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Abstract 

The Time Synchronized Channel Hopping (TSCH) mode of IEEE 802.15.4e has been widely used as an access method 

for the industrial Internet of Things (IoT). It permits to overcome the performance limits of 802.15.4 standard in such 

networks. It provides bounded latency and increased network capacity while mitigating the effects of interference and 

multipath fading. In this paper, we tackle two critical concerns of industrial networks, namely end-to-end reliability and 

delay by proposing two centralized scheduling mechanisms; First, the Height-based Scheduling (HS) that computes the 

schedule only based on the network topology. Second, T2AS, which takes into account both traffic demand and network 

topology to calculate the schedule. The later mechanism uses a composite weighting function that allows scheduling links 

with more load and longer distance from the root in earlier timeslots. This prioritizes the flows with more traffic to be 

scheduled earlier. Both algorithms provide subsequential scheduling for multi-hop scenarios. Simulation results, obtained 

from the OpenWSN emulator, particularly confirm the efficiency of T2AS in terms of reliability and end-to-end latency. 

More precisely, it guarantees a reliability of more than 99% for all network sizes. Furthermore, T2AS provides a noticeable 

bounded delay by delivering data packets within a single slotframe.  
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1. Introduction 

Wireless sensor networks (WSNs) play a key role in 

enabling the Internet of Things. They are increasingly 

used for a wide variety of applications ranging from 

environmental monitoring to industrial automation 

considering specific requirements namely data 

transmission latency, reliability, and energy efficiency.  

A widely-used technology to fulfil these demands is 

IEEE 802.15.4 standard [1], which specifies physical and 

MAC functionality for low power, low data rate wireless 

networks. Although this standard is well adapted to the 

one-hop communications, it is not suitable for multi-hop 

scenario mainly because of high energy consumption and 

increasing interference. According to the standard, all 

nodes use a single common channel, which increases the 

unreliability due to interference and fading. Moreover, 

intermediate nodes suffer from high energy consumption 

as they stay active more often to relay data packets. The 

performance of 802.15.4 networks for different 

applications has already been studied under various 

conditions in the literature [2, 3]. 

To better adapt the 802.15.4 standard to multi-channel 

multi-hop scenario of the industrial IoT, the Internet 

Engineering Task Force (IETF) proposed IEEE 802.15.4e 

[4] amendment that specifies several MAC mechanisms 

to provide reliability, predictable delay, energy 

conservation, and higher throughput for multi-hop WSNs. 

It replaces the MAC protocol without changing the 

underlying physical layer. The TSCH mechanism of IEEE 

802.15.4e aims at reducing the impact of the wireless 

channel unpredictability for low power and lossy 

networks. Its slotframe structure allows transmitting data 

packets more reliably with low latency. It also enables 

saving energy as each node shares a schedule, allowing it 

to know in advance when to turn its radio on or off. 

The standard only provides a framework but it does 

not mandate any specific scheduling mechanism [5]. In 

this paper, we propose two centralized mechanisms to 

compute the common schedule for 802.15.4e-TSCH 

networks with bounded delay and high reliability. 

Our contribution in this paper is threefold: 

 We propose Height-based Scheduling, a 

centralized mechanism that relies on topological 

characteristics of the network. It allocates the 

cells required for each node according to its 

height in the DoDAG (Destination-Oriented 

Directed Acyclic Graph) topology. 

 More importantly, we propose T2AS, a more 

efficient mechanism that uses a composite 

weighting function to help build sub-sequential 

scheduling for multi-hop scenarios. According to 

T2AS, more cells are reserved for a node with a 
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larger subtree, i.e. subtree of which it is the root. 

In addition, it tries to schedule links with more 

load and longer distance from the root in early 

timeslots. An interesting characteristic of T2AS 

is that all data packets could reach the sink within 

one slotframe. 

 We also conduct extensive simulations to 

evaluate the performance of both mechanisms 

under quasi-realistic conditions where an 

instance of the mote firmware is created for each 

emulated node. 

The rest of this paper is organized as follows: 

Section 2 overviews the IEEE 802.15.4-TSCH standard 

and OpenWSN protocol stack. Related work is briefly 

discussed in section 3. Our scheduling mechanisms for 

TSCH networks are presented in section 4. Section 5 

discusses the simulation scenarios and reports the results 

obtained from the performance evaluation. Finally, the 

paper is concluded in section 6. 

