).

Moreover, (3.20), vk → p and demiclosedness of T gives p ∈ FixT . Therefore, p ∈ Ω = SEP
(∑N

i=1 fi, C
)⋂

FixT .

Claim 3 : p = PΩ(x0).
Proof of claim 3: Since xk = PCk∩Dk(x0), by Lemma 2.1, we have

〈x0 − xk, y − xk〉 ≤ 0 ∀y ∈ Ck ∩Dk.
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Since Ω ⊂ Ck ∩Dk, we have

〈x0 − p, y − p〉 ≤ 0 ∀y ∈ Ω.

Now by Lemma 2.1, we obtain that p = PΩ(x0).
This completes the proof. �

Remark 3.7. (i): For i, j ∈ I,

1 <
τi

2− τj
+ 1 ≤ 2 and 1 <

2

2− τi
≤ 2.

It is easy to choose a sequence {λk} satisfying conditions (iii) and (iv), for example, λk = 1
kγ with γ ∈ (0,+∞).

(ii): If τi = τ , then the conditions (iii) and (iv) in Theorem 3.6 is reduced to only one condition

lim
k→+∞

λ
2

2−τ
k = 0.

(iii): If τi = τ , alternatively we can also proceed as

‖ykN − y‖2 ≤ ‖xk − y‖2 −
N∑
i=2

‖yki−1 − yki ‖2 + 2λk

N∑
i=2

fi(x
k, y) + L′λ

2
2−τ
k

where L′ =
∑N
i=2

∑i−1
j=1QiQ

τ
2−τ
j +

∑N
i=1QiQ

2
2−τ
i .

Letting T = IdC in Algorithm 3.1, then from Theorem 3.6 we obtain the following result solving (1.3) by assuming
conditions (a1), (a2) and (a3) are satisfied.

Corollary 3.7.1. Let {rk}, {αk} and {λk} be real sequences such that rk ≥ r>0, 0<αk<1, 0<λk. If {αk} and {λk}
satisfy the restrictions (ii), (iii) and (iv) in Theorem 3.6, then the sequences {xk}, {ykN}, {sk} and {vk} generated by
iterative algorithm 

x0 ∈ C = C0 = D0,
xk = yk0 ,
yki = arg min{λkfi(yki−1, y) + 1

2‖y
k
i−1 − y‖2 : y ∈ C}, i ∈ I,

vk ∈ T frk(ykN ),
sk = αkx

k + (1− αk)vk,
Ck+1 = {y ∈ Ck : ‖sk − y‖2 ≤ ‖xk − y‖2 + Lηk},
Dk+1 = {y ∈ Dk : ‖vk − y‖ ≤ ‖ykN − y‖},
xk+1 = PCk+1∩Dk+1

(x0),

strongly converge to p ∈ SEP
(∑N

i=1 fi, C
)

where p = P
SEP

(∑N
i=1 fi,C

)(x0).

Note that in Corollary 3.7.1

ηk =

N∑
i=2

i−1∑
j=1

λ
τi

2−τj
+1

k +

N∑
i=1

λ
2

2−τi
k and L = 2QM

where Q = max{Qi : i ∈ I} and M = max{Q
τi

2−τj : i, j ∈ I}.

3.2. Shrinking projection and parallel extragradient method. Assume that

(b1): f =
∑N
i=1 fi satisfy Assumption 1,

(b2): each fi satisfy Assumption 2 for all i ∈ I,
(b3): fi is τi-Hölder continuous in the first or in second argument with constant Qi for i ∈ I.
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The solution set Ω of problem (1.2) is closed convex subset of H by the same reasoning as in Lemma 3.1.

In the following, we use the computation of intermediate approximations parallelly instead of sequentially.

Algorithm 3.2

Initialization: Choose x0 ∈ C. Let C0 = D0 = C and {λk}, {rk}, {δk}, {αk} are real sequences such that
0<λk, rk ≥ r>0, 0<δk<1, 0<αk<1.

Step 1: Solve N strongly convex optimization programs

yki = arg min{λkfi(xk, y) +
1

2
‖xk − y‖2 : y ∈ C}, i ∈ I.

If xk = yk1 = . . . = ykN , then take vk = xk and go to Step 4. Otherwise, go to Step 2.
Step 2: Evaluate

zk =
1

N

N∑
i=1

yki .

