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Abstract: In this paper, a new method is provided for Fault-Tolerant Control (FTC) of wind turbine pitch systems. One 

of the common faults in wind turbines is the defects of the pitch sub-system. Each blade of wind turbines tracks a reference 

signal; it is generated by the main controller unit, defects of actuators, or disturbance decrease of the reference signal 

quality. Classic controllers cannot deal with the disturbance and compensate for the faults to maintain system performance 

in normal operating conditions. For this purpose, a novel method based on Optimal Robust Model Reference Adaptive 

Control (ORMRAC) is presented, the output of the proposed method is a new adaptive rule. The ORMRAC method is 

robust, optimal, and fast at the same time. The proposed structure includes Fault Detection (FD) and FTC units. FD acts 

based on the generation and evaluation of residuals. The residual generation is based on Artificial Neural Network (ANN) 

model. When there is disturbance or fault in the pitch system and residual exceeds the certain threshold, the FT unit is 

activated. The proposed FT method is tested and evaluated using a wind turbine simulator based on practical data. The 

results indicated the proper performance of the proposed method in comparison with conventional MRAC and some other 

methods. 
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1. Introduction 

Energy is one of the major challenges of the industry 

in the world. Quality, reliability, and renewability of 

energy are important [1, 2]. Wind turbine (WT) as one of 

the converters of mechanical energy to electrical energy 

is susceptible to various faults [3]. Fault Detection (FD), 

diagnosis, and process modification are essential to 

increase the reliability and availability of wind turbines 

[4]. When there is a fault, there should be a strategy to 

compensate the current condition [5]. The control 

subsystem should be able to compensate the system faults. 

These classes of control systems are known as Fault-

Tolerant Control (FTC) [6]. After fault isolation, the 

system must continue to operate in the presence of a fault 

[7-8]. FTC strategy increases the power generation and 

prevents the down-time of WTs [9]. Disturbances are due 

to increases of wind speed, dynamic and transient 

conditions of WT. On the other hand, in electrical pitch 

system fault occurs in actuators [10]. Fault and 

disturbance lead to inaccuracies in the setting pitch angle 

[11].  

Several methods have been proposed for robust 

control of the pitch subsystem of WT. Based on the linear 

matrix inequality approach [12], a comprehensive way of 

applying the H2 planning theory is proposed for power 

regulation via a pitch controller. As [13-15], predictive 

and robust control is used to pitch control. A robust 

observer along with a control strategy based on sliding 

mode is used for control of the WT in [15]. The L1 output 

feedback controller is used to design the controller and 

reduce the load of the controller in [16]. Ref [17] 

introduced a MIMO controlling strategy based on the H∞ 

norm for WT. Many articles are provided regarding the 

WT pitch controller with the FTC ability. In [18] a 

Reference Model Adaptive Control (MRAC) method 

combined with Neural Network (NN) is presented. An 

observer-based control system is designed for sensor fault 

in [19]. Ref [20] presented a Linear Parameter-Varying 

(LPV) control system for WT at maximum power and 

under the influence of a fault in the pitch system. In [21], 

a fuzzy approach is provided to identify and control WT. 

Another fuzzy method is introduced in [22, 23]. The main 

idea of the [24] is the use of MRAC to adjust the generator 
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torque. This controller presented an appropriate response 

under the disturbance, uncertainty of the model, and 

actuator fault. Ref [25] is FD and FTC of WTs via a 

discrete-time controller with a disturbance compensator. 

An active FTC approach to an offshore WT model is 

presented in [26]. A FTC controller based on the virtual 

sensor is designed to manage the faulty WT pitch system 

before maintenance is conducted; A fault detection 

algorithm based on the Kalman filter is designed [27]. A 

model-based method for FTC of Pitch of an Offshore WT 

[28]. A method is proposed for fault-tolerant individual 

pitch control of WT with actuator faults. The proposed 

scheme consists of a collective pitch control augmented 

with individual pitch control, and a fault detection and 

diagnosis system [29]. An adaptive sliding observer is 

proposed to estimate parametric pitch actuator faults [30]. 

FTC structure in [30] includes a baseline PI control with 

fault estimation and compensation. Another sliding mode 

FTC method is examined based on the 5MW NREL wind 

turbine system [31]. 

In this paper, a new structure is proposed to prevent 

the parameter changes around the reference points. The 

proposed FTC method is based on Optimal Robust Model 

Reference Adaptive Control (ORMRAC). A good FTC 

must be active and should provide an appropriate response 

to faults with changes in the control structure. The method 

presented in this paper performs FT without prior 

knowledge of the fault, uncertainties, and disturbance of 

the model. For this purpose, a simulator based on 2.5 MW 

of MAPNA WT is used. Commercial WT uses a PI 

controller for the pitch system. Upon the occurrence of the 

fault or in case of disturbance, the FTC unit is activated. 

In this paper, a data-based residual generation and 

evaluation method are used for the diagnosis of actuators 

based on the Artificial Neural Network (ANN) model. 

The proposed system shifts from PI control mode to FTC 

mode if the difference between the measured values in 

WT exceeds the value modeled with ANN.  

The contribution of this paper as follows:  

- A new control method of wind turbines based on 

Robust and Optimal development of RMAC is 

presented. 

- A new adaptive law and the new cost function is 

defined.  

- The proposed method is used for the FTC of the 

wind turbine. 

- The proof and analysis stability of the proposed 

method is done based on the Lyapunov theory.  

- The fault of wind turbine pitch-blade detects by 

ANN is based on residual generation. 

- The new FTC method was tested by practical data of 

2.5 MW wind turbine based on simulator setup. 

The paper is organized as follows: In the second part, 

the proposed FTC method is described. The third part of 

the article is the WT simulator and section four describes 

the proposed structure used for the FTC. The simulation 

results of the FTC proposed method are presented in 

section five. The implementation of the proposed 

structure is section 6. Finally, the last part of the article is 

the conclusions. 

 

2. The Fault-Tolerant Control method: Optimal 

Robust Reference Model Adaptive Control 

(ORMRAC) 

The proposed FTC method is based on the MRAC and 

MRAC is one of the most important adaptive control 

methods. Fig. 1 shows a block diagram of classical 

MRAC. In [32, 33], it is shown that this controller will be 

stable in the absence of disturbance. Despite the 

advantages of adaptive control, there are challenges for 

the implementation of this type of controller in systems 

with high reliability and sensitivity [34-36]. Normally, 

there is a balance between stability and tracking 

performance. Fast adaptation improves the tracking 

performance, but due to low robustness, it may negatively 

affect the stability of the control system [35]. 𝜎 -

modification [37] and 𝑒-modification [34] are two robust 

adaptive rules. According to the 18th theory of chapter 4 

of [38], MRAC is not robust in limited disturbances and 

actuator fault [34-37]. The method presented in this paper 

is based on the optimization of error function e (t) and 

adaptive loop transfer function. Based on the structure of 

the adaptive reference model in Fig.1, several objectives 

followed [34, 39]: Objective 1: designing a controller 

where 𝑦(𝑡)  asymptotically follows 𝑟(𝑡)  and while 

maintaining the reference model stability margin in the 

presence of disturbance, fault, and uncertainty.  Objective 

2: maintaining system stability margin. Objective 3: 

While maintaining stability, system performance should 

not be diminished. 