 

2. Background knowledge  

 

2.1. TSCH mechanism 

TSCH proposes a FTDMA-like access method to use 

diversity in time and frequency to provide reliability to the 

network. More precisely, time-slotted access permits to 

achieve bounded latency, multi-channel communications 

increase network capacity, and finally slow channel 

hopping mitigates the effects of interference and 

multipath fading. 

In TSCH, time is sliced up into timeslots. Each 

timeslot is large enough to allow a node to transmit a 

maximum-length data packet and eventually to receive its 

corresponding ACK. Absolute Sequence Number (ASN) 

counts the number of timeslots since the DAGroot has 

started. Timeslots are grouped into slotframes. A 

slotframe continuously repeats over time. There are 16 

non-overlapping channels available for hopping in TSCH, 

each with 5MHz of bandwidth. The frequency to use is 

calculated based on the ASN and the channel offset at the 

beginning of each timeslot. At the beginning of each 

slotframe, all nodes are synchronized. The PAN 

coordinator advertises enhanced beacon (EB) to schedule 

slotframes. A cell (link) is defined as the pairwise of 

assignment of a directed communication between devices 

in a specific timeslot on a given channel offset. Each link 

can be shared or dedicated. In a shared link, TSCH uses a 

CSMA/CA mechanism to avoid collision. However, it 

uses a contention-free access for a dedicated link [4]. Fig. 

1 illustrates a sample schedule for a slotframe with three 

timeslots and four non-overlapping channels in an 8-node 

network topology. As shown in Fig. 2, within a time slot, 

a node transmits a data packet and receives its 

corresponding acknowledgement. If the 

acknowledgement packet is not received in the same 

timeslot, then it will be retransmitted in another timeslot 

according to the TSCH schedule. 

 

 
Fig. 1. A sample schedule in a slotframe with 4 

channels and 3 timeslots 

 

 
Fig. 2. Structure of a timeslot in TSCH 

 

2.2. OpenWSN Protocol Stack 

OpenWSN [6] and D-MSR [7] are two examples of 

protocol stacks that implement the 802.15.4e standard. D-

MSR is implemented in the NS-2 environment. However, 

OpenWSN provides a full protocol stack for low-power 

Internet-connected wireless mesh networks. It 

implements, on top of IEEE802.15.4e, IoT standards such 

as 6LoWPAN, RPL, and CoAP enabling an OpenWSN 

network to connect to the IPv6 Internet. The resulting 

hardware-independent protocol stack (cf. Fig. 3) is 

becoming a foundation for the IoT industry. 

 
Fig. 3. OpenWSN protocol stack 

 

Applications for specific purposes are located at the 

User Applications layer and operate on top of several 
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transport layer protocols. Constrained Application 

Protocol (CoAP) [8] at the transport layer enables 

RESTful interaction with individual motes without the 

overhead of TCP and HTTP. Unlike HTTP, CoAP is 

specifically designed for LLN networks. It consists of a 4-

byte header on top of UDP. A CoAP-enabled mote can act 

as both a web client and a web server. 

IPv6 layer has three main tasks to accomplish: packet 

forwarding, routing using RPL protocol [9] and managing 

control packets through ICMPv6. RPL is able to quickly 

setup network routes, to distribute routing information 

among nodes, and to adapt the topology in an efficient 

way. The nodes are connected via a multi-hop network to 

a root device, which is responsible for data collection and 

coordination tasks. 

At the IPHC sub-layer, IPv6 over Low power WPAN 

(6LoWPAN) is used for compressing the IPv6 header to 

minimize packet size. The maximum frame size in the 

802.15.4 standard is 127 bytes while the IPV6 header size 

is 40 bytes. Therefore, without header compression, the 

40-byte header of IPv6 packets would occupy almost a 

third of each frame. 

MAC layer is divided into two sublayers: The 

MAChigh sub-layer is used to specify the slotframe 

structure and to accomplish link scheduling. A slotframe 

consists of a number of timeslots and repeats over time. 

The other sublayer is mainly responsible for the channel 

hopping mechanism. Physical (Radio) layer is specified 

for supported platforms in OpenWSN. This layer differs 

across a variety of platforms. Finally, the cross-layer part 

is used to interconnect different layers of the protocol 

stack. 

