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1. Introduction

Recently, theory and applications of fractional differential equations (FDEs) has
been the focus of many studies due to their frequent appearance in various applica-
tions in mathematics, physics, biology, engineering, signal processing, systems iden-
tification, control theory, finance and fractional dynamics, and has attracted much
attention of more and more scholars. The fractional differential equations (FDEs)
have been investigated by many researchers [1, 2, 3]. Recent investigations show
that the dynamic of many physical processes is described accurately by using frac-
tional differential equations containing different types of fractional derivatives. The
most popular derivatives of fractional order are the Caputo derivative, the Riemann-
Liouville derivative and Grünwald-Letnikov derivative. A few years ago, Jumarie
presented a different definition of the fractional derivative being a little modification
of the Riemann-Liouville derivative.

Since fractional differential equations are used to describe a large variety of phys-
ical phenomena, finding exact solutions to FDEs is an important subject and a hot
topic. Many powerful and efficient methods have been proposed so far including the

fractional
(

G′

G

)
-expansion method [4, 5, 6, 7], the fractional exp-function method

[8, 9, 10], the fractional first integral method [12, 13], the fractional sub-equation
method [14, 15, 16], the fractional functional variable method [17], the fractioanal
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modified trial equation method [18, 19, 20], the fractional simplest equation method
[21] and so on. Using these methods, solutions with various forms for given fractional
differential equation have been established.

The organization of this paper is as follows. In section 2, we give the basic defini-
tions and analysis of methods, then in section 3, we give applications. Some conclu-
sions are given in last section.

2. Basic Definitions and Analysis of Methods

The Jumarie’s modified Riemann–Liouville derivative [22] of order α is defined by
the following expression:

Dα
t f(t) =

{
1

Γ(1−α)
d
dt

∫ t

0
(t− ξ)−α(f(ξ)− f(0))dξ , 0 < α < 1

(f (n)(t))(α−n) , n ≤ α < n+ 1, n ≥ 1.
(2.1)

Now, some important properties of the fractional modified Riemann–Liouville deriv-
ative were summarized [23]

Dα
t t

r =
Γ(1 + r)

Γ(1 + r − α)
tr−α , (2.2)

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t), (2.3)

Dα
t f [g(t)] = f

′

g [g(t)]Dα
t g(t) = Dα

g [g(t)](g
′(t))α. (2.4)

The above equations play an important role in fractional calculus in the following
applications.

Firstly we consider the following general nonlinear FDE of the type

P (u,Dα
t u,D

β
xu,D

α
t D

α
t u,D

α
t D

β
xu,D

β
xD

β
xu, ...) = 0, 0 < α, β ≤ 1 (2.5)

where u is an unknown function. Moreover, P is a polynomial of u and its partial
fractional derivatives, in which the highest order derivatives and the nonlinear terms
are involved.

Li and He [24, 25] proposed a fractional complex transform to convert fractional
differential equations into ordinary differential equations (ODEs). So all analytical
methods devoted to the advanced calculus can be easily applied to the fractional
calculus. The traveling wave variable

u(x, t) = U(ξ), (2.6)

ξ =
kxβ

Γ(1 + β)
+

τtα

Γ(1 + α)
, (2.7)
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where τ and k are nonzero arbitrary constants, we can rewrite Eq. (2.5) in the
following nonlinear ODE;

Q(U,U
′
, U ′′, U ′′′, .....) = 0, (2.8)

where the prime denotes the derivation with respect to ξ.
According to exp-function method, which was developed by He and Wu [26], we

assume that the wave solution can be expressed in the following form

U(ξ) =

∑d
n=−c an exp [nξ]∑q
m=−p bm exp [mξ]

(2.9)

where p, q, c and d are positive integers which are known to be further determined, an
and bm are unknown constants. We can rewrite Eq. (2.9) in the following equivalent
form.

U(ξ) =
a−c exp [−cξ] + ...+ ad exp [dξ]

b−p exp [−pξ] + ...+ bq exp [qξ]
(2.10)

This equivalent formulation plays an important and fundamental part for finding
the analytic solution of problems. To determine the value of c and p, we balance the
linear term of highest order of equation Eq. (2.10) with the highest order nonlinear
term. Similarly, to determine the value of d and q, we balance the linear term of
lowest order of Eq. (2.10) with lowest order nonlinear term [27, 28].