The system is as Eq.1: 

(1) 
ẋ(t) = Ax(t) + B[u(t) +

f(x(t))],        x(0) = x0,      t ≥ 0  

Where x(t): [0, ∞) → Rn  is a state vector, 

u(t): [0, ∞) → Rp  is control vector, A ∈ Rn×n  and B ∈
Rn×p  are known so that (A, B)  is controllable and 

f(x(t)): Rn → Rp is the disturbance, uncertainty, actuator 

fault, or the sum of them for the system.  

The reference model system is intended as Eq.2. 

(2) ẋm(t) = Amxm(t) + Bmr(t),        xm(0) =
xm0

,      t ≥ 0  

Where  xm(t) ∈ Rn  and t ≥ 0  are reference state 

vectors and r(t) ∈ Rr is the command vector. Am ∈ Rn×n 

is Hurwitz matrix and  Bm ∈ Rn×r. Adapted actuator fault 

function (disturbance) parametrically is linear in 

accordance with the Eq. 3.  

(3) f(x(t)) = Θ∗T
Φ(x(t)) + ε(x(t)) 

Where Θ∗ ∈ Rm×p is unknown constant ideal weight 

matrix and Φ: R → Rm  is regression function that is 

defined as  Φ(x) = [Φ1(x), Φ2(x), … , Φm(x)] . 

ε(x(t)): Rn → Rp is an approximation error. 

Here, the aim is to determine the feedback control rule 

u (t): [0, ∞), so that the dynamic system state and 

nonlinear uncertainties in the Eq.1 asymptomatically 

follow the reference model state of Eq.2. In the following, 

the control rule is considered as Eq.4. [37, 38]. 

(4) u(t) = un(t) − uad(t),      t ≥ 0 
Where nominal control rule un(t), t ≥ 0 is defined as 

Eq.5. 

(5) un(t) = −Kxx(t) + Krr(t),       t ≥ 0 
Where r(t) → Rpϵℒ∞  is the command vector and 

r(t) → Rpϵℒ∞ is the stable gain matrix and A − BKx  is 
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the Hurwitz matrix. KrϵRp×p  is the gain matrix of r(t) 

and uad(t) ∈ Rp is a direct adaptive signal that estimates 

the parametric uncertainty of the system and is defined as 

Eq.6. 
 

(6) uad(t) = ΘT(t)Φ(x(t)),     t ≥ 0 

 Where Θ(t) ∈ Rm×p  is an estimate of the unknown 

parameters that satisfies Θ∗ , also, Am = A − BKx  and 

Bm =  BKr. 

(7) Θ̇ = ΓΦ(x(t))eT(t)PB 

Where Γ ∈ Rm×m  is positive definite matrix and 

e(t) ≜ x(t) − xm(t), t ≥ 0 is fault state of system and 

P ∈ Rn×nis a positive definite solution of the Lyapunov 

Eq.8. 
 

(8) Am
T P + PAm + R = 0 
Where R ∈ Rn×n is a positive definite matrix and Am 

is Hurwitz that follows the convergence theory of 

Lyapunov, and P ∈ Rn×n is unique positive definite that 

satisfies Eq.8 despite R ∈ Rn×n positive definite matrix. 

Given the assumption 1, Eq. 9 is true. 

 (9) |f(x(t)) − ΘT(t)Φ(x(t))| < 𝜖(x)         , ϵ(x) <  ϵ̅  
In following the ORMRAC method will be explained. 

The new adaptive rule is based on minimizing the tracking 

error and adaptive loop function. 

 

a. Tracking error function 

A part of minimizing is tracking error function and 

ℒ2norm related to e(t). If we consider as estimation error 

of the parametric uncertainty and tracking error definition 

is as e(t) = xm(t) − x(t) the tracking error function will 

be the difference between to equation of (1) and (2) as the 

following Eq.10. 

(10) ė(t) = Ame(t) + B[Θ̃T(t)Φ(x(t)) − ε(x(t))] 
 

b. Adaptive loop transform  feature 

While for tracking error we need the stability analysis 

of Lyapunov for evaluation of the performance of a 

nonlinear system, addressing the stability merging needs 

linearity. Regarding this problem, adaptive control 

formulated in the previous section, due to linearization 

leads to adaptive Eq.5. Fig. 2 shows the result of this 

linearization with respect to fixed weight (update process 

is not considered) [36]. When f(x(t)) = 0 , the upper 

bound of this structure represents the closed-loop system 

without uncertainties. Calculated margin with a broken 

loop in the red zone with Θ̇ in Fig.2 is in accordance with 

a margin of reference model (fixed and constant). The 

lower part of this figure shows the adaptive control effect 

(steady-state) on the properties of the reference model 

loop. However, this is not common and in fact, the weight 

of the reference model changes, but if it is fixed and even 

if e(t) = 0, it is clear that the reference model stability 

margin is not maintained. The stability margin of the 

reference model is ensured by the feedback block at the 

bottom of Fig. 2. In this paper, in addition to minimizing 

the tracking error, minimization of ΘT(t)
dΦ(x(t))

dx
 is a 

purpose. It is assumed that 
dΦT(x(t))

dx
 has full rank.  

Fig. 1. Structure of a conventional MRAC 

 

The new Robust Adaptive Control method is 

expressed in according to the adaptive rule of Eq.11 to 

modify the MRAC in the presence of disturbance and 

fault. 

 

(11) 

Θ̇(t) = −ΓΦ(x(t)) [eT(t)P −

ξ
dΦT(x(t))

dx
Θ(t)Am

−TQ] B  
 

The aim is to obtain a robust optimal adaptive rule. To 

prove the robust optimal adaptive rule in Eq. 11, the 

minimization of the second norm of cost function Eq.12 

will be addressed. 