 

3. Related Work 

The reliable data transfer requires precise scheduling 

to keep the number of transmissions as low as possible 

and to guarantee a certain level of reliability. Since a 

TSCH network relies on a strict organization of the 

transmissions, several scheduling algorithms have been 

proposed in the literature. 

The centralized approaches rely on a Path 

Computation Element, which needs often to know the 

traffic generated by each node, and the topology used to 

route the packets. TASA [5] represents a pioneering piece 

of work, defining the different constraints to schedule 

accurately the transmissions. It tries to multiplex the 

transmissions to create a compact schedule. AMUS [10] 

aims to provide low delay guarantees for time-sensitive 

applications, by scheduling sequentially the transmissions 

along the route. Besides, redundant cells are assigned to 

vulnerable links with a heavy load to deal with 

retransmissions. MODESA [11] deals with a sink 

equipped with several radio interfaces and tries to 

multiplex the transmissions through the different 

interfaces of the sink to maximize the throughput. 

SchedEx [12] fortifies the schedule, by allocating 

additional slots to lower-bound the end-to-end reliability. 

The number of extra timeslots is calculated in function of 

the packet reception rate of every link. Huynh et al. [13] 

proposed a centralized scheduling method that 

concentrates on reliability and energy efficiency by 

deciding on the best next hop to forward the packet. LOST 

adopts localized scheduling: it only needs single hop 

information to determine the schedule with the constraint 

of prohibiting bad radio channels usage [14]. [15] 

proposes a centralized and compact scheduling algorithm 

tailored to a multipath routing mechanism, which enables 

multiple transmitters to use a shared cell for delivering 

data packets to a common receiver. The flows are 

prioritized regarding their distance to the sink. The 

authors in [16] aim to provide an acceptable trade-off 

between end-to-end delay and network lifetime by over-

provisioning extra cells for retransmission packets. 

OST[17], schedules the slotframe on-demand in two steps: 

first, it periodically meets the bandwidth requirements of 

the current traffic load. Second, it observes burst traffic 

and allocates additional slots accordingly to route the 

traffic. 

Distributed approaches were also proposed, where 

each node decides reactively how many cells to reserve. 

DiSCA et al. [18] is a distributed algorithm that tries to 

minimize the number of timeslots required to deliver all 

the packets to the sink. The algorithm proceeds iteratively 

(in rounds), allocating at the round i the ith transmission of 

each node. Domingo-Prieto et al. [19] considers the 

TSCH scheduling as a closed-loop control problem and 

proposed a PID-based distributed scheduling for 6TiSCH 

networks. At each slotframe, the PID controller 

determines the number of cells that should be added or 

removed per neighbour, according to the state of the 

queues and the previous usage of slotframes cells. 

Sabzevari et al. investigate funnelling effect [20] in 

WSNs with converge-cast traffic. They allocate dedicated 

cells to the links closer to the sink as they relay much more 

traffic compared to the leaves. Each node estimates the 

number of cells according to the information it obtains 

from its neighbours. One of the default scheduling 

functions designated for 6TiSCH is SFx [21] that is 

relatively inspired by OTF [22]. SFx estimates the number 

of appropriate cells between neighbour nodes, according 

to the currently scheduled cells and cell requirements of 

the neighbour nodes. It tracks the number of incoming and 

outgoing packets and uses these statistics for new cell 

reservations. 

In addition to data packets scheduling, enhanced 

beacons scheduling is also of importance for 802.15.4e 

networks. In [23], Zou et al. investigated the effects of a 

number of co-located PAN coordinators on the 

performance of TSCH networks. They proposed an 

algorithm to schedule enhanced beacons (EB) 

transmissions where neighbouring PAN coordinators 

exchange their schedules to detect conflicts and reallocate 

the timeslots if necessary. De Guglielmo et al. [24] 

formulate EB scheduling in TSCH networks as an 

optimization problem with the goal to minimize the 

average joining time of a node. In [25], the authors divide 

the nodes into different groups using an optimization 

method. By a Mixed-Integer Linear Programming (MILP) 

model, one of the sets is selected intermittently to cover 

the whole network while the other sets are in energy 

saving mode. This procedure is repeated over time with 

different sets. 