Secondly suppose the solution of equation (2.8) can be expressed by a polynomial

in
(

G′

G

)
as follows:

U(ξ) =
m∑
i=0

ai

(
G′

G

)i

, am ̸= 0, (2.11)

where ai (i = 0, 1, 2, .....,m) are constants, while G(ξ) satisfies the following second
order linear ordinary differential equation

G′′(ξ) + λG′(ξ) + µG(ξ) = 0, (2.12)

where λ and µ are constants. Then the positive integer m can be determined by
considering the homogeneous balance between the highest order derivatives and the
nonlinear terms appearing in equation (2.8). By substituting equation (2.11) into
equation (2.8) and using equation (2.12), we collect all terms with the same order

of
(

G′

G

)
. Then by equating each coefficient of the resulting polynomial to zero, we

obtain a set of algebraic equations for ai (i = 0, 1, 2, .....,m), λ, µ, τ and k. By solving
the equations system, substituting ai (i = 0, 1, 2, .....,m), λ, µ, τ, k and the general
solutions of equation (2.12) into equation (2.11), we can get a variety of exact solutions
of equation (2.5) [29, 30].
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3. Applications

We consider the space-time fractional potential Kadomtsev–Petviashvili (pKP)
equation [31] in the form:

1

4
D4α

x u+
3

2
Dα

xuD
2α
x u+

3

4
D2α

y u+Dα
t (D

α
xu) = 0, t > 0, 0 < α ≤ 1, (3.1)

where α is a parameter describing the order of the fractional space-time derivative.
When α = 1 in Eq. (3.1) is the fractional differential equation reduces to the KP type
equation [32-37].

For our purpose, we introduce the following transformations;

u(x, y, t) = U(ξ) (3.2)

ξ =
kxα

Γ(1 + α)
+

nyα

Γ(1 + α)
+

ctα

Γ(1 + α)
, (3.3)

where k, n and c are nonzero constants.
Substituting (3.3) into (3.1), reduces (3.1) into an ODE

k4

4
U ′′′′ +

3k3

2
U ′U ′′ +

3n2

4
U ′′ + ckU ′′ = 0, (3.4)

where ”U ′” = dU
dξ .

Integrating equation (3.4) with respect to ξ yields

k4

4
U ′′′ +

3k3

4
(U ′)2 + (

3n2

4
+ ck)U ′ + ξ0 = 0, (3.5)

where ξ0 is a constant of integration.
Firstly we begin the pKP equation to solve by using the exp-function method. We

can determine values of d and q by balancing the order of U ′′′ and (U ′)2 in Eq.(3.5),
we get

U ′′′ =
d1 exp[(7q + d)ξ] + ...

d2 exp[8qξ] + ...
, (3.6)

and

(U ′)2 =
d3 exp[2(d+ q)ξ] + ...

d4 exp[4qξ] + ...
, (3.7)

where di are determined coefficients only for simplicity. Balancing highest order of
Exp-function in Eqs.(3.6) and (3.7) we obtain

7q + d = 2d+ 6q, (3.8)

which leads to the result

q = d. (3.9)
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In the same way, to determine values of c and p, we balance the linear term of the
lowest order in Eq.(3.5),

U ′′′ =
...+ c1 exp[−(7p+ c)ξ]

...+ c2 exp[−8pξ]
, (3.10)

and

(U ′)2 =
...+ c3 exp[−2(c+ p)ξ]

...+ c4 exp[−4pξ]
, (3.11)

where ci are determined coefficients only for simplicity. From (3.10) and (3.11), we
have

−7p− c = −2c− 6p, (3.12)

and this gives

p = c. (3.13)

For simplicity, we set p = c = 1 and q = d = 1, so Eq.(2.6) reduces to

U(ξ) =
a1 exp(ξ) + a0 + a−1 exp(−ξ)

b1 exp(ξ) + b0 + b−1 exp(−ξ)
. (3.14)

Substituting Eq.(3.14) into Eq.(3.5), and by the help of Maple, we have

1

A
[R4 exp(4ξ) +R3 exp(3ξ) +R2 exp(2ξ) +R1 exp(ξ) +R0

+R−1 exp(−ξ) +R−2 exp(−2ξ) +R−3 exp(−3ξ) +R−4 exp(−4ξ)] = 0,

(3.15)



