
Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

T2AS: Topology/Traffic Aware Scheduling to

Optimize the End-to-end Delay in IEEE802.154e-

TSCH Networks

Erfan Mozaffari Ahrar, Mohammad Nassiri*

Computer Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.

e.mozaffari@alumni.basu.ac.ir, m.nassiri@basu.ac.ir
*Corresponding author

Received: 2020-01-07

Accepted: 2020-09-16

Abstract

The Time Synchronized Channel Hopping (TSCH) mode of IEEE 802.15.4e has been widely used as an access method

for the industrial Internet of Things (IoT). It permits to overcome the performance limits of 802.15.4 standard in such

networks. It provides bounded latency and increased network capacity while mitigating the effects of interference and

multipath fading. In this paper, we tackle two critical concerns of industrial networks, namely end-to-end reliability and

delay by proposing two centralized scheduling mechanisms; First, the Height-based Scheduling (HS) that computes the

schedule only based on the network topology. Second, T2AS, which takes into account both traffic demand and network

topology to calculate the schedule. The later mechanism uses a composite weighting function that allows scheduling links

with more load and longer distance from the root in earlier timeslots. This prioritizes the flows with more traffic to be

scheduled earlier. Both algorithms provide subsequential scheduling for multi-hop scenarios. Simulation results, obtained

from the OpenWSN emulator, particularly confirm the efficiency of T2AS in terms of reliability and end-to-end latency.

More precisely, it guarantees a reliability of more than 99% for all network sizes. Furthermore, T2AS provides a noticeable

bounded delay by delivering data packets within a single slotframe.

Keywords

Link scheduling, 802.15.4e-TSCH, slotframe, timeslot, cell, OpenWSN.

1. Introduction

Wireless sensor networks (WSNs) play a key role in

enabling the Internet of Things. They are increasingly

used for a wide variety of applications ranging from

environmental monitoring to industrial automation

considering specific requirements namely data

transmission latency, reliability, and energy efficiency.

A widely-used technology to fulfil these demands is

IEEE 802.15.4 standard [1], which specifies physical and

MAC functionality for low power, low data rate wireless

networks. Although this standard is well adapted to the

one-hop communications, it is not suitable for multi-hop

scenario mainly because of high energy consumption and

increasing interference. According to the standard, all

nodes use a single common channel, which increases the

unreliability due to interference and fading. Moreover,

intermediate nodes suffer from high energy consumption

as they stay active more often to relay data packets. The

performance of 802.15.4 networks for different

applications has already been studied under various

conditions in the literature [2, 3].

To better adapt the 802.15.4 standard to multi-channel

multi-hop scenario of the industrial IoT, the Internet

Engineering Task Force (IETF) proposed IEEE 802.15.4e

[4] amendment that specifies several MAC mechanisms

to provide reliability, predictable delay, energy

conservation, and higher throughput for multi-hop WSNs.

It replaces the MAC protocol without changing the

underlying physical layer. The TSCH mechanism of IEEE

802.15.4e aims at reducing the impact of the wireless

channel unpredictability for low power and lossy

networks. Its slotframe structure allows transmitting data

packets more reliably with low latency. It also enables

saving energy as each node shares a schedule, allowing it

to know in advance when to turn its radio on or off.

The standard only provides a framework but it does

not mandate any specific scheduling mechanism [5]. In

this paper, we propose two centralized mechanisms to

compute the common schedule for 802.15.4e-TSCH

networks with bounded delay and high reliability.

Our contribution in this paper is threefold:

 We propose Height-based Scheduling, a

centralized mechanism that relies on topological

characteristics of the network. It allocates the

cells required for each node according to its

height in the DoDAG (Destination-Oriented

Directed Acyclic Graph) topology.

 More importantly, we propose T2AS, a more

efficient mechanism that uses a composite

weighting function to help build sub-sequential

scheduling for multi-hop scenarios. According to

T2AS, more cells are reserved for a node with a

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

130

larger subtree, i.e. subtree of which it is the root.

In addition, it tries to schedule links with more

load and longer distance from the root in early

timeslots. An interesting characteristic of T2AS

is that all data packets could reach the sink within

one slotframe.

 We also conduct extensive simulations to

evaluate the performance of both mechanisms

under quasi-realistic conditions where an

instance of the mote firmware is created for each

emulated node.

The rest of this paper is organized as follows:

Section 2 overviews the IEEE 802.15.4-TSCH standard

and OpenWSN protocol stack. Related work is briefly

discussed in section 3. Our scheduling mechanisms for

TSCH networks are presented in section 4. Section 5

discusses the simulation scenarios and reports the results

obtained from the performance evaluation. Finally, the

paper is concluded in section 6.

2. Background knowledge

2.1. TSCH mechanism

TSCH proposes a FTDMA-like access method to use

diversity in time and frequency to provide reliability to the

network. More precisely, time-slotted access permits to

achieve bounded latency, multi-channel communications

increase network capacity, and finally slow channel

hopping mitigates the effects of interference and

multipath fading.