Our main work is a new centralized scheduling 

mechanism, which relies on both traffic demands and 

network topology and aims to provide more reliability and 

low delay for 802.15.4e-TSCH networks. 
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4. Topology/Traffic Aware Scheduling 

In this section, we propose two link scheduling 

mechanisms for TSCH networks with converge-cast 

traffic: The first one, HS, is a topology-based scheduling 

that computes the scheduling matrix based on the DoDAG 

structure. A DoDAG is a directed acyclic graph rooted at 

a single destination, which is the sink in our case. 

However, the second method we call T2AS takes into 

account both the traffic demand and the network topology. 

The number of cells allocated to a specific transmission 

link (a pair of nodes) depends on the location of its nodes 

(for the two algorithms) in the DoDAG structure as well 

as the amount of traffic to be carried over that link (for 

T2AS).  

A summary of notations we use here is shown in Table 

I. 

 

Table I. A summary of notations 

Notion Meaning 

  

G(V, L) DoDAG graph with node set V and link 

set L 

CS(L) conflict set of link set L 

nc(u→v) number of cells reserved for 

transmission of a packet from u to v 

height(u) height of node u in the corresponding 

tree topology 

wt(v) weighting function for node v at time t 

ST(v) subtree rooted at node v 

loadt(u) number of data packets available in 

node u at time t 

distance(u) hop-count from node u to reach the sink 

�̅�𝑠𝑙𝑜𝑡𝑓𝑟𝑎𝑚𝑒  average energy consumed by all nodes 

in a slotframe 

Ntx(Nrx) number of TXs(RXs) during one 

slotframe 

Ctx(Crx) TX(RX) current consumption 

V low power voltage 

L packet length 

R bit rate 

 

Let G(V, L) be a DoDAG with node set V and link set 

L. Now, assume a set of links 𝐿′ ⊆ 𝐿. Let 𝑆′ represents 

the set of nodes that correspond to the endpoints of 𝐿′. We 

define the conflict set of 𝐿′ in Eq. (1) as the set of links in 

𝐿\𝐿′ for which one endpoint is in𝑆′. Mathematically, this 

would be denoted as:  

𝑪𝑺(𝑳′) = {(𝒂, 𝒃)|(𝒂 ∊ 𝑺⊕ 𝒃 ∊ 𝑺)} (1) 

Where ⊕ is the XOR operation. Two links are said to be 

in conflict if their corresponding nodes cannot 

transmit/receive at the same time over the same channel. 

For both mechanisms, we assume that each node has only 

one radio interface. We also assume using dedicated slots 

for transmission.  

 

4.1. Height-based Scheduling (HS) 

In our first centralized mechanism, the number of cells 

reserved for each link 𝑢 →  𝑣 depends on the location of 

its nodes in the network topology and does not depend on 

the traffic volume. More precisely, the number of cells 

allocated to 𝑢 →  𝑣 is computed as: 

𝑛𝑐(𝑢 → 𝑣) = {
ℎ𝑒𝑖𝑔ℎ𝑡(𝑢) + 1,

1,
 

if u is an inner node 
if u is a leaf node (2) 

 

where ℎ𝑒𝑖𝑔ℎ𝑡(𝑢)  represents the height of u in the 

corresponding tree topology and 𝑛𝑐(𝑢 → 𝑣) refers to the 

number of cells reserved for the node u(v) as 

transmitter(receiver). In a tree, the height of a node is the 

number of edges on the path from the node to the deepest 

leaf. The height of a leaf node is 0. 

Algorithm 1 illustrates the principal steps of this 

mechanism. For HS algorithm, we define links as a vector 

of the following struct for each link in the network:   

<from, to, height, src_type, nCells>. 

The attribute height represents the height of the 

node from. src_type determines if from is a leaf or 

an inner node. nCells denotes the number of cells to be 

scheduled for the current link and is computed according 

to Eq.(2). 

At the beginning, the links vector is initialized by 

using the DoDAG structure of the network (line 12). It is 

then sorted in descending order by distance (line 14). 

According to the sorting procedure, an outer link is placed 

before an inner one when both are at the same distance 

from the sink. csLinks maintains the links to be scheduled 

in the current timeslot. A new cell is scheduled for the 

current link links[i] if: 

1. its corresponding nCells is greater than zero 

(lines 16-17) and  

2. it is not in conflict with any other link already 

scheduled in the current timeslot. 

