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Abstract 

Software Defined Network (SDN) can integrate a lot of network functions such as network resource management into a consolidated 

framework. TCP operates in these networks with low information traffic characteristics. As a result, it has to continuously change 

its congestion window size in order to handle drastic changes in the network or its traffic conditions. As a result, TCP frequently 

overshoots or undershoots its transmission rate, making it a native congestion control protocol. To overcome that problem, we have 

proposed a new QoS framework for SDN called QDFSN (QoS-enabled Dynamic and Programmable Framework for SDN) which 

can be effectively applied in Data Centers as well. In this, and by means of AQM (Active Queue Management), a new function for 

detecting the upcoming congestion situation is designed. In each node, a developed mathematical model is used to calculate the best 

parameters of the node adaptively, especially the service rate, to minimize the congestion in the network. This model is tested in 

many NS-2 scenarios, and the results are presented. The results show improvements in selected QoS parameters like throughput 

and delay. We conclude that QDFSN-based congestion control shortens the process of adapting TCP to network circumstances, and 

enhances the TCP performance. 
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1.  Introduction 

The structure of all data networks including Internet has 
been shaped by connecting of different switches and 
routers via telecommunication links. These devices have 
been provided by a lot of vendors that produce their 
products with distinct hardware and software. The offered 
devices are physically and operationally far from each other 
but have only one issue in common and it is the 
interconnection protocol. This protocol enables the devices 
to send and receive data in a predefined manner. 
Nowadays, the most common protocol is TCP/IP. 

Obviously, due to this diversity of equipment, lots of 
Network Management Systems (NMS) are required to 
manage the network duties. Each vendor has its own NMS 
which can only manage its related devices. 

 Now many issues arise when we want to transfer data 
from one node to another one which is passing through 
devices of different vendors. QoS and congestion control 
are two complicated of them. We should control different 

routers and switches in an integrated scenario, to offer a 
unique and predefined QoS. Moreover, we should manage 
each device dynamically to set its parameters to control the 
congestion. 

To cope with this condition in the current network, we 
have to introduce new protocols for QoS management, and 
mandatory implement it in all devices, or rely on the 
capabilities of the TCP/IP. Actually, it is very hard to 
obligate all the vendors to implement a certain protocol.  

In this regard, if we have a common and central control 
server to manage all of the network devices, a lot of 
facilities to implement the QoS requirements will be 
available. The concept of Software Defined Network 
would be an answer to this problem. Software Defined 
Network was perceived at the UC Berkeley and Stanford 
University in 2008. The Open Networking Foundation 
(ONF) [1], a non-profit industry association originated in 
2011, is devoted to the elevation and adoption of SDN 
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through open standards expansion such as OpenFlow 
protocol. 

The main contribution in SDN is the separation of the 
control plane and data plane. In SDN we have a central 
server who manages all operation in the network, and send 
its messages to the elements via control plane based on the 
OpenFlow protocol to all nodes of campus or managed 
domain [2]. The data plane has only been used to forward 
the data packets between switches and routers of the 
network. This is a target that we can try to reach, but in the 
reality, it is impractical to think that existing networks are 
suddenly going to be divided into completely separate 
pieces to make an approach for a new world recommended 
by the ONF and software defined networks. It is also 
impractical to omit all signs of progress in the networking 
technology of the Internet. As an alternative, there is more 
likely a hybrid method whereby several portions of 
networks are operated by a reasonably centralized 
controller, while other portions would be run by the more 
traditional dispersed control plane. This would also infer 
that those two worlds would need to interwork with each 
other.  

The TCP is commonly used as the default congestion 
control mechanism [3]. Measurements disclose that the 
TCP is 99.91% of the traffic in Microsoft data centers [4], 
58% of the aggregated global Internet traffic in the world is 
video streaming over TCP [5], and measurements from 10 
major data centers including university, enterprise, and 
cloud data centers show TCP as the leading congestion 
control protocol [6]. TCP is a developed protocol and has 
been widely studied over several years. Hereafter, network 
operators trust TCP as their congestion control mechanism 
to make the most of the bandwidth use of their network 
while keeping the network steady. Despite that, TCP 
functions in these networks with limited knowledge of the 
applied network or traffic features. As a result, it is destined 
to endlessly increase or decrease its congestion window 
size in order to perform alterations in the traffic or network 
circumstances. Therefore, TCP often passes or undershoots 
the best rate, making its behavior ineffective at times [7] 
[8] [9]. TCP is intended to operate in many types of 
networks with variant features and traffic situations. We 
can observe that even in SDN, the most used protocol for 
congestion control is TCP or its derived versions. Though, 
restraining TCP to a particular network and taking 
advantage of the confined features of that network can 
result in major performance improvement.  