In TSCH, time is sliced up into timeslots. Each

timeslot is large enough to allow a node to transmit a

maximum-length data packet and eventually to receive its

corresponding ACK. Absolute Sequence Number (ASN)

counts the number of timeslots since the DAGroot has

started. Timeslots are grouped into slotframes. A

slotframe continuously repeats over time. There are 16

non-overlapping channels available for hopping in TSCH,

each with 5MHz of bandwidth. The frequency to use is

calculated based on the ASN and the channel offset at the

beginning of each timeslot. At the beginning of each

slotframe, all nodes are synchronized. The PAN

coordinator advertises enhanced beacon (EB) to schedule

slotframes. A cell (link) is defined as the pairwise of

assignment of a directed communication between devices

in a specific timeslot on a given channel offset. Each link

can be shared or dedicated. In a shared link, TSCH uses a

CSMA/CA mechanism to avoid collision. However, it

uses a contention-free access for a dedicated link [4]. Fig.

1 illustrates a sample schedule for a slotframe with three

timeslots and four non-overlapping channels in an 8-node

network topology. As shown in Fig. 2, within a time slot,

a node transmits a data packet and receives its

corresponding acknowledgement. If the

acknowledgement packet is not received in the same

timeslot, then it will be retransmitted in another timeslot

according to the TSCH schedule.

Fig. 1. A sample schedule in a slotframe with 4

channels and 3 timeslots

Fig. 2. Structure of a timeslot in TSCH

2.2. OpenWSN Protocol Stack

OpenWSN [6] and D-MSR [7] are two examples of

protocol stacks that implement the 802.15.4e standard. D-

MSR is implemented in the NS-2 environment. However,

OpenWSN provides a full protocol stack for low-power

Internet-connected wireless mesh networks. It

implements, on top of IEEE802.15.4e, IoT standards such

as 6LoWPAN, RPL, and CoAP enabling an OpenWSN

network to connect to the IPv6 Internet. The resulting

hardware-independent protocol stack (cf. Fig. 3) is

becoming a foundation for the IoT industry.

Fig. 3. OpenWSN protocol stack

Applications for specific purposes are located at the

User Applications layer and operate on top of several

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

131

transport layer protocols. Constrained Application

Protocol (CoAP) [8] at the transport layer enables

RESTful interaction with individual motes without the

overhead of TCP and HTTP. Unlike HTTP, CoAP is

specifically designed for LLN networks. It consists of a 4-

byte header on top of UDP. A CoAP-enabled mote can act

as both a web client and a web server.

IPv6 layer has three main tasks to accomplish: packet

forwarding, routing using RPL protocol [9] and managing

control packets through ICMPv6. RPL is able to quickly

setup network routes, to distribute routing information

among nodes, and to adapt the topology in an efficient

way. The nodes are connected via a multi-hop network to

a root device, which is responsible for data collection and

coordination tasks.

At the IPHC sub-layer, IPv6 over Low power WPAN

(6LoWPAN) is used for compressing the IPv6 header to

minimize packet size. The maximum frame size in the

802.15.4 standard is 127 bytes while the IPV6 header size

is 40 bytes. Therefore, without header compression, the

40-byte header of IPv6 packets would occupy almost a

third of each frame.

MAC layer is divided into two sublayers: The

MAChigh sub-layer is used to specify the slotframe

structure and to accomplish link scheduling. A slotframe

consists of a number of timeslots and repeats over time.

The other sublayer is mainly responsible for the channel

hopping mechanism. Physical (Radio) layer is specified

for supported platforms in OpenWSN. This layer differs

across a variety of platforms. Finally, the cross-layer part

is used to interconnect different layers of the protocol

stack.

3. Related Work

The reliable data transfer requires precise scheduling

to keep the number of transmissions as low as possible

and to guarantee a certain level of reliability. Since a

TSCH network relies on a strict organization of the

transmissions, several scheduling algorithms have been

proposed in the literature.

The centralized approaches rely on a Path

Computation Element, which needs often to know the

traffic generated by each node, and the topology used to

route the packets. TASA [5] represents a pioneering piece

of work, defining the different constraints to schedule

accurately the transmissions. It tries to multiplex the

transmissions to create a compact schedule. AMUS [10]

aims to provide low delay guarantees for time-sensitive

applications, by scheduling sequentially the transmissions

along the route. Besides, redundant cells are assigned to

vulnerable links with a heavy load to deal with

retransmissions. MODESA [11] deals with a sink

equipped with several radio interfaces and tries to

multiplex the transmissions through the different

interfaces of the sink to maximize the throughput.

SchedEx [12] fortifies the schedule, by allocating

additional slots to lower-bound the end-to-end reliability.