Step 3: Find vk such that

vk ∈ T frk(zk) = {v ∈ C : f(v, y) +
1

rk
〈y − v, v − zk〉 ≥ 0, ∀y ∈ C}.

Step 4: Find tk = δkv
k + (1− δk)T (vk).

If xk = yk1 = . . . = ykN and tk = T (xk), stop. Otherwise, go to Step 5.
Step 5: Evaluate sk = αkx

k + (1− αk)tk.
Step 6: Evaluate

xk+1 = PCk+1∩Dk+1
(x0)

where
Ck+1 = {y ∈ Ck : ‖sk − y‖2 ≤ ‖xk − y‖2 + Lωk},
Dk+1 = {y ∈ Dk : ‖tk − y‖ ≤ ‖vk − y‖ ≤ ‖zk − y‖},

for ωk =
∑N
i=1 λ

2
2−τi
k , L = 2QM

N such that Q = max{Qi : i ∈ I} and M = max{Q
τi

2−τi : i ∈ I}.
Step 7: Set k := k + 1 and go to step 1.

Lemma 3.8. For the sequences {xk}, {zk}, {vk} and {sk} generated by Algorithm 3.2, we have

(i): ‖zk − y‖2 ≤ ‖xk − y‖2 − 1
N

N∑
i=1

‖xk − yki ‖2 + 2λk
N f(xk, y) + Lωk, ∀y ∈ C,

(ii): ‖sk − x∗‖2 ≤ ‖xk − x∗‖2 − (1− αk) 1
N

N∑
i=1

‖xk − yki ‖2 − δk(1− δk)‖T (ykN )− ykN‖2 + Lωk, ∀x∗ ∈ Ω,

(iii): ‖sk − x∗‖2 ≤ ‖xk − x∗‖2 − (1− αk)‖vk − zk‖2 + Lωk, ∀x∗ ∈ Ω,

where ωk =
∑N
i=1 λ

2
2−τi
k , L = 2QM

N such that Q = max{Qi : i ∈ I} and M = max{Q
τi

2−τi : i ∈ I}.

Proof. (i) By the defintion of zk, we obtain

‖zk − xk‖ ≤ 1

N

N∑
i=1

‖yki − xk‖. (3.22)

From step 1 of Algorithm 2, we have

〈yki − xk, xk − y〉 ≤ λk(fi(x
k, y)− fi(xk, yki ))− ‖xk − yki ‖2, ∀y ∈ C, (3.23)
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for all i ∈ I.
Setting y = xk in (3.23), we have

‖xk − yki ‖2 ≤ −λkfi(xk, yki ) ≤ |λkfi(xk, yki )| ≤ λkQi‖xk − yki ‖τi ,
for all i ∈ I.
Thus,

‖xk − yki ‖ ≤ (λkQi)
1

2−τi , ∀i ∈ I. (3.24)

Using (3.23) and (3.24) and condition (b3), we have for y ∈ C,

N∑
i=1

〈yki − xk, xk − y〉 ≤ λk

N∑
i=1

(fi(x
k, y)− fi(xk, yki ))

= λk

(
f(xk, y)−

N∑
i=1

fi(x
k, yki )

)
≤ λk

(
f(xk, y) +

N∑
i=1

|fi(xk, yki )|
)

≤ λk

(
f(xk, y) +

N∑
i=1

Qi‖xk − yki ‖τi
)

≤ λkf(xk, y) +QM

N∑
i=1

λ
2

2−τi
k (3.25)

where Q = max{Qi : i ∈ I} and M = max{Q
τi

2−τi : i ∈ I}. Hence, the result follows from

〈zk − xk, xk − y〉 =
1

N

N∑
i=1

〈yki − xk, xk − y〉, ∀y ∈ C,

and

‖zk − y‖2 = ‖zk − xk‖2 + ‖xk − y‖2 + 2〈zk − xk, xk − y〉, ∀y ∈ C,
together with (3.22) and (3.25). The results (ii) and (iii) are obtained using the same technique as in Lemma 3.2. �

Remark 3.9. (a) If xk = yk1 = . . . = ykN , then we have fi(y
k
i−1, y) ≥ 0, ∀y ∈ C, hence

∑N
i=1 fi(x

k, y) ≥ 0, ∀y ∈
C, implying that xk ∈ SEP

(∑N
i=1 fi, C

)
. Moreover,

f(xk, y) +
1

rk
〈y − xk, xk − zk〉 = f(xk, y) ≥ 0, ∀y ∈ C.