(12) 

J = lim
t→∞

1

2
∫ [[e(t) − ∆(t)]TQ[e(t) − ∆(t)] +

tf

0

[
dΦT(x(t))

dx
Θ(t)]

T

G [
dΦT(x(t))

dx
Θ(t)]] dt  

Where ∆ is expressing the lower bound of tracking 

error, Q = QT > 0 ∈ Rn×n  and G = GT > 0 ∈ Rn×n are 

weight matrixes and Γ = ΓT > 0 ∈ Rm×m is an adaptive 

gain matrix, ξ > 0 ∈ 𝑅  is modification parameter and 

P = PT > 0 ∈ Rn×n  is the result of the Lyapunov 

function of Eq. 13. 

(13) 
PAm + Am

T P = −Q 

PAm + Am
T P = −G 

For optimal solve of cost function Eq.12, this problem 

can be formulated using Pontryagin's minimum principle 

and the Hamiltonian equation will be as Eq.14. 

(14) 

H

=
1

2
[e(t) − ∆(t)]TQ[e(t) − ∆(t)]

+
1

2
[
dΦT(x(t))

dx
Θ(t)]

T

G [
dΦT(x(t))

dx
Θ(t)]

+ pT(t)[Ame(t) + BΘ̃T(t)Φ(x(t)) − Bε(x(t))] 

Where p(t): [0, ∞) → Rn  is auxiliary variable and 

prerequisite for solving Pontryagin is expressed as the Eq. 

15. 

(15) 

ṗ(t) = −∇He
T − ∇H

dΦT(x)

dx
Θ

T = −Q[(t) −

∆(t)] − G [
dΦT(x(t))

dx
Θ(t)] − Am

T p(t)  

Where p(tf → ∞)  value is considered to be zero, 

because e(0) value of is known. When ΘT(t)Φ(x(t)) is 

considered as a control variable, the optimal condition is 

expressed as Eq.16. 

(16) ∇HΘ̃TΦ = pT(t)B 

 And control rule can be formulated as Eq.17 using 

gradient update rule. 
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(17) Θ̇̃(t) = −Γ∇HΘ̃T = −ΓΦ(x(t))∇HΘ̃TΦ

= −ΓΦ(x(t))pT(t)B 

Approximate solution of p(t)  can be obtained by 

sweep method [39, 40] and considering p(t) as 

W(t)e(t) + R(t)
dΦT(x(t))

dx
Θ(t) , where (t): [0, ∞) →

Rn×n  and R(t): [0, ∞) → Rn×n  are matrixes of effective 

functions. By differentiation of sides of the recent 

equation, we would have Eq. 18. If W(tf → ∞) = 0 and 

R(tf → ∞) = 0  then the solution of Eq. 18 will be 

expressed as equations (19)-(21). 

 

(18) 

Ẇ(t)e(t) + W(t)[Ame(t) + BΘTΦ(x(t)) − BΘ∗T
Φ(x(t)) − Bε(x(t))] + Ṙ(t)

dΦT(x(t))

dx
Θ(t) +

R(t)
d(

dΦT(x(t))

dx
Θ(t))

dt
= −Q[e(t) − ∆(t)] − Am

T [W(t)e(t) + R(t)
dΦT(x(t))

dx
Θ(t)] − G

dΦT(x(t))

dx
Θ(t)  

 

(19) Ẇ(t) + W(t)Am + Am
T W(t) + Q = 0 

(20) Ṙ(t) − G − Am
T R(t) = 0 

(21) 
−Q∆(t) + R(t)

d(
dΦT(x(t))

dx
Θ(t))

dt
+

W(t)B[ΘTΦ(x(t)) − Θ∗T
Φ(x(t)) +

ε(x(t))] = 0  
It can be seen that Eq. 20 has a unique and stable 

solution at τ = tf − t [41]. 

(22) 
−

dW(τ)

dτ
+ W(τ)Am

+ Am
T W(τ) + Q = 0 

(23) 
−

dR(τ)

dτ
+ Am

T R(τ) + G = 0 

If the initial time conditions are as W(0) = 0  and 

R(0) = 0  then the uniqueness of the solution of the 

Lyapunov differential equation is visible from Eq.22. 

Infinite-time horizon solutions  W(τ) and R(τ) tend to a 

constant value. Considering W(τ) → P ، R(τ) → S  and 

 τ → ∞ and equations (24) and (25), p(t) the value will be 

defined as Eq.26. 

(24) PAm + Am
T P = −Q 

(25) S = −Am
−TG 

(26) p(t) = Pe(t) − Am
−TG

dΦT(x(t))

dx
Θ(t)  

Then, the optimal solution with a unique adaptive rule 

is expressed as Eq.27. 

(27) 
Θ̇(t) = −ΓΦ(x(t)) [eT(t)P −

ΘT(t)
dΦ(x(t))

dx
GTAm

−1] B  

In the proposed method, the optimal solution will lead 

to the new robust adaptive rule. The performance and 

robustness are two important factors in the controller 

design and generally, in control system design, we need 

to create a balance between robustness and performance 

of the system. So to implement the adaptive rule, which 

adjustable for optimal use, the correction parameter ξ >
0 is introduced. If the tracking performance is higher than 

the robust stability, ξ  value will be limited to a small 

amount. In the case of limitations and when ξ = 0, MRAC 

is standard, MRAC achieves asymptotic tracking 

performance, but it sacrifices the robust stability. In other 

words, if the robust stability is a priority in the design, 

then ξ values should be large to make a balance between 

performance and robust stability. Then, S will be as Eq.28. 
 

(28) 
 

S = −ξAm
−TG 

And the value of p(t) will be considered as Eq. 29. 

 

(29) 

 
 

p(t) = Pe(t) − ξAm
−TG

dΦT(x(t))

dx
Θ(t) 

Then the control rule Eq.27 will be as Eq.30. 

Assuming tf → ∞ bounds of ∆(t)  will be calculated 

according to Eq.30. 

(30) 

‖∆(t)‖ ≤ ‖Q−1‖ [ξ‖Am
−TG‖ ‖

d(
dΦT(x(t))

dx
Θ(t))

dt
‖ +

‖PB‖‖f(x(t))‖]  

Where Eq.30 depends on modification parameter ξ 

and adaptive uncertainty ‖f(x(t))‖. As long as there is 

uncertainty, ‖∆(t)‖ will be limited and error tracking is 

carried out asymptomatically in MRAC, but there is a cost 

for stability. To prove the stability of the proposed 

adaptive rule, using the theory of Lyapunov, Lyapunov 

function V(t) will be considered as Eq.31. 