The number of extra timeslots is calculated in function of

the packet reception rate of every link. Huynh et al. [13]

proposed a centralized scheduling method that

concentrates on reliability and energy efficiency by

deciding on the best next hop to forward the packet. LOST

adopts localized scheduling: it only needs single hop

information to determine the schedule with the constraint

of prohibiting bad radio channels usage [14]. [15]

proposes a centralized and compact scheduling algorithm

tailored to a multipath routing mechanism, which enables

multiple transmitters to use a shared cell for delivering

data packets to a common receiver. The flows are

prioritized regarding their distance to the sink. The

authors in [16] aim to provide an acceptable trade-off

between end-to-end delay and network lifetime by over-

provisioning extra cells for retransmission packets.

OST[17], schedules the slotframe on-demand in two steps:

first, it periodically meets the bandwidth requirements of

the current traffic load. Second, it observes burst traffic

and allocates additional slots accordingly to route the

traffic.

Distributed approaches were also proposed, where

each node decides reactively how many cells to reserve.

DiSCA et al. [18] is a distributed algorithm that tries to

minimize the number of timeslots required to deliver all

the packets to the sink. The algorithm proceeds iteratively

(in rounds), allocating at the round i the ith transmission of

each node. Domingo-Prieto et al. [19] considers the

TSCH scheduling as a closed-loop control problem and

proposed a PID-based distributed scheduling for 6TiSCH

networks. At each slotframe, the PID controller

determines the number of cells that should be added or

removed per neighbour, according to the state of the

queues and the previous usage of slotframes cells.

Sabzevari et al. investigate funnelling effect [20] in

WSNs with converge-cast traffic. They allocate dedicated

cells to the links closer to the sink as they relay much more

traffic compared to the leaves. Each node estimates the

number of cells according to the information it obtains

from its neighbours. One of the default scheduling

functions designated for 6TiSCH is SFx [21] that is

relatively inspired by OTF [22]. SFx estimates the number

of appropriate cells between neighbour nodes, according

to the currently scheduled cells and cell requirements of

the neighbour nodes. It tracks the number of incoming and

outgoing packets and uses these statistics for new cell

reservations.

In addition to data packets scheduling, enhanced

beacons scheduling is also of importance for 802.15.4e

networks. In [23], Zou et al. investigated the effects of a

number of co-located PAN coordinators on the

performance of TSCH networks. They proposed an

algorithm to schedule enhanced beacons (EB)

transmissions where neighbouring PAN coordinators

exchange their schedules to detect conflicts and reallocate

the timeslots if necessary. De Guglielmo et al. [24]

formulate EB scheduling in TSCH networks as an

optimization problem with the goal to minimize the

average joining time of a node. In [25], the authors divide

the nodes into different groups using an optimization

method. By a Mixed-Integer Linear Programming (MILP)

model, one of the sets is selected intermittently to cover

the whole network while the other sets are in energy

saving mode. This procedure is repeated over time with

different sets.

Our main work is a new centralized scheduling

mechanism, which relies on both traffic demands and

network topology and aims to provide more reliability and

low delay for 802.15.4e-TSCH networks.

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

132

4. Topology/Traffic Aware Scheduling

In this section, we propose two link scheduling

mechanisms for TSCH networks with converge-cast

traffic: The first one, HS, is a topology-based scheduling

that computes the scheduling matrix based on the DoDAG

structure. A DoDAG is a directed acyclic graph rooted at

a single destination, which is the sink in our case.

However, the second method we call T2AS takes into

account both the traffic demand and the network topology.

The number of cells allocated to a specific transmission

link (a pair of nodes) depends on the location of its nodes

(for the two algorithms) in the DoDAG structure as well

as the amount of traffic to be carried over that link (for

T2AS).

A summary of notations we use here is shown in Table

I.

Table I. A summary of notations

Notion Meaning

G(V, L) DoDAG graph with node set V and link

set L

CS(L) conflict set of link set L

nc(u→v) number of cells reserved for

transmission of a packet from u to v

height(u) height of node u in the corresponding

tree topology

wt(v) weighting function for node v at time t

ST(v) subtree rooted at node v

loadt(u) number of data packets available in

node u at time t

distance(u) hop-count from node u to reach the sink

�̅�𝑠𝑙𝑜𝑡𝑓𝑟𝑎𝑚𝑒 average energy consumed by all nodes

in a slotframe

Ntx(Nrx) number of TXs(RXs) during one

slotframe

Ctx(Crx) TX(RX) current consumption

V low power voltage

L packet length

R bit rate

Let G(V, L) be a DoDAG with node set V and link set

L. Now, assume a set of links 𝐿′ ⊆ 𝐿. Let 𝑆′ represents

the set of nodes that correspond to the endpoints of 𝐿′. We

define the conflict set of 𝐿′ in Eq. (1) as the set of links in

𝐿\𝐿′ for which one endpoint is in𝑆′. Mathematically, this

would be denoted as:

𝑪𝑺(𝑳′) = {(𝒂, 𝒃)|(𝒂 ∊ 𝑺⊕ 𝒃 ∊ 𝑺)} (1)

Where ⊕ is the XOR operation. Two links are said to be

in conflict if their corresponding nodes cannot

transmit/receive at the same time over the same channel.