This paper introduces the use of SDN in combination 
with OpenFlow to coordinate the network facilities to 
improve the QoS. Originally, we propose a QoS 
management framework that allows us to manage the 
network flexibly. This is done using the AQM method to 
dynamically predict the congestion in all nodes in real-
time. After that, we explain the model that is outperformed 
in each node in detail.  

     The “end-to-end” argument was considered at first in 

the 1980s as an essential strategy principle of the Internet. 

Despite huge changes in both primary technologies and 

also applications on the Internet, this argument is still 

considerably used in network structures. Nonetheless, the 

growth of the Internet and the move towards cloud 

computing also displays the restrictions of this concept. 

The data center environments that require the managing of 

the many data flows dynamically, and the variety of the 

applications that run on its top, have resulted in the growth 

of interpretation of the end-to-end argument. The end-to-

end argument has a valuable effect on the design of the 

Internet which is convenient and simple. The simplicity 

and stability of the Internet’s design have led to huge 

growth, but it makes it hard to modify and manage. Today, 

the demand for designing flexible and universally 

controlled networks and exclusively data center networks 

are steadily in progress.  

    To make the network structure flexible, SDN is a tactic 

where the “control plane” and the “data plane” are 

unconnected. In other words, SDN separates the traffic 

management system which makes decisions about traffic 

routing (the control plane) from the system beneath that 

transmits the traffic to the selected destination (the data 

plane) [10]. In the case of using two or more controllers, 

the complexity of this concept can be increased of course. 

The load balancing between these controllers is another 

issue that is under study and there are some newly 

proposed methods like distributed load balancing to do 

that [11]. The need for simplicity, dynamicity, and 

programmability in data centers is echoed in the design of 

some concepts related to SDN such as 4D [12], Ethane 

[13], Tesseract [14], and Openflow [15]. SDN suggests 

several solutions to separate control and data planes in 

enterprise networks. This separation simplifies alterations 

to the network control sense, enables the data and control 

planes to develop and scale individually, and declines the 

cost of the data plane portion and improves the possibility 

for QoS management [16]. The 4D architecture advocates 

decomposition of the network function into data, 

dissemination, discovery, and decision planes. Tesseract 

implements a 4D control plane and shows the merits of 4D 

in practice. Ethane is a distinguished example of modern 

work that relies on the parting of data and control planes. 

The OpenFlow project was initiated to provide a vendor-

agnostic border with network elements to enable 

improvement in the control plane. 

 

2. Related Works 

In old deployments of router queue management, the 
role of the routers is restricted to dropping packets when a 
buffer becomes full (Drop-Tail). TCP sources run a 
congestion control protocol that infers packet loss or 
increases in RTT as an indication of congestion to which 
they reply by decreasing the transmission rate. AQM 
mechanisms are paired with the end-to-end congestion 
control methods in which the congestion is dynamically 
announced to the sources before the overflow in queues; 
either obviously by packet marking, or tacitly by dropping 
many packets. Random Early Detection (RED) [17], is a 
queue-based AQM which links the congestion 
announcement to queue size; alternatively, RED drops 
packets casually. Some other protocols have been 
proposed, including RED with penalty box [18] and Flow 
Random Early Drop [19]. These alternatives impose further 
operation overhead as they need to collect certain types of 
data, the first one monitors the unfavorable flows while the 
latter authorizes live connections. Another alternate of 
RED is Stabilized RED (SRED) [20] which alleviates the 
use of the router queue. SRED approximates the number of 
active connections and classifies misbehaving flows, but 
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does not offer a simple router mechanism for correcting 
these flows. Oppositely, the “CHOose and Keep for 
responsive flows, CHOose and Kill for unresponsive 
flows” (CHOKe)  [21] packet dropping pattern guesses 
max-min fairness for the flows that pass over a congested 
router.  [22] Compares the TCP and AQM mechanisms, 
and it tries to give an idea about the best choice of the TCP 
and AQM couple in various types of network 
environments.  