(31) V(t) = eT(t)Pe(t) + trace (Θ̃T(t)Γ−1Θ̃(t)) 

Where V(t) was zero at the point of balance and is a 

positive function. According to the Lyapunov theorem for 

the stability of the system, the energy of the system should 

be downtrend; in other words, the result of it derivative is 

negative. To evaluate the derivative of Eq.31 and for some 

simplifications: 

(32) 

V̇(t) = (Ame(t) + B [Θ̃T (Φ(x(t))) −

ε(x(t))]) eT(t)P + eT(t)P (Ame(t) +

B [Θ̃T (Φ(x(t))) − ε(x(t))]) +

trace (Θ̇̃T(t)Θ̃T(t)Γ−T + Θ̃T(t)Γ−1Θ̇̃(t))  

(33) 

V̇(t) = eT(t)(Am
T P + PAm)e(t) +

2eT(t)PB [Θ̃T (Φ(x(t))) − ε(x(t))] +

trace (−ΓΦ(x(t)) [eT(t)P −

ξΘT(t)
dΦ(x(t))

dx
GTAm

−1] B + Θ̃T(t)Γ−T +

Θ̃T(t)Γ−1 [−ΓΦ(x(t)) [eT(t)P −

ξΘT(t)
dΦ(x(t))

dx
GTAm

−1] B])  

(34) 

V̇(t) = eT(t)(−Q)e(t) +

2eT(t)PB [Θ̃T (Φ(x(t))) − ε(x(t))] −

2trace (Θ̃T(t)Φ(x(t)) [eT(t)P −

ξΘT(t)
dΦ(x(t))

dx
GTAm

−1] B)  

Or each row vector such as A =
[a1 … ai … an] ∈ Rn  and B =
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[b1 … bi … bn] ∈ Rn  matrix trace will be 

expressed as trace (ATB) = BAT = ∑ aibi
n
i=1 . So V̇(t) of 

Eq.34 can be expressed as Eq.35. 

(35) 

V̇(t) = −eT(t)Qe(t) +

2eT(t)PB [Θ̃T (Φ(x(t))) − ε(x(t))] −

2eT(t)PBΘ̃T(t)Φ(x(t)) +

2ξΘT(t)
dΦ(x(t))

dx
GTAm

−1  

After some simplification on the recent equation, V̇(t) 

will be as Eq.36. 

(36) 

V̇(t) = −eT(t)Qe(t) +

2eT(t)PBΘ̃T (Φ(x(t))) − 2eT(t)PBε(x(t)) −

2eT(t)PBΘ̃T(t)Φ(x(t)) +

2ξ ΘT⏟
Θ̃−Θ0

∗

(t)
dΦ(x(t))

dx
(t)Am

−TQB  

(37) 

V̇(t) = −eT(t)Qe(t) − 2eT(t)PBε(x(t)) +

2ξΘ̃T(t)
dΦ(x(t))

dx
GTAm

−1B −

2ξΘ0
∗ dΦ(x(t))

dx
GTAm

−1B  

The derivative can be limited as Eq.38 by considering 

the extremes of values. 

(38) 
V̇(t) ≤ −‖e(t)‖[λmin(Q)‖e(t)‖ − 2‖PB‖ε0] +

2ξ ‖
dΦ(x(t))

dx
‖ λmin(GTAm

−1B)[‖Θ̃(t)‖ − ‖Θ0
∗ ‖]  

By calculating the squares, V̇(t) can be expressed as 

Eq.39.  
(39) V̇(t) ≤ −c1[‖e(t)‖ − c2]2 + c3[‖Θ̃(t)‖ − c4]

2
+ c5 

 Where c1 ≜ λmin(Q) ، c2 ≜ ‖PB‖ ε0 λmin(Q)⁄  ، c3 ≜

ξ ‖
dΦ(x(t))

dx
‖ λmin(GTAm

−1B) ، c4 ≜ Θ0
∗ و    c5 ≜ c1c2

2 +

c3c4
2. 

Then it will be considered as Eq.40. 

(40) 
Br = {(e(t), Θ̃(t)) ∈ Rn × Rm×p: c1[‖e(t)‖ −

c2]2 + c3[‖Θ̃(t)‖ − c4]
2

≤ c5}  

Considering the limit as Eq.40, it can be seen that V̇(t) 

is positive inside and negative outside. As a result, outside 

this area, V is a decreasing function. (e(0), Θ̃(0))  is 

limited all the times and e(t) will be limited after t > 𝑇. 

Since ‖e(t)‖ ≥ r  and ‖
dΦ(x(t))

dx
‖ ≥ k  and according to 

Eq. 41 where r = c2 + √c5 c1⁄  and κ = c4 + √c5 c3⁄  the 

adaptive rule is stable outside Br.  In other words, V̇(t) ≤

0 . By defining q(t) = [eT(t), Θ̃(t)T]
T
  and Br =

{q(t): ‖q(t)‖ < 𝜌}  where is a large enough range and 

assuming a limited error corresponding to Θ̇  as ‖Θ̇‖ ≤

Θ0
∗  , then the most limited set is defined as Eq.41. The 

bounds of tracking error and ranges used to prove stability 

are shown in Fig. 3. 
 

(41) ρ = √
λmax(P)r2+λmax(Γ−1)κ2

λmin(P̅)
  

Where P̅ = diag[P, Γ−1]. To prove this range, Ωα and 

α  considered as Ωα = {q(t) ∈ Br: qT(t)P̅q(t) ≤ α}  and 

α = min
‖q(t)‖=r

qT(t)P̅q(t) = r2λmin(P̅).  

Since  V(t)is defined as V(t) = qT(t)P̅q(t) =
eT(t)Pe(t) + trace [ΘTΓ−1Θ]  and Ωα is an invariant set 

with the length of α ≥ λmax(P)r2 + λmax(Γ−1)κ2  then 

the least size of Br is estimated by Eq. 41. The transient 

operation of ORMRAC depends on modification 

parameters ξ and adaptive gain Γ. This is similar to the 

transient operation of σ  and e, which depend on σ  and 

σ‖e‖ . Increasing the value of these parameters in any 

robust adaptive control rule will lead to a reduced 

transient operation. So in the case of ORMRAC transient 

operation and robust stability simultaneously improved. 

This is possible by improving adaptive gain and proper 

selection of the ξ parameter. When Γ Gain increases, 

MRAC tracking improves, but at the same time stability 

faces challenges against un-modeled dynamic. So when 

uncertainty is high and there are disturbances and we need 

fast adaptation and improving the gain as well, MRAC 

will not be able to maintain the stability, while ORMRAC 

in fast adaptation will have a good robust stability. In 

addition, in the proposed method with a minimizing the 

condition of adaptive loop transmission 
dΦT(x(t))

dx
Θ(t), the 

problems raised in this case such as controller design 

where y( t) asymptotically follows r (t) and reference 

model margin stability is preserved in the presence and in 

the absence of disturbance, will be solved. 