For both mechanisms, we assume that each node has only

one radio interface. We also assume using dedicated slots

for transmission.

4.1. Height-based Scheduling (HS)

In our first centralized mechanism, the number of cells

reserved for each link 𝑢 → 𝑣 depends on the location of

its nodes in the network topology and does not depend on

the traffic volume. More precisely, the number of cells

allocated to 𝑢 → 𝑣 is computed as:

𝑛𝑐(𝑢 → 𝑣) = {
ℎ𝑒𝑖𝑔ℎ𝑡(𝑢) + 1,

1,

if u is an inner node
if u is a leaf node (2)

where ℎ𝑒𝑖𝑔ℎ𝑡(𝑢) represents the height of u in the

corresponding tree topology and 𝑛𝑐(𝑢 → 𝑣) refers to the

number of cells reserved for the node u(v) as

transmitter(receiver). In a tree, the height of a node is the

number of edges on the path from the node to the deepest

leaf. The height of a leaf node is 0.

Algorithm 1 illustrates the principal steps of this

mechanism. For HS algorithm, we define links as a vector

of the following struct for each link in the network:

<from, to, height, src_type, nCells>.

The attribute height represents the height of the

node from. src_type determines if from is a leaf or

an inner node. nCells denotes the number of cells to be

scheduled for the current link and is computed according

to Eq.(2).

At the beginning, the links vector is initialized by

using the DoDAG structure of the network (line 12). It is

then sorted in descending order by distance (line 14).

According to the sorting procedure, an outer link is placed

before an inner one when both are at the same distance

from the sink. csLinks maintains the links to be scheduled

in the current timeslot. A new cell is scheduled for the

current link links[i] if:

1. its corresponding nCells is greater than zero

(lines 16-17) and

2. it is not in conflict with any other link already

scheduled in the current timeslot.

Then, a maximum number of non-conflicting links are

scheduled within the same timeslot but on different

channels (lines 19-24). The next cells for the current link

i are scheduled in the next subsequent timeslots (cf. while

loop). This process is repeated using the outer for loop

until all links are scheduled.

The HS mechanism permits sub-sequential multi-hop

scheduling. For instance, in a multi-hop sequence like

𝐴 → 𝐵 → 𝐶 , the link 𝐴 → 𝐵 is scheduled in an earlier

timeslot compared to 𝐵 → 𝐶. Consequently, a multi-hop

sequence is scheduled in one slotframe, which is resulted

in a lower end-to-end delay. However, HS does not

consider the traffic demand. Therefore, an increase in the

traffic may result in a noticeable degradation in delay and

packet loss ratio.

The time complexity of the HS algorithm is derived as

follows: The complexity of the outer for loop (lines 15-

29) is O(n), where n denotes the number of nodes since it

schedules all the links. The while loop runs C times

where C is the average number of cells allocated for each

link (usually a small value). The complexity of the inner

for loop is of O(n). Thus, the overall time complexity is

O(Cn2).

Algorithm 1. HS Scheduling

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

133

1: procedure SCHEDULELINK(I, ts, ch) // Schedule links
2: (a, b) ← (links[i].from, links[i].to)
3: schedule((a,b)) in slotframeMatrix(ts, ch)
4: links[i].nCells ← links[i].nCells - 1;
5: csLinks ← csLinks ∪ {(a, b)}
6: end procedure

7: Input: G(V, E) // DoDAG topology
8: Output: slotframeMatrix // scheduling matrix
9: Global Variables: links, csLinks
10: Initialization:

11: ts ← 1; ch ← 1 // Initializing timeslot and channel offset
12: set links attributes using DoDAG topology.
13: slotframeMatrix ← Ø; csLinks ← Ø
14: sort(links) // sort links in descending order
15: for i = 1 to #links do
16: while links[i].nCells > 0 do
17: SCHEDULELINK(i, ts, ch)
18: ch ← ch + 1
19: for j = 1 to #links; j ≠ i do
20: if links[j].nCells > 0 && (links[j].from, links[j].to) ∉

CS(csLinks) then
21: SCHEDULELINK(i, ts, ch)
22: ch ← ch + 1
23: end if
24: end for
25: csLinks ← Ø
26: ch ← 1
27: ts ← SFLength % (ts + 1)
28: end while
29: end for

30: return slotFrameMatrix

4.2. Topology and Traffic Aware Scheduling(T2AS)

Our second scheduling mechanism for TSCH

networks uses both topology and traffic demand to

propose a more flexible schedule matrix. By taking into

account both traffic and topology as shown in Eq.(3),

T2AS provides high reliability as well as bounded latency.