Then, a maximum number of non-conflicting links are 

scheduled within the same timeslot but on different 

channels (lines 19-24). The next cells for the current link 

i are scheduled in the next subsequent timeslots (cf. while 

loop). This process is repeated using the outer for loop 

until all links are scheduled. 

 

The HS mechanism permits sub-sequential multi-hop 

scheduling. For instance, in a multi-hop sequence like 

𝐴 → 𝐵 → 𝐶 , the link 𝐴 → 𝐵  is scheduled in an earlier 

timeslot compared to 𝐵 → 𝐶. Consequently, a multi-hop 

sequence is scheduled in one slotframe, which is resulted 

in a lower end-to-end delay. However, HS does not 

consider the traffic demand. Therefore, an increase in the 

traffic may result in a noticeable degradation in delay and 

packet loss ratio. 

The time complexity of the HS algorithm is derived as 

follows: The complexity of the outer for loop (lines 15-

29) is O(n), where n denotes the number of nodes since it 

schedules all the links. The while loop runs C times 

where C is the average number of cells allocated for each 

link (usually a small value). The complexity of the inner 

for loop is of O(n). Thus, the overall time complexity is 

O(Cn2). 

 

Algorithm 1. HS Scheduling 
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1: procedure SCHEDULELINK(I, ts, ch)     // Schedule links 
2:        (a, b) ← (links[i].from, links[i].to) 
3:        schedule((a,b)) in slotframeMatrix(ts, ch) 
4:        links[i].nCells ← links[i].nCells - 1; 
5:        csLinks ← csLinks ∪ {(a, b)} 
6: end procedure 

7: Input: G(V, E)                 // DoDAG topology 
8: Output: slotframeMatrix                // scheduling matrix 
9: Global Variables: links, csLinks 
10: Initialization: 

11:    ts ← 1; ch ← 1           // Initializing timeslot and channel offset 
12:    set links attributes using DoDAG topology. 
13:    slotframeMatrix ← Ø; csLinks ← Ø 
14: sort(links)           // sort links in descending order 
15: for i = 1 to #links  do 
16:     while links[i].nCells > 0 do 
17:           SCHEDULELINK(i, ts, ch) 
18:           ch ← ch  + 1 
19:          for j = 1 to #links; j ≠ i do  
20:               if  links[j].nCells > 0 && (links[j].from, links[j].to) ∉     

CS(csLinks) then 
21:                    SCHEDULELINK(i, ts, ch) 
22:                    ch ← ch  + 1 
23:               end if 
24:          end for 
25:           csLinks ← Ø 
26:           ch ← 1 
27:           ts ← SFLength % (ts + 1) 
28:     end while 
29: end for 

30: return slotFrameMatrix 
  

 

4.2. Topology and Traffic Aware Scheduling(T2AS) 

Our second scheduling mechanism for TSCH 

networks uses both topology and traffic demand to 

propose a more flexible schedule matrix. By taking into 

account both traffic and topology as shown in Eq.(3), 

T2AS provides high reliability as well as bounded latency. 

We define a weighting function 𝑤: 𝑉 → 𝑁0 , where V 

denotes the set of nodes in the network and 𝑁0 is the set 

of non-negative integers. The weight value for a given 

node v may vary over subsequent timeslots. It is defined 

as follows: 

 

𝑤𝑡(𝑣) = ∑ 𝑙𝑜𝑎𝑑𝑡(𝑢) ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢)

𝑢∊ST(v)

 (3) 

 

Where ST(v) is the subtree rooted at node v, 𝑙𝑜𝑎𝑑𝑡(𝑢) is 

the number of data packets available in u at time t targeted 

to the root, and distance(u) is the number of hops from u 

to reach the root. We need to schedule links with more 

load and longer distance to the root in early timeslots. In 

other words, we prioritize links with greater weights 

according to Eq.(3). By applying this weighting function, 

we consider leaf nodes not to be scheduled at the end of 

the slotframe. This function provides a balance in 

scheduling for congested nodes and for nodes with a 

longer distance from the sink as well. 