Explicit Congestion Notification (ECN) [23] is an 
AQM, initially designed to work in conjunction with RED. 
ECN tries to stop packet dropping by marking them using 
a distinct field in the IP header. ECN is an optional method 
that can only be used when both the receiver and the 
transmitter can support it. When ECN is effectively 
assigned, an ECN-aware router may set a bit in the IP 
packet header in case of dropping a packet in order to 
announce incoming congestion. The router which receives 
the packets continues to send the congestion sign to the 
source, which responds as though a packet is fallen. This 
behavior is necessary as it removes the overhead of the 
dropped packets. RED and other similar mechanisms are 
based on Active Queue Management, whereby an extra 
number of packets are naturally dropped by the control 
system in the case of congestion. The congestion is detected 
only when the queue length is positive. This causes jitter 
and delay which are not likely. On the other hand, flow-
based AQMs, such as GREEN [24] [25], control 
congestion, and act based on the packet arrival rate. 
GREEN processes the packet arrival rate and compares it 
with a threshold level. If the estimated data arrival rate of a 
link, namely x, is higher than the objective link capacity, c, 
the rate of congestion announcement, P, will be added by 
x. If x is lower than c, P is decremented by x.  

Besides many studies on different aspects of congestion 
control methods in the common TCP based networks, some 
researchers using the concept of SDN and its related 
capabilities to control the congestion. In [10] authors 
propose a signaling system that is designed for managing 
the cross-layer resources. In this framework, session 
control is integrated with the SDN concept to flexibly 
manage the services. Introducing a hands-on method, the 
proposed solution uses the usual and commonly deployed 
technologies to obtain increased benefits of the SDN. This 
framework imposes different control methods for the 
purpose of multifunctional service adaptation. 

In [26] authors developed a routing strategy that is 
based on the SDN and is specially designed for energy 
saving in QoS-guaranteed backbone links of networks. 
With SDN virtualization, the change in the network 
topology can be directly detected by the network controller. 
In this way, the network can be managed more effectively 
and easily. Based on the OSPF (Open Shortest Path First) 
protocol, simple changes in the topology of the network can 
be handled in this strategy. 

In [27] the authors have introduced a framework named 

Horizon, which predicts the congestion in a Data Center 

Network (DCN) by using a Markov process. Then it 

controls the network with the implementation of the user-

centric QoS on the nodes. In [28] the authors use Deep 

Packet Inspection (DPI) in SDN to propose an application-

aware system for traffic engineering. They show that, based 

on the priorities in the QoS levels, the QoS can be 

optimized by fragmenting the flows and classification of 

them in different queues. 

In [29] the authors have offered a new method to 

control the congestion of TCP flows by checking the ACK 

packets by the SDN Controller and in this way tried to 

modify the ACK header parameters and send them back to 

the switches of the network. So the end TCP stack has 

remained unchanged. 

In [30] the authors have focused on the short-lived 
TCP-incast traffic in Data Centers and introduced a method 
to decrease the unnecessarily long delays. These delays 
cause this kind of flows to wait for the minimum 
retransmission timeout (minRTO) to be elapsed. 

In order to prioritize different types of traffic such as 
video, voice, and data, the authors of  [31] propose a 
system, which uses a QoS based routing in SDN. So they 
can change the configuration of the nodes based on the QoS 
requirements.  

In [25], a general survey has been performed on the 
QoS-Based routing algorithms which are particularly used 
in SDN. Two methods have been awarded as the best 
performers among many studied solutions, and these are 
delay cost-constrained, and Lagrange relaxation 
aggregated cost routing algorithms. Another related 
algorithm is the Network Protocol-based QoS Routing 
which is proposed in [32]. In [33] the authors have studied 
the QoS in the VOIP services in SDN. The main parameter 
which has been considered is Mean Opinion Score (MOS) 
and also packet loss. The contribution in this work is an 
architecture that observes the whole network and 
recognizes the degradation point of MOS in the network in 
order to compensate it. 

As can be seen, in previous research, the contributions 
are mostly based on the RED algorithm to predict the 
congestion and make the proper reaction by dropping the 
packets of buffers. This is the same for FRED, SRED, or 
CHOKe with different views for prediction. All of these 
methods can be applied in a network which has not any 
central management on the parameters of the nodes. So, 
each node can make its own decision to handle the 
congestion. 