Hence, vk = T frk(zk) = xk.

(b) If xk = yk1 = . . . = ykN and tk = T (xk) then xk ∈ SEP
(∑N

i=1 fi, C
)

and xk ∈ FixT , i.e., xk ∈ Ω.

Therefore, Algorithm 3.2 terminates at Step 4 when xk = yk1 = . . . = ykN and tk = T (xk).

Theorem 3.10. If the real sequences {αk}, {δk}, {λk} satisfy the following restrictions:

(i): 0 < lim inf
k→∞

δk ≤ lim sup
k→∞

δk < 1,

(ii): lim sup
k→∞

αk < 1,

(iii): for each i ∈ I, lim
k→+∞

λ
2

2−τi
k = 0,

then sequences {xk}, {zk}, {vk}, {tk} and {sk} generated by Algorithm 3.2 strongly converge to p ∈ Ω where p =
PΩ(x0).
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Proof. We omitted the proof as it is similar to the proof of Theorem 3.6. �

Letting T = IdC in Algorithm 3.2, then from Theorem 3.10 we obtain the following algorithm solving (1.3) by
assuming conditions (b1), (b2) and (b3) are satisfied.

Corollary 3.10.1. Let {rk}, {αk} and {λk} be real sequences such that rk ≥ r>0, 0<αk<1, 0<λk. If {αk} and
{λk} satisfy the restrictions (ii) and (iii) in Theorem 3.10, then the sequences {xk}, {zk}, {vk} and {sk} generated
by iterative algorithm 

x0 ∈ C = C0 = D0,
yki = arg min{λkfi(xk, y) + 1

2‖x
k − y‖2 : y ∈ C}, i ∈ I,

zk = 1
N

∑N
i=1 y

k
i ,

vk ∈ T frk(zk),
sk = αkx

k + (1− αk)vk,
Ck+1 = {y ∈ Ck : ‖sk − y‖2 ≤ ‖xk − y‖2 + Lωk},
Dk+1 = {y ∈ Dk : ‖vk − y‖ ≤ ‖zk − y‖},
xk+1 = PCk+1∩Dk+1

(x0),

strongly converge to p ∈ SEP (
∑N
i=1 fi, C) where p = PSEP (

∑N
i=1 fi,C)(x

0).

Remark 3.11. Comparing Hölder continuity conditions (a3) in Algorithm 3.1 and (b3) in Algorithm 3.2, we can
see that the condition (b3) is a bit more relaxed Hölder continuity condition than (a3), because in condition (a3) at
least N − 1 bifunctions must be Hölder continuous in the first argument out of N Hölder continuous bifunctions as a
summand of the main bifunction.

4. Application

Lemma 4.1. [14, Proposition 4.34] Suppose C is closed convex subset of a Hilbert space H and Uj : C → C

be nonexpansive mappings for j ∈ J = {1, . . . , N ′} such that
⋂N ′
j=1[FixUj ] 6= ∅. Let U(x) :=

∑N ′

j=1 θjUj(x) with

0 < θj ≤ 1 for every j ∈ J and
∑N ′

j=1 θj = 1. Then, U is nonexpansive and FixU =
⋂N ′
i=1[FixUi].

The following are some typical problems for equilibrium problem and a finite family of nonexpansive mappings in
a Hilbert space that can be reformulated as problem (1.2).

4.0.1. Equilibrium problems and a finite family of nonexpansive mappings. Let I = {1, . . . , N}, J =
{1, . . . , N ′} and H is a real Hilbert spaces. Suppose C be nonempty closed convex subset of H, fi : C × C → R
be bifunctions for each i ∈ I, and Tj : C → C be nonexpansive operators for each j ∈ J . Consider the problem

find x∗ ∈ C such that

{
x∗ ∈ FixTj , ∀j ∈ J,∑N
i=1 fi(x

∗, y) ≥ 0, ∀y ∈ C. (4.1)

Take {θ1, θ2, . . . , θN ′} ⊂ (0, 1] such that
∑N ′

j=1 θi = 1. Set T (x) =
∑N ′

j=1 θiTj(x). By Lemma 4.1, T is nonexpansive

and FixT =
⋂N ′
j=1[FixTj ]. Therefore,

( N ′⋂
j=1

FixTj

)⋂
SEP

( N∑
i=1

fi, C
)