Algorithm 2 illustrates the principal steps of our 

proposed mechanism. Here, each entry of vector links 

comprises the following attributes: 
<from, to, distance(dist), load, weight(wg)> 

The load and weight of a link point to the load and the 

weight of its from node. In the pseudo-code, load(a) and 

weight(a) are used to represent links[i].load and 

links[i].weight respectively, where i denotes the entry that 

contains link (a,b). 

The main procedure of our mechanism is as follows: 

Starting from the first timeslot (ts = 1), the objective is to 

schedule the maximum possible number of links in each 

timeslot while scheduling nodes with higher weight in the 

earlier timeslots. As in HS, csLinks maintains the links to 

be scheduled in the current timeslot. At the beginning of 

each timeslot, the csLinks initialized to empty.  As shown 

in line 13, all links in links are verified in decreasing order 

of weight. The nextMaxWeight() function returns 

the link with the next maximum weight. Then, the 

candidate link 𝑎 → 𝑏 is scheduled in the current timeslot 

if two following conditions hold: 

1. load(a) > 0 ; 

2. 𝑎 → 𝑏  is not in conflict with any other links 

already scheduled in the current timeslot 

 

After verifying all links, the vector links is updated 

(lines 17-24). For each link in csLinks, the load and weight 

parameters of the corresponding link in links must be 

updated. For each scheduled link (a,b), load(a) and load(b) 

are decremented and incremented by 1 respectively (lines 

27-30). Based on the updated load values, weights are 

recomputed using the procedure updateWeights according 

to Eq.(3) (lines 1-5). The same procedure is repeated for 

the next timeslot. We assume that 𝑇𝑚𝑎𝑥  is the minimum 

value to schedule vector links in an entire slotframe. 

Fig. 4 illustrates a sample run of our mechanism for a 

4-node tree topology. The traffic pattern is converge-cast 

and it is assumed that every node has one data packet to 

send during each slotframe. The evolution of load and 

weight parameters for the links vector are depicted in Fig. 

4 and the scheduled link is also highlighted for each 

timeslot. For this scenario, the minimum possible value 

for 𝑇𝑚𝑎𝑥  is 3. Two cells are assigned to 𝑐 → 𝑎, one for 

transmitting its own packet and the other one for 

forwarding the packet sent by d. 

The time complexity of this algorithm is O(Sn2) where 

S is the length of the slotframe. 

 

 
Fig. 4. A sample run for T2AS scheduling mechanism 

Algorithm 2. T2AS Scheduling 
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1: procedure UPDATEWEIGHTS() 
2:        for a ∊ Vnodes  do        
3:              𝑤𝑒𝑖𝑔ℎ𝑡(𝑎) ←  𝑙𝑜𝑎𝑑(𝑛) ∗ 𝑑𝑖𝑠𝑡(𝑛)𝑛∈𝑆𝑇(𝑎)  

4:        end for 
5: end procedure 

6: Input: load        // traffic vector during a slotframe period 
7: nodes         // vector of nodes 

8: links         // vector of edges in the DoDAG topology. 

9: Output: slotframeMatrix                // scheduling matrix 
10: Initialization: 

11: ts ← 1, ch ← 1                                // timeslot and channel offset 
12: slotframeMatrix ← Ø 
13: sort(links)           // sort links in descending order 
14: for ts = 1 to 𝑇𝑆𝑚𝑎𝑥   do 
15:     UPDATEWEIGHTS() 
16:     csLinks ← Ø 
17:     while !allLinksVerified do 
18:            (a, b) ← nextMaxWeight() 
19:            if  load(a) > 0 && ((a, b) ∉ CS(csLinks)) then 
20:                  schedule (a,b) in slotframeMatrix(ts, ch) 
21:                  csLink ← clsLink ∪ {(a, b)} 
22:                  ch ← ch  + 1 
23:            end if 
24:      end while 
25:  
26:      /* Update load and weight for this link. */      
27:      for (a, b) ∊ CS(csLinks) do  
28:            Load(a) ← load(a)  - 1 
29:            Load(b) ← load(b)  + 1 
30:      end for 
31:      ch ← 1     
32: end for 

33: return slotFrameMatrix 
  

 

 

5. Implementation and Performance Evaluation 

Our proposed mechanisms were implemented in the 

OpenWSN simulator. The experimental results obtained 

from this platform have been already confirmed to be 

close to the reality according to [26]. 