Consider the concept of SDN, the situation is totally 
different. In this case, the condition of all routers can be 
observed and it is possible to make decisions to prevent or 
remove the congestion and satisfy the required QoS. 
Unfortunately, there is not completed related work in this 
matter. A research only uses the TCP to get the result [10]. 
Other works are considering the routing as the main issue 
and are trying to find the best routes along with considering 
the QoS [26, 31]. Many other studies are trying to propose 
various methods based on the end to end dynamic 
parameters [27, 28]. There are also some studies based on 
the concept of QoS-based routing which has been discussed 
in [32] and [33]. [34] Is one of the most related works 
which has tried to propose a dynamic platform based on the 
observation of the TCP parameters in the SDN. 

None of the works use the AQM methods in 
combination with the SDN concept to achieve the required 
QoS. Therefore, this work integrates the AQM with central 
management of SDN to predict the congestion in the whole 
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network, and use the results for tuning the nodes’ 
parameters to get the requested QoS levels. 

As a new contribution, we have proposed a new QoS 
framework for SDN called QDFSN (QoS-enabled 
Dynamic and Programmable Framework for SDN) in this 
paper which can be used in Data Centers as well as the wide 
area networks. In this framework, employing AQM (Active 
Queue Management), a new function has been used for 
predicting the upcoming congestion situation. The function 
is applied to each node to collaborate with the central 
controller. A developed mathematical model is used to 
calculate the optimum parameters of the network nodes, 
which is concentrated on the service rate. The parameters 
are adaptive in order to achieve the minimum congestion in 
the network. 

The summary of the most related works can be 
observed in the following table. 

Table I. Summary of Related Works. 

No. Related Work Contribution and Proposed 
Method 

1 [17] RED 

2 [19] FRED 

3 [20] SRED 

4 [21] CHOKe 

5 [23] ECN 

6 [24] GREEN 

7 [10] Signaling System to manage 
cross-layer resources 

8 [26] Routing Strategy in SDN 

9 [27] Horizon with user-centric QoS 

10 [28] DPI in SDN 

11 [29] Checking the ACK Packets 

12 [30] TCP-incast Traffic 

13 [31] QoS based routing in SDN 

14 [25] QoS based routing in SDN 

15 [32] , [33] QoS based routing for VOIP in 
SDN 

    

3. QDFSN 

    This research presents a QoS-enabled Dynamic and 

Programmable Framework to minimize congestion control 

in SDN-enabled data centers. The proposed framework 

gathers information about the status of the network and 

traffic conditions through the SDN controller of each node 

and uses this information to minimize the congestion in the 

network. 

 

    Instead of TCP end-to-end control mechanism, this 

work introduces QDFSN as a dynamic adaptation of TCP 

based on traffic conditions using the SDN concept. Using 

the SDN idea, QDFSN mainly focuses on interior traffic 

in SDN-based data centers. Actually, the SDN controller 

has a universal overview of the network, such as its 

topology plan and routing information table, and the 

controller can easily collect appropriate statistics namely, 

link utilization and traffic congestion notifications. So, 

QDFSN is deployable as a direct controller application in 

SDN. QDFSN can be organized in any traditional network 

by imitating a centralized controller, and gathering 

network statistics. Our implementation of QDFSN is based 

on OpenFlow, even though QDFSN should work with any 

other SDN protocols. A key decision is how we want 

QDFSN to control the TCP’s action. We can either 

indirectly modify TCP’s parameters by changing the 

information delivered to the nodes (for example, through 

ECN bits), or directly modify it by having an agent running 

on the node ports that can update TCP parameters by 

request. The first choice does not require any changes in 

the node but gives us slight elasticity to make the desire 

deviations. While our nodes are managed under integrated 

management control, making any change on them is not so 

difficult. This is accurate for example in a data center 

setting. Consequently, we have intended QDFSN under 

the supposition that we may change nodes and install an 

insubstantial agent that can clearly affect TCP sessions. 

Using the advantages of possible extensible TCP 

applications, we can easily adapt TCP and even present a 

complete new congestion control mechanism. On the other 

hand, we have more time to control the nodes’ parameters. 