We define a weighting function 𝑤: 𝑉 → 𝑁0 , where V

denotes the set of nodes in the network and 𝑁0 is the set

of non-negative integers. The weight value for a given

node v may vary over subsequent timeslots. It is defined

as follows:

𝑤𝑡(𝑣) = ∑ 𝑙𝑜𝑎𝑑𝑡(𝑢) ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢)

𝑢∊ST(v)

 (3)

Where ST(v) is the subtree rooted at node v, 𝑙𝑜𝑎𝑑𝑡(𝑢) is

the number of data packets available in u at time t targeted

to the root, and distance(u) is the number of hops from u

to reach the root. We need to schedule links with more

load and longer distance to the root in early timeslots. In

other words, we prioritize links with greater weights

according to Eq.(3). By applying this weighting function,

we consider leaf nodes not to be scheduled at the end of

the slotframe. This function provides a balance in

scheduling for congested nodes and for nodes with a

longer distance from the sink as well.

Algorithm 2 illustrates the principal steps of our

proposed mechanism. Here, each entry of vector links

comprises the following attributes:
<from, to, distance(dist), load, weight(wg)>

The load and weight of a link point to the load and the

weight of its from node. In the pseudo-code, load(a) and

weight(a) are used to represent links[i].load and

links[i].weight respectively, where i denotes the entry that

contains link (a,b).

The main procedure of our mechanism is as follows:

Starting from the first timeslot (ts = 1), the objective is to

schedule the maximum possible number of links in each

timeslot while scheduling nodes with higher weight in the

earlier timeslots. As in HS, csLinks maintains the links to

be scheduled in the current timeslot. At the beginning of

each timeslot, the csLinks initialized to empty. As shown

in line 13, all links in links are verified in decreasing order

of weight. The nextMaxWeight() function returns

the link with the next maximum weight. Then, the

candidate link 𝑎 → 𝑏 is scheduled in the current timeslot

if two following conditions hold:

1. load(a) > 0 ;

2. 𝑎 → 𝑏 is not in conflict with any other links

already scheduled in the current timeslot

After verifying all links, the vector links is updated

(lines 17-24). For each link in csLinks, the load and weight

parameters of the corresponding link in links must be

updated. For each scheduled link (a,b), load(a) and load(b)

are decremented and incremented by 1 respectively (lines

27-30). Based on the updated load values, weights are

recomputed using the procedure updateWeights according

to Eq.(3) (lines 1-5). The same procedure is repeated for

the next timeslot. We assume that 𝑇𝑚𝑎𝑥 is the minimum

value to schedule vector links in an entire slotframe.

Fig. 4 illustrates a sample run of our mechanism for a

4-node tree topology. The traffic pattern is converge-cast

and it is assumed that every node has one data packet to

send during each slotframe. The evolution of load and

weight parameters for the links vector are depicted in Fig.

4 and the scheduled link is also highlighted for each

timeslot. For this scenario, the minimum possible value

for 𝑇𝑚𝑎𝑥 is 3. Two cells are assigned to 𝑐 → 𝑎, one for

transmitting its own packet and the other one for

forwarding the packet sent by d.

The time complexity of this algorithm is O(Sn2) where

S is the length of the slotframe.

Fig. 4. A sample run for T2AS scheduling mechanism

Algorithm 2. T2AS Scheduling

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

134

1: procedure UPDATEWEIGHTS()
2: for a ∊ Vnodes do
3: 𝑤𝑒𝑖𝑔ℎ𝑡(𝑎) ← 𝑙𝑜𝑎𝑑(𝑛) ∗ 𝑑𝑖𝑠𝑡(𝑛)𝑛∈𝑆𝑇(𝑎)

4: end for
5: end procedure

6: Input: load // traffic vector during a slotframe period
7: nodes // vector of nodes

8: links // vector of edges in the DoDAG topology.

9: Output: slotframeMatrix // scheduling matrix
10: Initialization:

11: ts ← 1, ch ← 1 // timeslot and channel offset
12: slotframeMatrix ← Ø
13: sort(links) // sort links in descending order
14: for ts = 1 to 𝑇𝑆𝑚𝑎𝑥 do
15: UPDATEWEIGHTS()
16: csLinks ← Ø
17: while !allLinksVerified do
18: (a, b) ← nextMaxWeight()
19: if load(a) > 0 && ((a, b) ∉ CS(csLinks)) then
20: schedule (a,b) in slotframeMatrix(ts, ch)
21: csLink ← clsLink ∪ {(a, b)}
22: ch ← ch + 1
23: end if
24: end while
25:
26: /* Update load and weight for this link. */
27: for (a, b) ∊ CS(csLinks) do
28: Load(a) ← load(a) - 1
29: Load(b) ← load(b) + 1
30: end for
31: ch ← 1
32: end for

33: return slotFrameMatrix

5. Implementation and Performance Evaluation

Our proposed mechanisms were implemented in the

OpenWSN simulator. The experimental results obtained

from this platform have been already confirmed to be

close to the reality according to [26].

In order to get more accurate results, the OpenWSN

simulator creates an instance of the mote firmware for

each emulated node. This means every detail of a mote is

simulated, which makes it running slowly. Therefore, a

large number of motes would run with a very low speed

and cause a long time to synchronize. Consequently, we

decided to run the experiments for various network sizes

ranging from 4 to 16 nodes with a random tree topology.