In order to get more accurate results, the OpenWSN 

simulator creates an instance of the mote firmware for 

each emulated node. This means every detail of a mote is 

simulated, which makes it running slowly. Therefore, a 

large number of motes would run with a very low speed 

and cause a long time to synchronize.  Consequently, we 

decided to run the experiments for various network sizes 

ranging from 4 to 16 nodes with a random tree topology. 

For each network size, we also generated five different 

random topologies to have representative results. For 

example, Fig. 5 represents a sample random topology with 

16 nodes, which has been used in our simulation. We 

assume no node failure in the network, thus we can totally 

focus on latency and reliability. We, first provide a 

microscopic evaluation of our two proposed mechanisms 

by reporting performance results in detail and per-flow for 

both. Then, we compare their performance with those of 

Funnelling-aware TSCH (FA-TSCH), a prior work 

already implemented in OpenWSN by our research group 

[20]. 

 
Fig. 5. 16-node topology 

 

The size of the slotframe is set at 23 timeslots to adapt 

it to the size of the network. The Chipcon CC2420 radio 

transceiver is used. Each point represents the average of 

10 simulation runs and the results are displayed with a 95% 

confidence intervals. Moreover, each node generates one 

data packet at the beginning of each slotframe. To keep 

the nodes fully synchronized and to avoid collisions in 

control messages, three shared cells are specified at the 

beginning of each slotframe as the minimal schedule. As 

a central entity, DAGroot is fully aware of the topology, 

the routing tree and the traffic demands, thus it builds the 

schedule and disseminates it through the minimal 

schedule. Simulation parameters are summarized in Table 

II. 

 

Table II. Simulation Parameters 

Parameter Value 

  

Physical 802.15.4 2400MHz 

OQPSK 

Radio CC2420 

current consumption 

[Ctx = 17.4 mA  

      and Crx = 18.8 mA] 

supply voltage [1.8 volts] 

Access mode 802.15.4e-TSCH 

Timeslot duration 15 ms 

Slotframe size 23 slots 

# of channels 16 

# of shared cells 3 

Routing protocol RPL 

CBR 1 pkt / slotframe 

Packet size 100 bytes 

Network configuration random topology 

Network size 4 to 16 sensor nodes 

 

The first simulation scenario uses a 12-node random 

topology (Fig. 6). There are 11 active converge-cast flows 

destined to the sink. Among these flows, two are of 3-hop, 

six are of 2-hop, and three are of one-hop length. Fig. 6 (a) 

shows the average end-to-end delay for each traffic flow 

in this random topology. As shown in the figure, T2AS 

delivers generated data packets within one slotframe even 

for longer flows. However, the longer flows incur longer 

delays under HS and it sometimes takes more than three 

slotframes for their packets to reach the sink. The 

cumulative density function (CDF) of end-to-end delay 

for flows with different length (cf. Fig. 6 (b)) again 

confirms the good performance of T2AS compared to HS. 
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(a) 

(b) 

Fig. 6. Simulation results for a 12-node random 

topology. (a) end-to-end delay, (b) CDF of e2e delay. 

 

The results for the same scenario are also reported for 

a 16-node random network in Fig. 7. Here, five flows are 

of 3-hop, seven are of 2-hop, and three are of 1-hop length. 

As shown in Fig. 7 (a), e.g. for flow 11, T2AS outperforms 

HS by a factor of almost 6 in terms of delay. Moreover, 

HS results in high jitter specifically for longer flows. Fig. 

7 (b) shows the CDF of end-to-end delay for flows with 

different length in the 16-node network. We can observe 

from the figure that, while under T2AS, it takes at most 

one slotframe for more than 85% of packets belonging to 

3-hop flows to reach the sink, only 10% for the same 

flows under HS algorithm are delivered to the sink within 

one slotframe. The main reason is that HS does not reserve 

as many cells as needed based on the traffic generated by 

the network. 

 

(a) 

(b) 

Fig. 7. Simulation results for a 16-node random 

topology. (a) end-to-end delay, (b) CDF of e2e delay. 

 

The instantaneous queue size of the relaying node 

12(Fig. 5), with a subtree of size seven, is reported for 

both algorithms in Fig. 8. At time 50 seconds, all nodes in 

the subtree are already joined to the network via node 12. 

