- [1] K. K. Ali, A. R. Seadawy, A. Yokus, R. Yilmazer, and H. Bulut, Propagation of dispersive wave solutions for (3+ 1)-dimensional nonlinear modified Zakharov–Kuznetsov equation in plasma physics, International Journal of Modern Physics B, 34(25) (2020), 2050227. DOI: 10.1142/S0217979220502276.
- [2] K. K. Ali, R. Yilmazer, H. M. Baskonus, and H. Bulut, New wave behaviors and stability analysis of the Gilson–Pickering equation in plasma physics, Indian Journal of Physics, 95(5) (2021), 1003-1008. DOI: 10.1007/s12648-020-01773-9.
- [3] K. K. Ali, R. Yilmazer, A. Yokus, and H. Bulut, Analytical solutions for the (3+ 1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation in plasma physics Physica A: Statistical Mechanics and its Applications, 548 (2020), 124327. DOI: 10.1016/j.physa.2020.124327.
- [4] I. L. Bogolubsky, Some examples of inelastic soliton interaction, Computer Physics Communications, 13(3) (1977), 149-155. DOI: 10.1016/0010-4655(77)90009-1.
- [5] H. Bulut, T. A. Sulaiman, H. M. Baskonus, and T. Akturk, Complex acoustic gravity wave behaviors to some mathematical models arising in fluid dynamics and nonlinear dispersive media, Optical and Quantum Electronics, 50(1) (2018), 19. DOI: 10.1007/s11082-017-1286-y.
- [6] P. A. Clarkson, R. J. LeVeque, and R. Saxton, Solitary-Wave Interactions in Elastic Rods, Studies in Applied Mathematics, 75(2) (1986), 95-121. DOI: 10.1002/sapm198675295.
- [7] S. Duran and B. Karabulut, Nematicons in liquid crystals with Kerr Law by sub-equation method, Alexandria Engineering Journal, 2021. DOI: 10.1016/j.aej.2021.06.077.
- [8] S. Duran, Extractions of travelling wave solutions of (2+ 1)-dimensional Boiti–Leon–Pempinelli system via (G’/G,1/G)-expansion method, Optical and Quantum Electronics, 53(6) (2021), 1-12. DOI: 10.1007/s11082-021-02940-w.
- [9] S. Duran, Breaking theory of solitary waves for the Riemann wave equation in fluid dynamics, International Journal of Modern Physics B, (2021), 2150130. DOI: 10.1142/S0217979221501307.
- [10] S. Duran, M. Askin, and T. A. Sulaiman, New soliton properties to the ill-posed Boussinesq equation arising in nonlinear physical science, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 7(3) (2017), 240-247. DOI: 10.11121/ijocta.01.2017.00495.
- [11] H. Durur and A. Yoku¸s, Discussions on diffraction and the dispersion for traveling wave solutions of the (2+ 1)-dimensional paraxial wave equation, Mathematical Sciences, 2021, 1-11. DOI: 10.1007/s40096-021-00419-z.
- [12] H. Durur, Different types analytic solutions of the (1+1)-dimensional resonant nonlinear Schrodinger’s equation using (Gt/G) expansion method, Modern Physics Letters B, 34(03) (2020), 2050036. DOI: 10.1142/S0217984920500360
- [13] H. Dutta, H. Gu¨nerhan, K. K. Ali, and R. Yilmazer, Exact Soliton Solutions to the Cubic-Quartic Non-linear Schr¨odinger Equation With Conformable Derivative, Frontiers in Physics, 8 (2020), 62.
- [14] S. I. A. El-Ganaini Travelling wave solutions to the generalized Pochhammer-Chree (PC) equations using the first integral method Mathematical Problems in Engineering, 2011 (2011). DOI: 10.1155/2011/629760.
- [15] H. F. Ismael, A. Seadawy, and H. Bulut, Multiple soliton, fusion, breather, lump, mixed kink-lump and periodic solutions to the extended shallow water wave model in (2+ 1)-dimensions, Modern Physics Letters B. 35(08) (2021), 2150138. DOI: 10.1142/S0217984921501384.
- [16] H. F. Ismael, H. Bulut, C. Park, and M. S. Osman, M-lump, N-soliton solutions, and the collision phenomena for the (2+ 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Results in Physics, 19, 103329. DOI: 10.1016/j.rinp.2020.103329.
- [17] B. Li, Y. Chen, and H. Zhang, Travelling wave solutions for generalized pochhammer-chree equations, Zeitschrift fu¨r Naturforschung A, 57(11) (2002), 874-882. DOI: 10.1515/zna-2002-1106.
