تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,465 |
تعداد دریافت فایل اصل مقاله | 15,213,614 |
بیشینهسازی چندهدفی ظرفیت مؤثر رلههای نیمه دوطرفه و تمام دوطرفه دومسیره در ارسال بستههای کوچک | ||
پردازش سیگنال پیشرفته | ||
مقاله 9، دوره 4، شماره 1 - شماره پیاپی 5، مرداد 1399، صفحه 95-110 اصل مقاله (1.85 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jasp.2020.13295 | ||
نویسندگان | ||
محمد لاری* 1؛ زهرا کشاورز2 | ||
1دانشکده مهندسی برق و کامپیوتر – دانشگاه سمنان | ||
2دانشکده مهندسی برق و کامپیوتر دانشگاه سمنان | ||
چکیده | ||
جهت برآورد الزامات تأخیر در سیستمهای مخابراتی، در این مقاله یک شبکه مشارکتی تحت سناریوی بستههای کوچک در کانال محو شونده رایلی را ارائه کردهایم. رله موردنظر میتواند بهصورت نیمه دوطرفه دومسیره یا تمام دوطرفه دومسیره باشد. همچنین جهت برآورد واقعیتر و کاهش تأخیر در ارتباطات، ارسال و دریافت با بستههایی با طول کوچک در نظر گرفته شده است. ظرفیت مؤثر معیار مناسب جهت بررسی نرخ ارسال تحت قید تأخیر است. بنابراین در اینجا به عنوان معیار ارزیابی عملکرد در نظر گرفته میشود. هنگام استفاده از رله دومسیره، دو گره با استفاده از رله با یکدیگر تبادل داده میکنند. اولویت و الزامات دو گره لزوماً مشابه یکدیگر نیست. بنابراین جهت افزایش عملکرد، از بهینهسازی چندهدفی استفاده میکنیم. به این ترتیب، توان ثابت موجود در شبکه، با استفاده از بهینهسازی چندهدفی، بین رله و دو گره طوری تقسیم میشود که ظرفیت مؤثر دو گره بیشینه شود. با توجه به شرایط مسئله، مقدار بهینه توان تخصیصیافته به رله و گرهها قابل محاسبه است. اما با توجه به پیچیدگی و زمانبر بودن انجام محاسبات، روش تقریبی جهت افزایش سرعت محاسبات ارائه شده است که عملکرد بسیار نزدیکی با حل بهینه دارد. در انتها نیز مقایسههای متنوع در شرایط مختلف بین عملکرد رله نیمه دوطرفه و تمام دوطرفه انجام شده و بهبود عملکرد تخصیص توان چندهدفی مخصوصاً در حالتی که رله بین گرهها قرار نگرفته، نشان داده شده است. | ||
کلیدواژهها | ||
بستههای کوچک؛ بهینهسازی چندهدفی؛ تخصیص توان؛ تمام دوطرفه؛ رله دومسیره؛ ظرفیت مؤثر | ||
مراجع | ||
[1] L. Zhang and Y.-C. Liang, "Average throughput analysis and optimization in cooperative IoT networks with short packet communication," IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11549-11562, 2018. [2] D. Miller, "Blockchain and the internet of things in the industrial sector," IT professional, vol. 20, no. 3, pp. 15-18, 2018. [3] M. Wollschlaeger, T. Sauter, and J. Jasperneite, "The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0," IEEE industrial electronics magazine, vol. 11, no. 1, pp. 17-27, 2017. [4] Z. Lv, "Virtual reality in the context of Internet of Things," Neural Computing and Applications, vol. 32, no. 13, pp. 9593-9602, 2020. [5] C. G. Coogan and B. He, "Brain-computer interface control in a virtual reality environment and applications for the internet of things," IEEE Access, vol. 6, pp. 10840-10849, 2018. [6] G. J. Sutton et al., "Enabling technologies for ultra-reliable and low latency communications: From PHY and MAC layer perspectives," IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2488-2524, 2019. [7] H. A. B. Salameh, S. Almajali, M. Ayyash, and H. Elgala, "Spectrum assignment in cognitive radio networks for internet-of-things delay-sensitive applications under jamming attacks," IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1904-1913, 2018. [8] P. Yang, Y. Xiao, M. Xiao, and S. Li, "6G wireless communications: Vision and potential