  
Fig. 2. Linear adaptive 

system 

Fig. 3. Tracking error 

bounds 

 

 
Fig. 4. Overall schematic of the simulator 
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Table I. Characteristics of the 2.5 MW MAPNA WT  
 WT DFIG 

Wind speed 11.43 m/s Rated Power 2.5 MW 

Power Coefficient 0.43 Number of poles Three pairs of poles 

Air density 1.225 Kg/m3 Speed 75.-1310 u/min(50 HZ) 

Turbine blade radius 53m Stator rated voltage 690V 

Tip speed ratio 9 Armature resistance 0.0014 ohm 

Blade surface 8495 Rated frequency 50 Hz 

Start generation 3.5/4 m/s Stator Resistance 0.0014 ohm 

Stop generation 25 m/s Rotor Resistance 0.0014 ohm 

Gearbox  Gear with 3 stage by 1:79.6 Stator leakage inductance 9.8e-5 H 

Back to Back converter Rotor leakage inductance 8.6e-5 H 

Switching Frequency of Rotor  2.5 KHz Magnetizing inductance 0.00169 H 

Switching Frequency of Stator  3 KHz Stator/Rotor turns ratio 0.3 

DC-link Capacitor/ DC-link Voltage 22 mF/1100 v Line resistance 0.0001 ohm 

 

3. Simulation Setup for the WT system 
 

The model of commercial turbines implemented in 

this setup and partial data is used for input of this setup. 

The developed model is a 2.5 MW turbine based on DFIG 

and real data of wind farm owned by MAPNA used as 

input of setup [42]. The wind farm includes 13 turbines, 

wind turbines are active in 3.6 to 25 meters per second of 

wind speed, and wind speed increases up to 32 meters per 

second as well. MATLAB/SIMULINK is used for 

modelling. Fig. 4 is a general schematic of the simulator. 

The general features of WT are in accordance with Table 

I. The developed model is a 2.5 MW turbine based on 

DFIG and actual data of wind farm owned by MAPNA is 

used as input of setup [42]. The generator has six poles, 

and as can be seen in Fig. 4, it is connected to the grid via 

an AC-DC-AC converter. A vector control strategy is 

applied to the back-to-back converter. For the rotor side 

converter and grid side converter, a technique is employed 

based on Space Vector Modulation (SVM) with stator 

Field Oriented Control (FOC) strategy and Grid Voltage 

Oriented Control (GOC), respectively. 

WT pitch subsystem is divided into two categories, 

hydraulic and electric. The hydraulic actuator changes the 

angle of the blades through a hydraulic system. In this 

study, the WT uses an electrical pitch system. Servomotor 

regulates the blade pitch angle based on set points 

received from the main control system, the three 

actuators, three engines, and three PLCs work together to 

regulate the pitch angle. 

 WT consists of various subsystems that all parts need 

to be modeled; in this section, the modeling of the pitch 

sub-system is presented. At speeds less than the nominal 

speed, there is no need to use blade pitch control and pitch 

angle is about zero degrees. In the case of variable speed 

turbine blade pitch adjustment, the maximum pitch angle 

of the blades (βmax) is 90 degrees. The block diagram of 

the pitch control second-order model is shown in Fig. 5. 

Blade angle β should follow the reference blade angle 

βcmd . The second order transfer function is following 

Eq.42:  
 

(42) β̈(t) + 2ξωnβ̇(t) + ωn
2β(t) = ωn

2u(t) 

 
Where ωn  and ξ  are natural frequency and damping 

coefficient and for less fault status these values for WT in 

our study are 9.6 and 0.63, respectively. 

 
 

 

4. The proposed structure 

The proposed structure for WT actuator fault-tolerant 

control is composed of 4 units. The proposed structure is 

shown in Fig. 6. 

 
Fig. 5. Block diagram of blade-pitch control 

 

4.1. Residual Generation Unit 

 There are different methods to generate residuals. 

Two main methods are known as model-based and data-

driven methods, in model-based methods the difference 

between the measured values of plant and the signal of a 

mathematical model of that plant is the "residual" and then 

residual evaluation is done for FD process. Due to the lack 

of accurate mathematical models in this article, the 

identification method such as ANN is used to identify 

plants.   

 

4.2. Fault Detection Unit 

 Each FT system requires a FD section. When a fault 

(disturbance) signal is higher than the threshold, the FT 

subsystem tries to compensate the fault by changing the 

control structure and keeps the system performance at the 

optimal level. FD has two healthy and non-healthy modes, 

the amount of residual is involved in triggering a switch 

(threshold is 0.5), and this switch is determining sign 

between normal and the fault modes. 

4.3. Fault-Tolerant Control Unit 

The structure of this unit based on a graphic structure 

is shown at the bottom of Fig. 6. If the switch function is 

activated, it means that there is a fault in the pitch system, 

in this state determining the pitch angle is based on 

ORMRAC to compensate of the faults.  
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4.4. Pitch control unit based on PI 

PI is the internal controller of WT for the pitch sub-

system. In normal operating conditions of pitch sub-

system (without disturbance or actuator fault), the PI 

controller applies the desirable blade pitch angle. The 

operation of this unit is so that it receives rotor speed as 

the input and compares it with the reference value and 

resulting is the error, this error goes to pitch model (Fig. 

5).  

 

Using a PI pitch controller the desired angle is adjusted. 

 

5. Evaluation and simulation of the proposed 

structure 

This section includes the evaluation of the proposed 

structural main blocks including PI controller, residual 

generator, FD unit, and FT unit. 

5.1. Use of the PI controller without fault 

This general equation of the PI controller is as follows: 

(43) u(t) = KP [e(t) +
1

KI
∫ e(τ)dτ]  

Where u(t)  is the input signal and e(t)  is the error 

signal and is determined as the difference between the 

output signal and the reference signal, e(t) = y(t) − r(t). 

To design the PI controller, a linear form of the nonlinear 

system should be obtained. Accordingly, we rewrite the 

equations of the system and then a function of the input to 

output is obtained and then ωr = 17.1 rpm , v =

12.43
m

s
, β = 0.01 deg  and yaw fix error is linearized 

using the Jacobian matrix. Linearized aerodynamic 

equations of WT are as equations 44 and 45. 

(44) [
ω̇r

β̇
] = [

δ γ

0 −
1

Tβ

] [
ωr

β ] + [
0
1

Tβ

] βcmd  

(45) ωr = [1 0] [
ωr

β ]  

By placement of studied turbine parameters, ωr  to 

βcmd the transform function is as Eq.46. 

(46) TF(s) =
2012

s2+74.79s+1096
  

The transform function obtained in Eq.46 is a 

minimum phase with a relative degree of 2. Considering 

the response of the open-loop of the linear system, the 

coefficients ∆M, Lr and Rrcan be determined. 