- [18] J. Li and L. Zhang, Bifurcations of traveling wave solutions in generalized Pochhammer–Chree equation, Chaos, Solitons & Fractals, 14(4) (2002), 581-593. DOI: 10.1016/S0960-0779(01)00248-X.
- [19] A. Malik, F. Chand, H. Kumar, and S. C. Mishra, Exact solutions of some physical models using the (Gt/G)- expansion method, Pramana, 78(4) (2012), 513-529. DOI: 10.1007/s12043-011-0253-6.
- [20] W. X. Ma and L. Zhang, Lump solutions with higher-order rational dispersion relations, Pramana, 94(1) (2020), 1-7. DOI: 10.1007/s12043-020-1918-9.
- [21] A. Mohebbi, Solitary wave solutions of the nonlinear generalized Pochhammer–Chree and regularized long wave equations, Nonlinear Dynamics, 70(4) (2012), 2463-2474. DOI: 10.1007/s11071-012-0634-5.
- [22] K. Parand and J. A. Rad, Some solitary wave solutions of generalized Pochhammer-Chree equation via Exp- function method International Journal of Mathematical and Computational Sciences, 4(7) (2010), 991-996. DOI: 10.5281/zenodo.1079408.
- [23] Z. Pinar, Analytical study on the balancing principle for the nonlinear Klein–Gordon equation with a fractional power potential Journal of King Saud University-Science, 32(3) (2020), 2190-2194. DOI: 10.1016/j.jksus.2020.02.032.
- [24] Z. Pinar, An Analytical Studies of the Reaction-Diffusion Systems of Chemical Reactions, International Journal of Applied and Computational Mathematics, 7(3) (2021), 1-10. DOI: 10.1007/s40819-021-01028-z.
- [25] N. Shawagfeh and D. Kaya, Series solution to the Pochhammer-Chreeequation and comparison with exact solutions, Computers & Mathematics with Applications, 47(12) (2004), 1915-1920. DOI: 10.1016/j.camwa.2003.02.012.
- [26] H. Triki, A. Benlalli, and A. M. Wazwaz, Exact solutions of the generalized Pochhammer-Chree equation with sixth-order dispersion, Rom. J. Phys, 60 (2015), 935-951.
- [27] A. M. Wazwaz, The tanh–coth and the sine–cosine methods for kinks, solitons, and periodic solutions for the Pochhammer–Chree equations, Applied Mathematics and Computation, 195(1) (2008), 24-33. DOI: 10.1016/j.amc.2007.04.066.
- [28] M. Yavuz, Dynamical behaviors of separated homotopy method defined by conformable operator, Konuralp Journal of Mathematics (KJM), 7(1) (2019), 1-6.
- [29] G. Yel and T. Aktu¨rk, A New Approach to (3+ 1) Dimensional Boiti–Leon–Manna–Pempinelli Equation, Applied Mathematics and Nonlinear Sciences, 5(1) (2020), 309-316.
- [30] A. Yokus and M. Yavuz, Novel comparison of numerical and analytical methods for fractional Burger–Fisher equation, Discrete & Continuous Dynamical Systems-S, 14(7) (2021), 2591. DOI: 10.3934/dcdss.2020258.
- [31] A. Yoku¸s, H. Durur, K. A. Abro, and D. Kaya, Role of Gilson–Pickering equation for the different types of soliton solutions: a nonlinear analysis, The European Physical Journal Plus, 135(8) (2020), 1-19. DOI: 10.1140/epjp/s13360-020-00646-8.
- [32] A. Yoku¸s, H. Durur, and K. A. Abro, Symbolic computation of Caudrey–Dodd–Gibbon equation subject to periodic trigonometric and hyperbolic symmetries, The European Physical Journal Plus, 136(4) (2021), 1-16. DOI: 10.1140/epjp/s13360-021-01350-x.
- [33] W. Zhang, Y. Zhao, G. Liu, and T. Ning, Periodic solutions for Pochhammer–Chree equation with five order nonlinear term and their relationship with solitary wave solutions, International Journal of Modern Physics B, 24(19) (2010), 3769-3783. DOI: 10.1142/S0217979210056268.
- [34] J. M. Zuo, Application of the extended (Gt/G) expansion method to solve the Pochhammer–Chree equations, Applied mathematics and computation, 217(1) (2010), 376-383. DOI: 10.1016/j.amc.2010.05.072.
|