For each network size, we also generated five different

random topologies to have representative results. For

example, Fig. 5 represents a sample random topology with

16 nodes, which has been used in our simulation. We

assume no node failure in the network, thus we can totally

focus on latency and reliability. We, first provide a

microscopic evaluation of our two proposed mechanisms

by reporting performance results in detail and per-flow for

both. Then, we compare their performance with those of

Funnelling-aware TSCH (FA-TSCH), a prior work

already implemented in OpenWSN by our research group

[20].

Fig. 5. 16-node topology

The size of the slotframe is set at 23 timeslots to adapt

it to the size of the network. The Chipcon CC2420 radio

transceiver is used. Each point represents the average of

10 simulation runs and the results are displayed with a 95%

confidence intervals. Moreover, each node generates one

data packet at the beginning of each slotframe. To keep

the nodes fully synchronized and to avoid collisions in

control messages, three shared cells are specified at the

beginning of each slotframe as the minimal schedule. As

a central entity, DAGroot is fully aware of the topology,

the routing tree and the traffic demands, thus it builds the

schedule and disseminates it through the minimal

schedule. Simulation parameters are summarized in Table

II.

Table II. Simulation Parameters

Parameter Value

Physical 802.15.4 2400MHz

OQPSK

Radio CC2420

current consumption

[Ctx = 17.4 mA

 and Crx = 18.8 mA]

supply voltage [1.8 volts]

Access mode 802.15.4e-TSCH

Timeslot duration 15 ms

Slotframe size 23 slots

of channels 16

of shared cells 3

Routing protocol RPL

CBR 1 pkt / slotframe

Packet size 100 bytes

Network configuration random topology

Network size 4 to 16 sensor nodes

The first simulation scenario uses a 12-node random

topology (Fig. 6). There are 11 active converge-cast flows

destined to the sink. Among these flows, two are of 3-hop,

six are of 2-hop, and three are of one-hop length. Fig. 6 (a)

shows the average end-to-end delay for each traffic flow

in this random topology. As shown in the figure, T2AS

delivers generated data packets within one slotframe even

for longer flows. However, the longer flows incur longer

delays under HS and it sometimes takes more than three

slotframes for their packets to reach the sink. The

cumulative density function (CDF) of end-to-end delay

for flows with different length (cf. Fig. 6 (b)) again

confirms the good performance of T2AS compared to HS.

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

135

(a)

(b)

Fig. 6. Simulation results for a 12-node random

topology. (a) end-to-end delay, (b) CDF of e2e delay.

The results for the same scenario are also reported for

a 16-node random network in Fig. 7. Here, five flows are

of 3-hop, seven are of 2-hop, and three are of 1-hop length.

As shown in Fig. 7 (a), e.g. for flow 11, T2AS outperforms

HS by a factor of almost 6 in terms of delay. Moreover,

HS results in high jitter specifically for longer flows. Fig.

7 (b) shows the CDF of end-to-end delay for flows with

different length in the 16-node network. We can observe

from the figure that, while under T2AS, it takes at most

one slotframe for more than 85% of packets belonging to

3-hop flows to reach the sink, only 10% for the same

flows under HS algorithm are delivered to the sink within

one slotframe. The main reason is that HS does not reserve

as many cells as needed based on the traffic generated by

the network.

(a)

(b)

Fig. 7. Simulation results for a 16-node random

topology. (a) end-to-end delay, (b) CDF of e2e delay.

The instantaneous queue size of the relaying node

12(Fig. 5), with a subtree of size seven, is reported for

both algorithms in Fig. 8. At time 50 seconds, all nodes in

the subtree are already joined to the network via node 12.

The maximum queue size was set to 10 for all simulation

scenarios. After a while, the queue size under HS blows

up because enough cells have not been reserved for node

12 to forward the data packets.

Fig. 8. Instantaneous queue size for an internal node

with a 7-node subtree (a 16-node random topology)

To compare the scalability of our mechanisms, we run

simulations for various network sizes. The results shown

in Fig. 9 confirm the acceptable scalability of T2AS over

FA-TSCH and HS in terms of both packet delivery ratio

(PDR) and end-to-end delay. For 16-node random

networks in Fig. 9 (a), T2AS outperforms HS by a factor

of 3.5 and FA-TSCH by a factor of 3 in terms of average

end-to-end delay. As the number of nodes increases, FA-

TSCH performs better with regard to packet delivery and

suffers less from the long delay compared to HS. The

difference in latency between the T2AS and FA-TSCH is

due to the behaviour of the FA-TSCH algorithm; Unlike

T2AS, the links of a given flow are not necessarily

scheduled one after another when using FA-TSCH. This

likely causes a bigger delay. T2AS mechanism achieves

very good reliability when the traffic pattern is known a

priori. Moreover, as shown in Fig. 9 (b), FA-TSCH offers

higher reliability compared to HS and its PDR degrades

more smoothly by increasing the network size.