techniques," IEEE Network, vol. 33, no. 4, pp. 70-75, 2019. [9] M. Shirvanimoghaddam et al., "Short block-length codes for ultra-reliable low latency communications," IEEE Communications Magazine, vol. 57, no. 2, pp. 130-137, 2018. [10] H. Chen et al., "Ultra-reliable low latency cellular networks: Use cases, challenges and approaches," IEEE Communications Magazine, vol. 56, no. 12, pp. 119-125, 2018. [11] Y. Gu, H. Chen, Y. Li, L. Song, and B. Vucetic, "Short-packet two-way amplify-and-forward relaying," IEEE Signal Processing Letters, vol. 25, no. 2, pp. 263-267, 2017. [12] G. Durisi, T. Koch, and P. Popovski, "Toward massive, ultrareliable, and low-latency wireless communication with short packets," Proceedings of the IEEE, vol. 104, no. 9, pp. 1711-1726, 2016. [13] Y. Polyanskiy, H. V. Poor, and S. Verdú, "Channel coding rate in the finite blocklength regime," IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307-2359, 2010. [14] D. Feng et al., "Toward ultrareliable low-latency communications: Typical scenarios, possible solutions, and open issues," IEEE Vehicular Technology Magazine, vol. 14, no. 2, pp. 94-102, 2019. [15] X. Cheng, B. Yu, X. Cheng, and L. Yang, "Two-way full-duplex amplify-and-forward relaying," in MILCOM 2013-2013 IEEE Military Communications Conference, 2013: IEEE, pp. 1-6. [16] Z. Zhang, Z. Ma, Z. Ding, M. Xiao, and G. K. Karagiannidis, "Full-duplex two-way and one-way relaying: average rate, outage probability, and tradeoffs," IEEE Transactions on Wireless Communications, vol. 15, no. 6, pp. 3920-3933, 2016. [17] H. Ji, S. Park, J. Yeo, Y. Kim, J. Lee, and B. Shim, "Ultra-reliable and low-latency communications in 5G downlink: Physical layer aspects," IEEE Wireless Communications, vol. 25, no. 3, pp. 124-130, 2018. [18] M. Darabi and L. Lampe, "Multi Objective Resource Allocation for Joint eMBB and URLLC Traffic with Different QoS Requirements," in 2019 IEEE Globecom Workshops (GC Wkshps), 2019: IEEE, pp. 1-6. [19] R. Qi, X. Chi, L. Zhao, and W. Yang, "Martingales-Based ALOHA-Type Grant-Free Access Algorithms for Multi-Channel Networks With mMTC/URLLC Terminals Co-Existence," IEEE Access, vol. 8, pp. 37608-37620, 2020. [20] A. A. Esswie and K. I. Pedersen, "Opportunistic spatial preemptive scheduling for URLLC and eMBB coexistence in multi-user 5G networks," Ieee Access, vol. 6, pp. 38451-38463, 2018. [21] M. Haghifam, M. R. Mili, B. Makki, M. Nasiri-Kenari, and T. Svensson, "Joint sum rate and error probability optimization: Finite blocklength analysis," IEEE Wireless Communications Letters, vol. 6, no. 6, pp. 726-729, 2017. [22] E. Bjornson, E. A. Jorswieck, M. Debbah, and B. Ottersten, "Multiobjective signal processing optimization: The way to balance conflicting metrics in 5G systems," IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 14-23, 2014. [23] J.