TCP’s congestion control updates occur on a time scale of 

the network round-trip time (RTT). This signifies 

microseconds in data center atmospheres. QDFSN adjusts 

TCP sources on a time scale, T, which is several times 

slower than RTTs. The precise value of T is selected by 

the network administrator. In order to preserve the 

instability in the network, T requires being a few orders of 

magnitude higher than the network RTT. Instinctively, by 

smooth amending of TCP parameters, QDFSN gives each 

TCP period sufficient time to be changed to a stable state 

before informing its condition. Furthermore, the time 

period required for applying the modifications of the 

parameters is much higher than the RTT of the network by 

few orders, and so QDFSN can guarantee a very limited 

overhead on the SDN controller. Here is a part of NS-2 

code to simulate the QDFSN. 

 
$ns import _OpenFlow(); 

$ns import _SDN(); 

$ns append 

_packet(data,video,emergency) append 

scheduler(classifier)  

set Flow(1,2,3) append queue();      

$ns _SamplingRate append 1/2S;         

$ns _Congestion($Queue(lentgh));         

$ns set $packet(ECN(1))  

$node() _congestion(flow);        

$ns _Flow(trigger) CAC; 

 

    Under the supervision of QDFSN in the central 

controller, we should optimize the function which is 

defined for measuring the congestion in all of the nodes. 

On the other words, at the same time, the information is 

gathered from all of the nodes, and based on that the 

function is optimized regarding the situation of all nodes 

in the entire network. Then the central controller applies 

the calculated parameters back on the nodes to get the best 
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optimized performance in the network. The probability 

function is presented in (1).  

 

𝑃𝑐𝑜𝑛𝑔 = {𝑓(𝑋(𝑡), 𝑃𝑚𝑎𝑥)

1, 𝑖𝑓 𝑇𝐻𝑚𝑎𝑥 ≤ 𝑋(𝑡)

, 𝑖𝑓 𝑇𝐻𝑚𝑖𝑛 ≤  𝑋(𝑡) < 𝑇𝐻𝑚𝑎𝑥

0, 𝑖𝑓  𝑋(𝑡) < 𝑇𝐻𝑚𝑖𝑛

 

    

(1) 

   Pcong is the probability of congestion in any node and X(t) 

is the parameter which is used for congestion detection and 

obviously is the queue length. The central controller is 

using this probability to sense the congestion in each node 

and do the optimization calculation to find the optimized 

parameters to overcome the congestion problem. 

  Using linear programming for optimizing this function 

we get (2). In this model, we are using the (μij) as the 

parameter which is the service rate of each buffer, and try 

to minimize the function for queue length of buffers (qij) 

in the network. Actually (qij) is the queue length which is 

normalized by the maximum length of the buffer and has 

a value between 0 and 1. 

 

 

    minimize   ∑ ∑ 𝑞𝑖𝑗(𝜇𝑖𝑗)𝑚
𝑗=1

𝑛
𝑖=1                                 (2)                            

𝑞𝑖𝑗(𝜇𝑖𝑗)  ≥ 𝑀𝑖𝑛 𝑇𝐻𝑖𝑗  , (i = 1, … , n  & j = 1, … , m) (I) 

𝑞𝑖𝑗(𝜇𝑖𝑗) ≤ 𝑀𝑎𝑥 𝑇𝐻𝑖𝑗 , (i = 1, … , n  & j = 1, … , m) (II) 

𝑞1𝑗(𝜇1𝑗) ≤  𝑞2𝑗(𝜇2𝑗) ≤ ⋯  ≤  𝑞𝑛𝑗(𝜇𝑛𝑗)  , ( j = 1, … , m) 

(III) 

∑ 𝐶𝑖𝑗
𝑛
𝑖=1 =  𝐶𝑜𝑢𝑡 𝑗   , ( j = 1, … , m)               (IV) 

0 ≤  𝑞𝑖𝑗  (𝜇𝑖𝑗) ≤ 1 , (i = 1, … , n  & j = 1, … , m) (V) 

𝜇𝑖𝑗 ≤ 𝐶𝑖𝑗  , (i = 1, … , n  & j = 1, … , m)       (VI) 

 

  There are some conditions that should be satisfied to get 

the converged answer. In conditions (I) and (II) it’s 

assumed that queue length will not exceed the upper and 

lower bounded limits. In condition (III) we assume that 

queue length of higher priority buffers should be less than 

the lower priority buffers. Otherwise, the packets should 

be transmitted firstly from the higher priority buffers to 

meet this condition.  The main reason for this constraint is 

applying the class of priority to different buffers. 