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

136

(a)

(b)

Fig. 9. Simulation results for network with varying

size. (a) Average e2e delay w.r.t. network size, (b)

Average packet delivery ratio w.r.t. network size.

Finally, the amount of energy consumed by each node

is particularly important in wireless sensor networks. We

define �̅�𝑠𝑙𝑜𝑡𝑓𝑟𝑎𝑚𝑒 in Eq.(4) as the average amount of

energy consumed by all sensor nodes in the network

during a single slotframe.

�̅�𝑠𝑙𝑜𝑡𝑓𝑟𝑎𝑚𝑒 = 𝑁𝑡𝑥 (𝑉 ∗ 𝐶𝑡𝑥 ∗
𝐿

𝑅
) + 𝑁𝑟𝑥(𝑉 ∗ 𝐶𝑟𝑥 ∗

𝐿

𝑅
)

(4)

Where V is the low power voltage, 𝐶𝑡𝑥(𝐶𝑟𝑥) represents

TX(RX) current consumption, 𝑁𝑡𝑥(𝑁𝑟𝑥) is the number of

TXs(RXs) during one slotframe, L is the packet length,

and R denotes the channel bit rate. Since the sink node is

assumed to have an unlimited resource of energy, its

energy consumption is not considered when computing

�̅�𝑠𝑙𝑜𝑡𝑓𝑟𝑎𝑚𝑒 . As shown in Fig. 10, for a heavy traffic

volume, T2AS consumes more energy compared to HS

since it permits using more cells to forward traffic during

the same period. Note that, according to Fig. 9(a), Fig. 9(b)

and Fig. 10, T2AS outperforms HS in terms of PDR and

delay at the cost of a slight increase in energy

consumption. However, because T2AS adapts its

scheduling matrix to the size of the traffic demand, it

consumes less energy compared to HS when the incoming

traffic is light.

Fig. 10. Average energy consumption during one

slotframe for network with varying size

6. Conclusion

In this paper, we proposed two centralized scheduling

algorithms for multi-hop IEEE 802.15.4e-TSCH

networks. The T2AS algorithm that considers both

topology and traffic, schedules the cells in such a way that

each data packet could be delivered to the sink within the

same slotframe it was generated. On the other hand, HS

schedules the cells only based on their distance to the sink.

Both algorithms guarantee multi-hop sub-sequential

scheduling which results in lower end-to-end delay. The

simulation results, obtained from OpenWSN confirm the

efficiency of the T2AS mechanism specifically in terms of

network delay and PDR which are critical for time-

sensitive automation applications, while HS occupies

fewer cells and consumes much less energy.

As a future work, we plan to investigate the efficacy

of our scheduling mechanisms when deployed along with

a node-disjoint multipath routing. It is also possible to

study the effect of reusing shared cells to piggyback

unacknowledged data during the next slotframe.

7. References

 [1] IEEE, “IEEE standard for local and metropolitan area

networks–part 15.4:Low-rate wireless personal area

networks (lr-wpans)”, IEEE Std802.15.4-2011 (Revision

of IEEE Std 802.15.4-2006), Sept 2011, pp. 1–314.

[2] F.C. Jiang, H.W. Wu, C. T. Yang, “Trafficload

analysis and its application to enhancing longevity on

ieee802.15. 4/zigbee sensor network”, The Journal of

Supercomputing, vol. 62, no. 2, pp. 895–915, 2012.

[3] M. Nassiri, M. Boujari, S. V. Azhari. “Energy-aware

and load-balanced parent selection in rplrouting for

wireless sensor networks”, International Journal of

Wireless and Mobile Computing, vol. 9, no. 3, pp. 231–

239, 2015.

[4] IEEE, “IEEE Std 802.15.4e, Part. 15.4: Low-Rate

Wireless Personal AreaNetworks (LR-WPANs)

Amendament 1: MAC sublayer”, IEEE Computer

Society, 2012.

[5] M. R. Palattella, N. Accettura, M. Dohler, L.A. Grieco,

G. Boggia, “Traffic aware scheduling algorithm for

reliable low-power multi-hop ieee 802.15. 4e networks”,

In 23rd IEEE International Symposium on Personal

Indoor and Mobile Radio Communications (PIMRC),

September 2012, Sydney, Australia, pp. 327–332.

[6] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K.

Weekly, Q. Wang, S. Glaser, K. Pister, “Openwsn: a

standards-based low-power wireless development en-

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

137

vironment”. Transactions on Emerging

Telecommunications Tech-nologies, vol. 23, no. 5, pp.

480–493, 2012.

[7] P. Zand, A. Dilo, P. Havinga, “D-MSR: A

distributednetwork management scheme for real-time

monitoring and pro-cess control applications in wireless

industrial automation”, Sensors, vol. 13, no. 7, pp. 8239–

8284, 2013.