CMDE Vol. 2, No. 1, 2014, pp. 26-36 31

where

A = (b−1 exp(−ξ) + b0 + b1 exp(ξ))
4,

R4 = ξ0b
4
1,

R3 = kca1b
2
1b0 − 3

4n
2a0b

3
1 + 4ξ0b

3
1b0 − 1

4k
4a0b

3
1

−kca0b
3
1 +

3
4n

2a1b
2
1b0 +

1
4k

4a1b
2
1b0,

R2 = 2kca1b1b
2
0 + 2kca1b

2
1b−1 − 2kca0b0b

2
1 − 3

2k
3a1b0a0b1

−3
2n

2a−1b
3
1 + 6ξ0b

2
1b

2
0 − 2k4a−1b

3
1 +

3
4k

3a21b
2
0 +

3
4k

3a20b
2
1

+4ξ0b
3
1b−1 + 2k4a1b

2
1b−1 +

3
2n

2a1b1b
2
0 +

3
2n

2a1b
2
1b−1

−2kca−1b
3
1 − 3

2n
2a0b

2
1b0 − k4a1b1b

2
0 + k4a0b

2
1b0,

R1 = 6kca1b1b0b−1 − 1
4k

4a0b1b
2
0 + 3k3a21b0b−1 − 5

4k
4a−1b

2
1b0

+3k3a−1b
2
1a0 − 3

4n
2a0b1b

2
0 + kca1b

3
0 − 3

4n
2a0b

2
1b−1 + 12ξ0b

2
1b0b−1

+23
4 k4a0b

2
1b−1 − 15

4 n2a−1b
2
1b0 − 3k3a1a0b−1b1 − kca0b1b

2
0

−3k3a1b0a−1b1 − kca0b
2
1b−1 − 9

2k
4a1b1b0b−1 +

9
2n

2a1b1b0b−1

−5kca−1b
2
1b0 +

3
4n

2a1b
3
0 +

1
4k

4a1b
3
0 + 4ξ0b1b

3
0,

R0 = 4kca1b1b
2
−1 + 4kca1b

2
0b−1 − 4kca−1b

2
1b−1 − 4kca−1b1b

2
0

−8k4a1b1b
2
−1 + k4a1b

2
0b−1 + 8k4a−1b

2
1b−1 − k4a−1b1b

2
0

−3
2k

3a1b
2
0a−1 + 6ξ0b

2
1b

2
−1 + 3n2a1b1b

2
−1 + 3n2a1b

2
0b−1 − 3n2a−1b

2
1b−1,

R−1 = − 9
2n

2a−1b1b0b−1 − 3k3a−1b1a0b−1 + kca0b1b
2
−1

+9
2k

4a−1b1b0b−1 + kca0b−1b
2
0 + 5kca1b0b

2
−1 − 3k3a1b−1a−1b0

−3
4n

2a−1b
3
0 + 4ξ0b

3
0b−1 − 1

4k
4a−1b

3
0 +

1
4k

4a0b−1b
2
0 +

3
4n

2a0b−1b
2
0

+15
4 n2a1b0b

2
−1 − kca−1b

3
0 + 3k3a1b

2
−1a0 + 3k3a2−1b1b0 + 12ξ0b1b0b

2
−1

+3
4n

2a0b1b
2
−1 +

5
4k

4a1b0b
2
−1 − 23

4 k4a0b
2
−1b1 − 6kca−1b1b0b−1,

R−2 = − 3
2k

3a−1b0a0b−1 − 2kca−1b
2
0b−1 + 2kca0b

2
−1b0 − 2kca−1b1b

2
−1 + 2k4a1b

3
−1

+3
4k

3a2−1b
2
0 +

3
4k

3a20b
2
−1 + 4ξ0b1b

3
−1 +

3
2n

2a1b
3
−1 + 6ξ0b

2
0b

2
−1 − 3

2n
2a−1b

2
0b−1,

+3
2n

2a0b
2
−1b0 − 2k4a−1b1b

2
−1 + k4a−1b

2
0b−1 − k4a0b

2
−1b0 − 3

2n
2a−1b1b

2
−1 + 2kca1b

3
−1,

R−3 = −kca−1b0b
2
−1 +

1
4k

4a0b
3
−1 + 4ξ0b0b

3
−1 +

3
4n

2a0b
3
−1

−1
4k

4a−1b0b
2
−1 − 3

4n
2a−1b0b

2
−1 + kca0b

3
−1,

R−4 = ξ0b
4
−1.