The process respond speed is Rr = 10.8, lead-phase is 

Lr = 0.5  and the difference between horizontal 

asymptotes of process time response is ∆M = 64. 

 

 
Fig. 6. The proposed structure of FT 

 

Also, Pi coefficients are determined as KP = 14.2,   
KI = 0.5. The situation of the system is normal (faultless). 

Fig. 7 shows the power output by the PI controller without 

any fault (disturbance). The response of the turbine rotor 

speed with the PI controller is as Fig.8. As can be seen, 

the rotation speed of the rotor is converted to the desired 

value and has little fluctuations. The Pitch angle change 

of a blade is as Fig. 9. The controller (PI) used in this study 

works well in a normal state. 

5.2. Performance Evaluation of residual generation and 

fault detection units in the presence of the fault  

When a fault occurs, the system should switch from PI 

controller to FT, for this purpose FD needs to be done. 

Common input of the ANN model and plant (simulation 

setup) is the wind speed and real wind speed has been used 

for this purpose. A Multilayer perceptron (MLP) ANN 

with three inputs, hidden and output layers are used to the 

modeling of pitch angle.  The five-minute average wind 

speed information, the divergences of wind speed, and 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi8upyYqL_SAhXGFiwKHUtnCSsQFggbMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMultilayer_perceptron&usg=AFQjCNF8CmEIfC2cA0SCQpX1Y5h4wjihnA
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pitch angles were used for training the network using by 

backpropagation. If 𝑘 ≥ 0 𝑎𝑛𝑑 𝑖 ≥ 1, (𝑉(𝑛 − 𝑘), 𝑒𝑣(𝑛 −
𝑘), 𝛽(𝑛 − 𝑖)) vectors are used as input. Real wind speed 

collected from the MAPNA farm is sent to the simulation 

setup after a pre-processing. Pitch angle and power data 

are stored proportionally to the wind speed profile. The 

neural network is trained using the data produced. The 

number of hidden layer neurons (N), input, and output are 

important in such a network, the aim is to produce pitch 

angle, so the output neuron is 1. The appropriate values of 

k, i, and N should be determined in training and the 

optimization phase, respectively. The 25000 actual wind 

speed data were collected from the MAPNA farm, 15000 

wind speed data of all operation ranges were used to 

produce pitch angle, then 10500 data were used for 

training, 2250 data and 2250 data were used for validation 

and test of network, respectively. First, the network was 

trained with initial values of the three important 

parameters.  

 

 

Fig. 7. Power output using the PI controller in the 

absence of faults and disturbance 
 

 
 

 

Fig. 8. The rotation speed of the rotor using the PI 

controller in the absence of faults and disturbance 
 

 
Fig. 9. Changes of the pitch angle in the absence of 

faults and disturbance 
 

Then, the numbers of hidden layer neurons, step-

number of past wind speed data, and its divergence and 

step-number of past pitch angel data were determined step 

by step. By taking into account the MSE criteria, N=5, 

k=1, and i=1, therefore, the number of the input vector, 

the number of hidden layer neurons, and the number of 

output vector were 6, 1, and 1, respectively. After the 

preparation of the ANN network, 10,000 real wind speed 

data were used. This data was used as shared input in the 

NN and plant. The performance evaluation of the plant 

and NN in the generation pitch angle is reflected in Fig. 

10 & 11. The performance of the residual generation unit 

is shown in Fig.12. To evaluate the performance of FD, a 

disturbance was modeled at the start of the system and 

randomly entered the system at [0 10]
π

180
 . At about 

800th second, the actuator fault was seen with changes in 

ωn and ξ to 7.3 and 0.75. As shown in the simulation of 

Fig. 13 absolute value of the normalized residual at 

disturbance is more than 0.5 in some times. However, it is 

more than 0.5 in the presence of fault which is shown by 

a defined threshold. In this situation, the structure acts in 

FT mode. In the next simulation, we eliminated the 

disturbance and set ωn and ξ values to 3.42 and 0.9. Fig. 

13 shows the simulation output, up to 20th seconds and in 

the absence of disturbance the residual is less than 0.5 and 

PI controller acted very well but after it and despite the 

actuator fault, the generated residual is more than 0.5 and 

FTC should be used for proper operation of the plant. 

 

5.3. Evaluation of FTC 

5.3.1. Design of system based on controller 

The aim of this section is to implement the proposed 

FTC method on the WTs simulator. For this purpose, 

taking into account the system model, the implementation 

of this control method will be discussed. 

 

 

 

Fig. 10. Plant pitch angle output (simulator)  

 

 

Fig. 11. ANN pitch angle output  

 

 

Fig. 12. Residual in the absence of actuator fault  

 

 

Fig. 13. Residual generated in the presence of 

disturbance and actuator fault 

 

 



Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021                                                                                                  Serial no. 95 

91 

(47) 
[
ω̇r

β̇
] = [

−54.7864 100.5970
0 −20

] [
ωr

β ] +

[
0

20
] βcmd + f(x(t))  

(48) [
ω̇rm

β̇m
] = [

−20 −9.769
16 0

] [
ωrm

βm
] + [

4
0

] r(t)  

Where state vectors are considered as x = [ωr, β]T , 

f(x(t))  and f(x(t)) = Θ∗T
Φ(x(t)) + ε . Solving the 

Lyapunov equation, when Q = 2I and taking into account 

the control rule u(t) = −Kxx(t) + Krr(t) −

θT(t)Φ(x(t)):  

(49) 
Θ̇(t) = −ΓΦ(x(t)) [eT(t)P −

ξΘT(t)
dΦ(x(t))

dx
GTAm

−1] B  

Where ξ = 0.1  and  P = [
0.0805 −0.0625

−0.0625 0.2598
]  is 

obtained from the Lyapunov equation and Γ  as the 

adaptive gain is 3024. Therefore, the optimal solution 

with a unique adaptive rule will be expressed as Eq.50. 

(50) 

Θ̇(t) =

−3024Φ(x(t)) [eT(t) [
0.0805 −0.0625

−0.0625 0.2598
] −

dΦT(x(t))

dx
Θ(t) [

2 0
0 2

] [
0 0.0625

0.1023 −0.1279
]] [

0
20

]  

5.3.2. Stability test  

When tf → ∞, then ∆(t) will be calculated according 

to Eq.50. 

That depends on modification parameter ξ  and 

adaptive uncertainty ‖f(x(t))‖.‖∆(t)‖ will be limited as 

long as there is uncertainty. To prove the stability of the 

proposed adaptive rule using the Lyapunov theorem, 

Lyapunov function V(t) will be considered as Eq.52. 