[8] Z. Shelby, K. Hartke, C. Bormann, “The con-

strained application protocol (CoAP)”, RFC 7252, June

2014.

[9] T. Winter, “Rpl: Ipv6 routing protocol for low-power

and lossynetworks”, RFC 6550, March 2012.

[10] Y. Jin, P. Kulkarni, J. Wilcox, M. Sooriya-bandara,

“A centralized scheduling algorithm for ieee 802.15.4e

tsch based industrial low power wireless networks”. In

IEEE Wireless Communications and Networking

Conference (WCNC), April 2016, Doha, Qatar, pp. 1–6.

[11] R. Soua, P. Minet, E. Livolant, “MODESA:

Anoptimized multichannel slot assignment for raw data

convergecastin wireless sensor networks”, In Proceedings

of IEEE 31st International Performance Computing and

Communications Conference(IPCCC), December 2012,

Austin, TX, USA, pp. 91–100.

[12] F. Dobslaw, T. Zhang, M. Gidlund, “End-to-

EndReliability-aware Scheduling for Wireless Sensor

Networks”, IEEE Transactions on Industrial Informatics,

vol. 12, no. 2, pp. 758–767, 2016.

[13] T. Huynh, F. Theoleyre, W.J. Hwang, “On the

interest of opportunistic anycast scheduling for wireless

lowpower lossy networks”, Computer Communications,

vol. 104, pp. 55–66, 2017.

[14] D. Zorbas, V. Kotsiou, F. Théoleyre, G.

ZPapadopoulos, C. Douligeris, “Lost: Localized

blacklist-ing aware scheduling algorithm for ieee 802.15.

4-tsch networks”, In Wireless Days (WD), April 2018,

Dubai, United Arab Emirates, pp. 110–115.

[15] E. M. Ahrar, M. Nassiri, F. Theoleyre, “Multipath

aware scheduling for high reliability and fault tolerance in

low power industrial networks”, Journal of Network and

Computer Applications, vol. 142, pp. 25–36, 2019.

[16] K. Brun-Laguna, P. Minet, Y. Tanaka, “Optimized

scheduling for time-critical industrial IoT”, In IEEE

Global Communications Conference, December 2019,

Hawaii, USA, pp. 1-6.

[17] S. Jeong, H.S. Kim, J. Paek, S.W. Bahk, “OST:

On-demand tsch scheduling with traffic-awareness”, In

IEEE Conference on Computer Communications

(INFOCOM), July 2020, Virtual Conference.

[18] R. Soua, P. Minet, E. Livolant, “DiSCA: A

distributed scheduling for convergecast in multichannel

wireless sensor networks”, In Proceedings of

International Symposium on Integrated Network

Management, May 2015, Ottawa, ON, Canada, pp. 156–

164.

[19] M. Domingo-Prieto, T. Chang, X. Vilajosana, T.

Watteyne, “Distributed pid-based scheduling for

6tischnetworks”. IEEE Communications Letters, vol. 20,

no. 5, pp. 1006–1009, 2016.

[20] M. Sabzevari, M. Nassiri, “A distributed mechanism

for cell scheduling to reduce funneling effect in

802.15.4e-based wireless networks”, Tabriz Journal of

Electrical Engineering, vol. 46, no. 3, pp. 221–232, 2016

(in persian).

[21] D. Dujovne, L. Grieco, M. Palattella, N. Accettura,

“6tisch ex-perimental scheduling function (sfx)”, Draft,

IETF, March 2018.

[22] M. R. Palattella, T. Watteyne, Q. Wang, K. Mu-raoka,

N. Accettura, D. Dujovne, L. A. Grieco, T. Engel, “On-

the-Fly Bandwidth Reservation for 6TiSCH Wireless

Industrial Networks”, IEEE Sensors Journal, vol. 16, pp.

550–560, 2016.

[23] M. Zou, J.L. Lu, F. Yang, M. Malaspina, F.

Theoleyre, M.Y. Wu, “Distributed scheduling of

enhanced beacons for ieee802.15.4-tsch body area

networks”. In International Conference on Ad-Hoc

Networks and Wireless (ADHOC NOW), July 2016, Lile,

France, pp. 3–16.

[24] D. De Guglielmo, S. Brienza, G. Anas-Tasi. “A

model-based beacon scheduling algorithm for ieee

802.15.4e tsch networks”, In 17th IEEE International

Symposium on World of Wireless, Mobile and

Multimedia Networks (WoWMoM), June 2016, Coimbra,

Portuga, pp. 1–9.

[25] H. Bakhshi, S. H. Keshmirifar, “Lifetime

improvement and cover-age maximization of cluster-

based wireless sensor network usingmulti hop routing”,

Tabriz Journal of Electrical Engineering, vol. 47, no. 4,

pp. 1637–1647, 2018(in persian).

 [26] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne,T.

Chang, K. Pister, “A realistic energy consumption model

for tsch networks”, IEEE Sensors Journal, vol. 14, no. 2,

pp. 482–489, 2014.