-H. Cho, Y. Wang, R. Chen, K. S. Chan, and A. Swami, "A survey on modeling and optimizing multi-objective systems," IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1867-1901, 2017. [24] محمد لاری، سینا عصائیان، " معیار چند هدفی برای انتخاب آنتن در یک ایستگاه مرکزی Full-Duplex "، فصلنامه مهندسی برق دانشگاه تبریز، دوره 50، شماره 3، پاییز 1399، صفحه 1372-1365. [25] M. Mohassel Feghhi, M. Mirmohseni, and A. Abbasfar, "Power Allocation in the Energy Harvesting Full-Duplex Gaussian Relay Channels," International Journal of Communication Systems, vol. 30, no. 2, pp. 1-29, 2017. [26] Y. Jiang et al., "Toward URLLC: A Full Duplex Relay System with Self-Interference Utilization or Cancellation," IEEE Wireless Communications, vol. 28, no. 1, pp. 74-81, 2021. [27] Y. Gu, H. Chen, Y. Li, and B. Vucetic, "Ultra-reliable short-packet communications: Half-duplex or full-duplex relaying?," IEEE Wireless Communications Letters, vol. 7, no. 3, pp. 348-351, 2017. [28] K. Singh, S. Biswas, M.-L. Ku, and M. F. Flanagan, "Transceiver Design for Ful1-Duplex Ultra-Reliable Low-Latency Communications with Finite Blocklength," in 2020 IEEE Wireless Communications and Networking Conference (WCNC), 2020: IEEE, pp. 1-6. [29] K.-G. Wu, F.-T. Chien, Y.-F. Lin, and M.-K. Chang, "SINR and Delay Analyses in Two-Way Full-Duplex SWIPT-Enabled Relaying Systems," IEEE Transactions on Communications, 2020. [30] C. Guo, L. Liang, and G. Y. Li, "Resource allocation for low-latency vehicular communications: An effective capacity perspective," IEEE Journal on Selected Areas in Communications, vol. 37, no. 4, pp. 905-917, 2019. [31] J. Choi, "An effective capacity-based approach to multi-channel low-latency wireless communications," IEEE Transactions on Communications, vol. 67, no. 3, pp. 2476-2486, 2018. [32] H. Ren et al., "Power-and rate-adaptation improves the effective capacity of C-RAN for Nakagami-$ m $ fading channels," IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10841-10855, 2018. [33] J. Khan and L. Jacob, "Resource Allocation for CoMP Enabled URLLC in 5G C-RAN Architecture," IEEE Systems Journal, 2020. [34] Y. Hu, M. C. Gursoy, and A. Schmeink, "Optimal Power Allocation for Amplify and Forward Relaying with Finite Blocklength Codes and QoS Constraints," in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 2018: IEEE, pp. 1-5. [35] Y. Hu, M. Ozmen, M. C. Gursoy, and A. Schmeink, "Optimal power allocation for QoS-constrained downlink networks with finite blocklength codes," in 2018 IEEE Wireless Communications and Networking Conference (WCNC), 2018: IEEE, pp. 1-6. [36] محمد لاری، زهرا کشاورز گندمانی، الهه مداح، " بیشینهسازی ظرفیت مؤثر در رلههای نیمه دوطرفه دومسیره با بستههای کوچک"، مجله پردازش سیگنال پیشرفته، دوره 3، شماره 2، پاییز و زمستان 1398، صفحه 227-238. [37] Y. Hu, Y. Zhu, M. C. Gursoy, and A. Schmeink, "SWIPT-enabled relaying in IoT networks operating with finite blocklength codes," IEEE Journal on Selected Areas in Communications, vol. 37, no. 1, pp. 74-88, 2018. [38] M. Lari, A. Mohammadi, A. Abdipour, and I. Lee, "Characterization of effective capacity in antenna selection MIMO systems," journal of communications and networks, vol. 15, no. 5, pp. 476-485, 2013. [39] M. Lari, A. Mohammadi, A. Abdipour, and I. Lee, "Characterization of effective capacity in AF relay systems," IEICE Electronics Express, vol. 9, no. 7, pp. 679-684, 2012. [40] D. Qiao, M. C. Gursoy, and S. Velipasalar, "Throughput-Delay Tradeoffs with Finite Blocklength Coding over Multiple Coherence Blocks," IEEE Transactions on Communications, 2019. [41] A. Jeffrey and D. Zwillinger, Table of integrals, series, and products. Elsevier, 2007. | ||
آمار تعداد مشاهده مقاله: 445 تعداد دریافت فایل اصل مقاله: 368 |