= FixT
⋂
SEP

( N∑
i=1

fi, C
)

= Ω,

and hence, problem (4.1) is of the form (1.2).
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4.0.2. Equilibrium problem over the intersection of closed convex sets. Let {C1, . . . , CN ′} be finite collection
of closed convex subsets of a real Hilbert space H such that

⋂
j∈J Cj 6= ∅ where J = {1, . . . , N ′}. Let C be closed

convex subset of H containing
⋃
j∈J Cj and fi : C × C → R be bifunctions for i ∈ I ∈ {1, . . . , N}. Consider the

problem

find x∗ ∈ D :=
⋂
j∈J

Cj such that

N∑
i=1

fi(x
∗, y) ≥ 0, ∀y ∈ C. (4.2)

In this case, we can take Tj = PCj for each j ∈ J , i.e., Tj is the projection map on Cj which is nonexpansive, hence
using Lemma 4.1, we can reformulate the problem (4.2) in to problem (1.2).

4.0.3. Common solution of equilibrium problem and maximal monotone operator. Let Uj : H → 2H be
maximal monotone operators and fi : H × H → R be bifunctions for each j ∈ J = {1, . . . , N ′}, i ∈ I = {1, . . . , N}
where H is a real Hilbert space. Consider the problem of finding x∗ ∈ H with a property

0 ∈ Uj(x∗), ∀j ∈ J such that

N∑
i=1

fi(x
∗, y) ≥ 0, ∀y ∈ H. (4.3)

It is well-known (see e.g. [21]) that the operator Tj = (Uj + εIdH)−1 with ε > 0 is defined everywhere, single-valued,
nonexpansive on the whole space and its fixed point set coincides with the solution set of the inclusion 0 ∈Mj(x

∗).
Therefore, Algorithm 3.1 and Algorithm 3.2 solves problem (4.1), (4.2), and (4.3) if the required assumptions are
satisfied.

4.0.4. Example. Consider the problem (1.2) for H = R, feasible set C = [−1, 1], a bifunctions fi : C × C → R,

f =
∑N
i=1 fi, a nonexpansive mapping T : C → C given by

f1(x, y) = (2x− x2)(y − x) and fi(x, y) = ρix(y − x) for i ∈ {2, . . . , N},

and T =
∑N ′

j=1
j
ζTj whereρi > 0, ζ = 1 + . . .+N ′ and Tj(x) = 1

j2+j+1x, j ∈ J = {1, . . . , N ′}. Note that

|f1(x, y)− f1(x, z)| = |(2x− x2)(y − x)− (2x− x2)(z − x)| ≤ Q1|y − z|

and for i ∈ {2, . . . , N}, we have

|fi(x, y)− fi(z, y)| = |ρix(y − x)− ρiz(y − z)| ≤ ρi(|y|+ |x+ z|)|x− z| ≤ Qi|x− z|

where Q1 = max{|2x− x2| : x ∈ C}, Qi = max{ρi(|y|+ |x+ z|) : x, y, z ∈ C} for i ∈ {2, . . . , N}. Thus, f1 is 1-Hölder
continuous in the first argument on C with Q1 = 3 and for i ∈ {2, . . . , N}, each fi is 1-Hölder continuous in the first
argument on C with Qi = 3ρi. It is also easy to show that each fi is 1-Hölder continuous in the second argument on

C for i ∈ {2, . . . , N}. Note that FixT = {0} and SEP
(∑N

i=1 fi, C
)

= {0}. Therefore, Ω = {0}.

5. Conclusion

Using sequential and parallel computation of extragradient-like method combined with shrinking projection we have
proposed two algorithms for finding a common element of the set of common fixed points of a nonexpansive mapping
and solutions of equilibrium problems for monotone bifunction f where f is the sum of a finite number of Hölder
continuous bifunctions. One advantage of our result is that we can also apply it to solve problems that can’t be solved
by proposed algorithms in [12], i.e., we can apply our result to solve the equilibrium problem EP(f, C) for a bifunction
f that can be written as a sum of more than two Hölder continuous bifunctions and can’t be written as a sum of two
Hölder continuous bifunctions (problem (1.3) for N > 2).
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