(3.16)

Solving this system of algebraic equations by using Maple, we get the following
results

Case 1: Consider

a1 = a1, a0 = b0(a1−2kb1)
b1

, a−1 = 0,

b1 = b1, b0 = b0, b−1 = 0,

c = − 3n2+k4

4k , k = k, ξ0 = 0,

(3.17)
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where b0 and b1 ̸= 0 are free parameters. Substituting these results into (3.14), we
get the following exact solution

u1(x, y, t) =
a1 exp( kxα

Γ(1+α)
+ nyα

Γ(1+α)
− (3n2+k4)tα

4kΓ(1+α)
)+

b0(a1−2kb1)
b1

b1 exp( kxα

Γ(1+α)
+ nyα

Γ(1+α)
− (3n2+k4)tα

4kΓ(1+α)
)+b0

. (3.18)

Case 2: Consider

a1 = 0, a0 = b0(a−1+2kb−1)
b−1

, a−1 = a−1,

b1 = 0, b0 = b0, b−1 = b−1,

c = − 3n2+k4

4k , k = k, ξ0 = 0,

(3.19)

where b−1 ̸= 0 and a−1 are free parameters. Substituting these results into (3.14), we
get the following exact solution

u2(x, y, t) =

b0(a−1+2kb−1)

b−1
+a−1 exp(−( kxα

Γ(1+α)
+ nyα

Γ(1+α)
− (3n2+k4)tα

4kΓ(1+α)
))

b0+b−1 exp(−( kxα

Γ(1+α)
+ nyα

Γ(1+α)
− (3n2+k4)tα

4kΓ(1+α)
))

. (3.20)

If we take b1 = 1, b0 = 1, a1 = 1 and k = 1 Eq. (3.18) u1 becomes

u1(x, y, t) =
cosh( xα

Γ(1+α)
+ nyα

Γ(1+α)
− (3n2+1)tα

4Γ(1+α)
)+sinh( xα

Γ(1+α)
+ nyα

Γ(1+α)
− (3n2+1)tα

4Γ(1+α)
)−1

cosh( xα

Γ(1+α)
+ nyα

Γ(1+α)
− (3n2+1)tα

4Γ(1+α)
)+sinh( xα

Γ(1+α)
+ nyα

Γ(1+α)
− (3n2+1)tα

4Γ(1+α)
)+1

,

(3.21)

Similarly, b−1 = 1, b0 = 1, a−1 = 1 and k = −1 Eq. (3.20) u2 becomes

u2(x, y, t) =
cosh( −xα

Γ(1+α)
+ nyα

Γ(1+α)
+

(3n2+1)tα

4Γ(1+α)
)−sinh( −xα

Γ(1+α)
+ nyα

Γ(1+α)
+

(3n2+1)tα

4Γ(1+α)
)−1

cosh( −xα

Γ(1+α)
+ nyα

Γ(1+α)
+

(3n2+1)tα

4Γ(1+α)
)−sinh( −xα

Γ(1+α)
+ nyα

Γ(1+α)
+

(3n2+1)tα

4Γ(1+α)
)+1

,

(3.22)

which are the exact solutions of the space-time fractional pKP equation.
Remark 1: Comparing our results, Eqs. (3.21) and (3.22), with Borhanifar’s

results in [38], it can be seen that the results are different. And these solutions have
not been reported other authors in the literature.

Now we study the pKP equation to solve by using the
(

G′

G

)
-expansion method.

By using the ansatz (3.5), for the linear term of highest order U ′′′ with the highest
order and the nonlinear term (U ′)2, balancing U ′′′ with (U ′)2 in Eq. (3.5) gives

m+ 3 = 2m+ 2, (3.23)

so that

m = 1. (3.24)
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Suppose that the solutions of (3.5) can be expressed by a polynomial in
(

G′

G

)
as

follows:

U(ξ) = a0 + a1

(
G′

G

)
, a1 ̸= 0. (3.25)

By using Eq. (2.12) and Eq. (3.25) we have

U ′(ξ) = −a1

(
G′

G

)2

− a1λ

(
G′

G

)
− a1µ, (3.26)

and

U
′′′
(ξ) = −6a1

(
G′

G

)4

− 12a1λ
(

G′

G

)3

− (8a1µ+ 7a1λ
2)

(
G′

G

)2

−(8a1λµ+ a1λ
3)

(
G′

G

)
− a1µ

2 − 2a1λ
2µ.

(3.27)

By substituting Eqs. (3.25)-(3.27) into Eq. (3.5), collecting the coefficients of(
G′

G

)i

(i = 0, ..., 4) and setting them to zero, we obtain the equation system

−3
2k

4a1 +
3
4k

3a21 = 0,

−3k4a1λ+ 3
2k

3a21λ = 0,

−2k4a1µ− 7
4k

4a1λ
2 + 3

2k
3a21µ+ 3

4k
3a21λ

2 − kca1 − 3
4n

2a1 = 0,

−1
4k

4a1λ
3 − 3

4n
2a1λ+ 3

2k
3a21λµ− 2k4a1λµ− kca1λ = 0,

−1
2k

4a1λ
2µ− 3

4n
2a1µ+ 3

4k
3a21µ

2 − 1
4k

4a1µ
2 − kca1µ+ ξ0.