 

(51) 

 ‖∆(𝑡)‖ ≤ ‖[
2 0
0 2

]
−1

‖ [0.1 ‖[
0.1279 −0.1023

−0.0625 0
] [

2 0
0 2

]‖ ‖
𝑑(𝛩𝑇(𝑡)

𝑑𝛷(𝑥(𝑡))

𝑑𝑥
)

𝑑𝑡
‖ + ‖[

0.0805 −0.0625
−0.0625 0.2598

] [
0

20
]‖ ‖𝑓(𝑥(𝑡))‖] =

‖[
2 0
0 2

]‖ [‖[
0.0256 −0.1023

−0.0625 0
]‖ ‖

𝑑(𝛩𝑇(𝑡)
𝑑𝛷(𝑥(𝑡))

𝑑𝑥
)

𝑑𝑡
‖ + ‖[

−1.2500
5.1960

]‖ 0.1745]  = 2 [0.0343 ‖
d(ΘT(t)

dΦ(x(t))

dx
)

dt
‖ + 0.9327] 

 

(52) 
V(t) = eT(t) [

0.0805 −0.0625
−0.0625 0.2598

] e(t) +

trace (
1

3024
Θ̃T(t)Θ̃(t))  

By differentiation and after simplification, Eq.53 is 

obtained. Then, the stability of the studied systems with 

the designed controller will be discussed. 

(53) 

V̇(t)

≤ −‖e(t)‖ [2‖e(t)‖

− 2 ‖[
0.0805 −0.0625

−0.0625 0.2598
] [

0
20

]‖
π

180
(10)]

+ 0.2 ‖
dΦT(x(t))

dx
‖ × 

‖[
2 0
0 2

] [
0 0.0625

0.1023 −0.1279
] [

0
20

]‖ [‖Θ̃(t)‖ −

‖Θ0
∗ ‖] = −‖e(t)‖ [2‖e(t)‖ − 2 × 5.3442 ×

π

180
(10)] + 0.2 ‖

dΦT(x(t))

dx
‖ 5.6942[‖Θ̃(t)‖ − ‖Θ0

∗ ‖]  

So V̇(t) will be expressed as Eq.54. 

(54) V̇(t) ≤ −c1[‖e(t)‖ − c2]2 + c3[‖Θ̃(t)‖ − c4]
2

+ c5  
Where c1  to c4 will be obtained as equations (55) to 

(58) 

(55) c1 ≜ λmin(Q) = λmin [
2 0
0 2

] = 2  

(56) 

c2 ≜ ‖PB‖ ε0 λmin(Q)⁄ ≜

‖[
0.0805 −0.0625

−0.0625 0.2598
] [

0
20

]‖
π

180
(10)

2
=

5.3442 × 0.0873 = 0.4665  

(57) 

c3 ≜

0.1 ‖
dΦT(x(t))

dx
‖ ‖[

2 0
0 2

] [
0 0.0625

0.1023 −0.1279
] [

0
20

]‖  

= 0.56942 ‖
dΦT(x(t))

dx
‖  

(58) c4 ≜ Θ0
∗  

 Then the studied set will be considered as Eq.59. 

(59) Br = {(e(t), Θ̃(t)) ∈ Rn × Rm×p: 2[‖e(t)‖ −

0.4665]2 + 0.56942 ‖
dΦT(x(t))

dx
‖ [‖Θ̃(t)‖ −

Θ0
∗ ]

2
≤ c5}  

 By defining r and κ and considering the equation r =

c2 + √c5 c1⁄   and κ = c4 + √c5 c3⁄  ، the adaptive rule is 

stable at out of Br range. In other words V̇(t) ≤ 0 

(60) ρ = √
0.3237r2+3.306×10−4κ2

0.0003
   

Where P̅ = [
0.0805 −0.0625 0

−0.0625 0.2598 0
0 0 3.306 × 10−4

] . 

To prove this range, Ωα  and α  considered as Ωα =
{q(t) ∈ Br: qT(t)P̅q(t) ≤ α}  and α =

min
‖q(t)‖=r

qT(t)P̅q(t) = 0.0003r2.  

Since  V(t) is defined as V(t) = qT(t)P̅q(t) =
eT(t)Pe(t) + trace [ΘTΓ−1Θ] and Ωα  is an invariant set 

with the length of α ≥ 0.3237r2 + 3.306 × 10−4κ2then 

the least size of Bris estimated by Eq.60. 

5.3.3. Simulation and comparison with other methods 

In this section, the FTC method (ORMRAC) 

performance is investigated, as mentioned earlier in the 

real plant it is not possible to change the controller, but to 

do a simulation in the simulator, PI is replaced by 

ORMRAC and a thorough investigation is carried out on 

its performance. The proposed method improves the 

MRAC method, in simulations MRAC method is 

compared with ORMRAC. Simulations are done only in 

the third area of operation. In this system, the disturbance 

is modeled as [0 10]
𝜋

180
, the results of a simulation with 

the FTC controller in the presence of disturbance are 

obtained from figures 14 to 19. By examining the figures, 

it was observed that the controller can control the pitch 

system of WT at the presence of disturbance. Fig. 14 

shows the power output. According to the figure it was 

seen that, despite the disturbance, the ORMRAC 

controller was able to maintain power output at about 2.5 

MW. Although the MRAC method in the presence of 

disturbance has better performance than the PI controller 

but the performance of ORMRAC is clearly better. Fig. 

15 shows the rotor speed changes. According to this 

figure, the ORMRAC controller despite the disturbance 
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could keep the rotor speed at a nominal rate. Fig. 16 shows 

the change in the pitch angle, the goal is to achieve the 

power of 2.5 MW. To evaluate the proposed method in 

this section of the controller error in the presence of 

disturbance will be discussed. Fig. 17 shows the output 

power error of the controllers. As can be seen, changes 

with ORMRAC are centered on zero. Fig.18 shows the 

rotor speed error. According to figures 19 and 20 as well 

as Table II, ORMRAC performance can be compared 

with the MRAC in terms of error. It can be seen that the 

error parameters of the controller are highly desirable. 

Control parameters of the ORMRAC method are 

compared to MRAC. The results are shown in Table III. 