The maximum queue size was set to 10 for all simulation 

scenarios. After a while, the queue size under HS blows 

up because enough cells have not been reserved for node 

12 to forward the data packets. 

 

 
Fig. 8. Instantaneous queue size for an internal node 

with a 7-node subtree (a 16-node random topology) 

 

To compare the scalability of our mechanisms, we run 

simulations for various network sizes. The results shown 

in Fig. 9 confirm the acceptable scalability of T2AS over 

FA-TSCH and HS in terms of both packet delivery ratio 

(PDR) and end-to-end delay. For 16-node random 

networks in Fig. 9 (a), T2AS outperforms HS by a factor 

of 3.5 and FA-TSCH by a factor of 3 in terms of average 

end-to-end delay. As the number of nodes increases, FA-

TSCH performs better with regard to packet delivery and 

suffers less from the long delay compared to HS. The 

difference in latency between the T2AS and FA-TSCH is 

due to the behaviour of the FA-TSCH algorithm; Unlike 

T2AS, the links of a given flow are not necessarily 

scheduled one after another when using FA-TSCH. This 

likely causes a bigger delay. T2AS mechanism achieves 

very good reliability when the traffic pattern is known a 

priori. Moreover, as shown in Fig. 9 (b), FA-TSCH offers 

higher reliability compared to HS and its PDR degrades 

more smoothly by increasing the network size. 
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(a) 

(b) 

Fig. 9. Simulation results for network with varying 

size. (a) Average e2e delay w.r.t. network size, (b) 

Average packet delivery ratio w.r.t. network size. 

 

Finally, the amount of energy consumed by each node 

is particularly important in wireless sensor networks. We 

define �̅�𝑠𝑙𝑜𝑡𝑓𝑟𝑎𝑚𝑒  in Eq.(4) as the average amount of 

energy consumed by all sensor nodes in the network 

during a single slotframe. 

 

�̅�𝑠𝑙𝑜𝑡𝑓𝑟𝑎𝑚𝑒 = 𝑁𝑡𝑥 (𝑉 ∗ 𝐶𝑡𝑥 ∗
𝐿

𝑅
) + 𝑁𝑟𝑥(𝑉 ∗ 𝐶𝑟𝑥 ∗

𝐿

𝑅
) 

(4) 

 

Where V is the low power voltage, 𝐶𝑡𝑥(𝐶𝑟𝑥) represents 

TX(RX) current consumption, 𝑁𝑡𝑥(𝑁𝑟𝑥) is the number of 

TXs(RXs) during one slotframe, L is the packet length, 

and R denotes the channel bit rate. Since the sink node is 

assumed to have an unlimited resource of energy, its 

energy consumption is not considered when computing 

�̅�𝑠𝑙𝑜𝑡𝑓𝑟𝑎𝑚𝑒  . As shown in Fig. 10, for a heavy traffic 

volume, T2AS consumes more energy compared to HS 

since it permits using more cells to forward traffic during 

the same period. Note that, according to Fig. 9(a), Fig. 9(b) 

and Fig. 10, T2AS outperforms HS in terms of PDR and 

delay at the cost of a slight increase in energy 

consumption. However, because T2AS adapts its 

scheduling matrix to the size of the traffic demand, it 

consumes less energy compared to HS when the incoming 

traffic is light. 

 

 
Fig. 10. Average energy consumption during one 

slotframe for network with varying size 

 

6. Conclusion 

In this paper, we proposed two centralized scheduling 

algorithms for multi-hop IEEE 802.15.4e-TSCH 

networks. The T2AS algorithm that considers both 

topology and traffic, schedules the cells in such a way that 

each data packet could be delivered to the sink within the 

same slotframe it was generated. On the other hand, HS 

schedules the cells only based on their distance to the sink. 

Both algorithms guarantee multi-hop sub-sequential 

scheduling which results in lower end-to-end delay. The 

simulation results, obtained from OpenWSN confirm the 

efficiency of the T2AS mechanism specifically in terms of 

network delay and PDR which are critical for time-

sensitive automation applications, while HS occupies 

fewer cells and consumes much less energy.  

As a future work, we plan to investigate the efficacy 

of our scheduling mechanisms when deployed along with 

a node-disjoint multipath routing. It is also possible to 

study the effect of reusing shared cells to piggyback 

unacknowledged data during the next slotframe. 
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