(3.28)

By solving this system with the aid of Maple, we obtain

a0 = a0, a1 = 2k, c = 4k4µ−k4λ2−3n2

4k

k = k, n = n, ξ0 = 1
2k

5λ2µ− 1
2k

5µ2,

(3.29)

where λ and µ are arbitrary constants. By using Eq. (3.29), expression (3.35) can be
written as

U(ξ) = a0 + 2k
(

G′

G

)
. (3.30)

By substituting general solutions of Eq. (2.12) into Eq. (3.30) we have three types of
travelling wave solutions of the space-time fractional potential Kadomtsev–Petviashvili
(pKP) equation as follows:

When λ2 − 4µ > 0, we obtain the hyperbolic function traveling wave solution

U1(ξ) = a0 − kλ+ k
√
λ2 − 4µ

(
C1 sinh

1
2

√
λ2−4µξ+C2 cosh

1
2

√
λ2−4µξ

C1 cosh
1
2

√
λ2−4µξ+C2 sinh

1
2

√
λ2−4µξ

)
, (3.31)
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where ξ = kxα

Γ(1+α) +
nyα

Γ(1+α) +
(4k4µ−k4λ2−3n2)tα

4kΓ(1+α) , and C1, C2 are arbitrary constants.

In particular, if C1 ̸= 0, C2 = 0, λ > 0, µ = 0, then the traveling wave solution of
(3.31) can be written as:

u3(x, y, t) = a0−kλ+kλ tanh

{
λ
2

(
kxα

Γ(1 + α)
+

nyα

Γ(1 + α)
− (k4λ2 + 3n2)tα

4kΓ(1 + α)

)}
.

(3.32)

And assuming C1 = 0, C2 ̸= 0, λ > 0, µ = 0,then we obtain

u4(x, y, t) = a0−kλ+kλ coth

{
λ
2

(
kxα

Γ(1 + α)
+

nyα

Γ(1 + α)
− (k4λ2 + 3n2)tα

4kΓ(1 + α)

)}
.

(3.33)

When λ2 − 4µ < 0, we obtain the trigonometric function traveling wave solution

U2(ξ) = a0 − kλ+ ikλ

(
−C1 sin

1
2

√
4µ−λ2ξ+C2 cos

1
2

√
4µ−λ2ξ

C1 cos
1
2

√
4µ−λ2ξ+C2 sin 1

2

√
4µ−λ2ξ

)
, (3.34)

Also, if we assume C1 ̸= 0, C2 = 0, λ > 0, µ = 0, then

u5(x, y, t) = a0−kλ+kλ tanh

{
λ
2

(
kxα

Γ(1 + α)
+

nyα

Γ(1 + α)
− (k4λ2 + 3n2)tα

4kΓ(1 + α)

)}
,

(3.35)

and when C1 = 0, C2 ̸= 0, λ > 0, µ = 0, the solution of Eq. (3.34) becomes

u6(x, y, t) = a0−kλ+kλ coth

{
λ
2

(
kxα

Γ(1 + α)
+

nyα

Γ(1 + α)
− (k4λ2 + 3n2)tα

4kΓ(1 + α)

)}
.

(3.36)

So we obtain the solutions u3(x, y, t) and u4(x, y, t).
When λ2 − 4µ = 0, we obtain the rational function solution

u7(x, y, t) = a0−kλ+
2kC2

C1 + C2

(
kxα

Γ(1+α) +
nyα

Γ(1+α) +
(4k4µ−k4λ2−3n2)tα

4kΓ(1+α)

) . (3.37)

Remark 2: Compare our results, Eqs. (3.32), (3.33) and (3.37),with Budhiraja’s
and Zayed’s solutions in [39, 40], it can be seen that the results are different.
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4. Conclusions

In this paper, we have seen that three types of exact analytical solutions includ-
ing the hyperbolic function solutions, trigonometric function solutions and rational
solutions for the space-time fractional pKP equation are successfully found out by
using the exp-function and (G′/G)-expansion methods. This study shows that the
exp-function and (G′/G)-expansion methods are quite efficient and practically well
suited for finding exact solutions of the pKP equation. The performance of these
methods are reliable and effective and give the exact solitary wave solutions and peri-
odic wave solutions. The availability of computer symbolic systems like Mathematica
or Maple facilitates the tedious algebraic calculations. Thus, we deduce that the pro-
posed method can be extended to solve many systems of nonlinear time-fractional
partial differential equations.
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