According to the table, it is clear that the overshoot of 

power output is 2.7668. This parameter is 0.0902 in the 

speed of the rotor. In the proposed method, the gain of 

adaptive control is high, since there is a direct relationship 

between controls gains with adaptation speed, but the high 

adaptive gain results in instability, therefore the gain 

value cannot be increased to the desired value in the use 

of any controller. The adaptive control gain for the 

ORMRAC method is 3024. The speed of adaptation of 

this method is also desired. Tables IV and 5 are provided 

for a better comparison of ORMRAC with the MRAC 

method. In Table IV in both methods, the adaptive gain is 

fixed and equals to 2800. The modification factor gain is 

0.1. According to the table, we see that both in power 

output of the turbine and rotor speed, the overshoot in the 

proposed method is better than the MRAC and the rise 

time is less. To compare these two methods in Table V, 

the overshoot of output power and rotor speed were fixed 

to 1.1067 and 0.0902 respectively. Also taking into 

account the modification factor gain of 0.1, the adaptive 

gain and rise time in power output and rotor speed is 

evaluated using two controllers. According to the table, it 

can be seen that at the output power with the same 

overshoot, the adaptive gain is higher in the proposed 

method compared to the MRAC method as a result of the 

rise time is better. This can be concluded from rotor speed 

as well. Table VI provides a comparison of the proposed 

method with some other articles. 

6. Implementation of the proposed structure 

The actual wind speed from the MAPNA farm is given 

as input to the setup. Data includes all the different 

operational areas of the WT. 

In the first scenario, ωn and ξ parameters are changed 

to 5.93 and 0.45 and the performance of the proposed 

structure was simulated with and without ORMRAC. The 

fault occurs at 1000th seconds. As shown in Fig. 21 from 

the power signal and rotor speed signal, amplitude of the 

signal at the absence of FT is higher than the other two 

modes. The output signal at the presence of the FT is 

closer to fault-free. The fault is well compensated by 

ORMRAC. However, it can be seen that the residual 

signal is higher than 0.5 and the FT switch is active.

 

 

 

 

 
Fig. 14. Residual generated in the presence of 

disturbance and actuator fault 

Fig. 15. The performance of the fault indicator switch 

  
Fig. 16. WT output power Fig. 17. The speed of the rotor using the MRAC and 

ORMRAC 

  
Fig. 18. Changes in the pitch - angle of WT using 

ORMRAC and MRAC in the presence of disturbance 

Fig. 19. WT power output tracking error using 

ORMRAC and MRAC 

 

 
Fig. 20. Tracking error of rotor speed using MRAC and ORMRAC 
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Table II. Compares the error criteria of MRAC and ORMRAC  
 Rotor speed (r.p.m) Power (MW) 

Maximum of error 
ORMRAC 0.431 0.2400 

MRAC 0.132 0.3000 

Minimum of error 
ORMRAC 0.0700 0.1039 

MRAC 0.0400 0.1000 

Variance of error 
ORMRAC 0.0276 0.0123 

MRAC 0.1203 0.1008 

The standard deviation of 

error 

ORMRAC 0.1661 0.1391 

MRAC 0.3469 0.1490 

Root Mean Square Error 
ORMRAC 0.1664 0.1393 

MRAC 0.3483 0.1498 

 

Table III. Comparison of the control parameters for MRAC and ORMRAC 
 Γ Parameters Rise time Overshoot Maximum value Time of maximum value 

ORMRAC 3024 
Output power 4.5325 1.1067 2.6000e+6 499 

Rotor speed 3.2513 0.0902 14.763 384 

MRAC 3024 
Output power 10.5573 1.8145 2.6940e+6 54 

Rotor speed 4.1541 0.3093 15.34 816 

Table IV. Comparison of the two proposed controller at the fixed adaptive gain of 2800 and gain modification factor of 

0.1 
 Parameters Rise time Overshoot 

MRAC 
Output power 10.9180 1.7961 

Rotor speed 4.5071 0.3022 

ORMRAC 
Output power 6.0271 0.8725 

Rotor speed 4.6817 0.0798 

Table V. Comparison of the two controllers at fixed power overshoot of 1.10671 and rotor speed of 0.0902 and 

modification factor gain of 0.01 
 Parameters Adaptive gain Rise time 

MRAC 
Output power 2627 12.4913 

Rotor speed 1921 9.2314 

ORMRAC 
Output power 3024 4.5325 

Rotor speed 3024 3.2513 

Ref: Reference/ T. S: Turbine Structure/ C.S: Controller Structure/ G.T: Generator Type / O.A: Operation Area/ A.W.S: Average wind speed/ N.P: 

Nominal Power/ T.N.V: Time to be the nominal value/ P.O: Power Overshot/ P. A: Pitch Angle/ P.A.M: Pitch-angle Matching error (degrees)/ A.N.O.P: 
Average normalized output power rate/ A.N.R.S: Average normalized rotor speed rate/ A.N.G.S: Average normalized generator speed rate/ R.S.E: 

Rotor speed error (r.p.m)/ P.O.E: Power output error (M.W)/ G.S.E: Generator speed error (r.p.m). LI: Linear/ NL: Noun Linear 

 

Table VI. Comparison of ORMRAC method with other methods 
Ref [10] [43] [11] [12] [13] [14] [15] This wok 

T. S NL NL NL NL NL NL NL NL 

C. S LI LI LI LI LI LI LI LI 

G. T DFIG DFIG DFIG DFIG PMSG DFIG DFIG DFIG 

O.A 3 all 3 3 2 3 3 all 

A.W.S - 11.4 18 18 12.5 18 11.3 12.43 

N.P 2 5.5 5 5 - - 5 2.5 

T.N.V 9 30 10 - - - 17 6 

P.O 1.075 0 - 0.1 - - 1.1 1.1064 

P.A - ≈0.57 - - - 1.1 ≈1.1833 0.3505 

P.A.M - - 2.781 0.6081 - - - - 

A.N.O.P ≈1.09 ≈ 0.782 0.9996 - ≈ 0.871 1.01 - 0.99352 

A.N.R.S - - - - ≈ 0.812 - - 0.9995 

A.N.G.S - - - - - 0.85 0.9962 - 

R.S.E - - 0.042 0.1067 0.8886 - - 0.1203 

P.O.E - - 0.00415 0.2063 - - - 0.1498 

G.S.E - - - - - 0.06 0.0413 - 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 21. Performance of the proposed structure, (a): 

Power signal with ωn = 5.93  and ξ =0.45, (b): Rotor 

speed signal with ωn = 5.93  and ξ =0.45, (c): 

Residual signal with ωn = 5.93   and ξ =0.45, (d) 

control signal 

7. Conclusion 

In this paper, a new FTC method is proposed to fault 

compensates and deals with the disturbance. The 

conventional MRAC method was improved and 

optimality and robustness were added to it. ORMRAC 

method acts in the control loop when the actuator fault 

occurs. The method acts without prior knowledge about 

the disturbance/fault. A software simulator based on 

Simulink/MATLAB was used to verify the proposed 

method based on WT practical data. ANN was used for 

residue generation. The ORMRAC methods were 

evaluated exactly and it was demonstrated that tracking 

error of power tracking and rotor rotation speeds is very 

low. Thus ORMRAC methods can be used to maintain 

power generation in the event of fault and disturbance. 
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