Obviously, this constraint is a non-linear conditional 

constraint and adds a lot of complexity to solving of the 

problem. So we should relax this condition in some cases. 

This is a conditional constraint and we can use some 

solutions like big M or using objective functions to solve 

the model. At some conditions, the length of the queue in 

higher priority buffer is non zero while the traffic is not 

present in other buffers. In this case, maximum output 

capacity will be dedicated to it to handle the packets inside 

of high priority buffer.  The total output bitrate of the 

buffers is equal to the capacity of each output link and this 

limitation is shown in the condition (IV). It relates to the 

length of each packet in the buffer and the rate of service 

for that buffer. The queue length function will be between 

0 and 1 which is shown in condition (V). The maximum 

value of service rate in each buffer is the output rate 

capacity of that buffer which is shown in condition (VI). 

 

   The qij is the buffer length. μij is the service rate in each 

node. Min THij is the minimum congestion threshold 

indicator. Max THij is the maximum congestion threshold 

indicator. Cij is the maximum transmission capacity of 

each buffer. Coutj is the overall node capacity. In these 

equations “i” is the index of buffers and “j” is the index of 

the nodes’ ports in the network. N is the number of buffers 

in each node. M is the number of nodes’ ports in the 

network. Figure 1 shows a schematic of the central 

congestion control unit. In this model, the congestion in 

the entire network has been controlled by the central 

congestion control server. Each port in each node has 

different buffers for classifying the traffic based on the 

priority of each traffic class. The service rate of each buffer 

is controlled by the central server, and in periodic 

intervals, this rate has been re-calculated by the controller 

and will be implemented to the appropriate buffers of the 

port in each node. In this way, the rate of output traffic for 

different flows is controlled and throttled and this will 

prevent the congestion and packet drop in the next node. 

By making these arrangements the congestion probability 

will be reduced and this matter will reduce the number of 

packet drops and retransmission of packets by itself. 

 

  Again please notice that the calculations in each cycle 

will be made only when the congestion condition in each 

node is recognized by the central controller, and if, only 

higher priority buffer has the traffic, all of the output 

capacity of the link will be dedicated to that buffer e.g.  

 

  This optimization problem will be solved by solving a 

linear programming case by using the proper software. We 

have used the functional libraries of NS-2 to solve the 

problem and simulation of the results. Of course, it’s 

possible to use another software like MATLAB for solving 

the linear programming problems. The output of this 

optimization is the minimized total buffer length in the 

network by applying the calculated optimized amounts of 

service rate in each buffer. 

 

 
Fig. 1. The Schematic view of congestion control model. 

 

   The state diagram of this model has been shown in 

Figure 2.  
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Fig. 2. State diagram of the controller in the proposed 

model. 
   As can be seen, the system starts with monitoring and 

gathering the parameters and congestion indexes from all 

of the nodes. Then the controller checks the indicators to 

see if there is any congestion in the network. If there is not 

any congestion, the algorithm repeats in a timely manner. 

If the system detects any congestion, it optimizes the 

network parameters based on the mentioned mathematical 

model. At the next step, the new obtained parameters 

which are resulted from the converged calculation are 

implemented on the network nodes, and the system enters 

the monitoring state again. 

   Please consider this not the complete state diagram of the 

entire controller, but it shows the state diagram of the 

congestion control module. We have considered this 

module as one of the internal modules in the central 

controller. There are some reasons to select such a 

structure. As it’s clear, there is a considerable amount of 

calculations for making the congestion control model be 

convergent. So it needs suitable processing power which 

should be dedicated by the main controller. Otherwise, 

some other important decisions should be made by the 

controller and have a relation with QoS control like the 

routing algorithm. This relation has resulted in the 

introduction of some methods that perform the QoS 

management along with the routing at the same time. All 

of these facts will force us to consider the congestion 

control module as one of the internal modules of the 

central controller. 

 

4. Results 

    The primary goal of QoS is to provide priority including 

dedicated bandwidth, controlled jitter and latency, 

required by many real-time and interactive traffics, and 

also, controlling packet loss. Moreover, it is important to 

make sure that providing priority for one or more flows 

does not affect other flows.  

    To evaluate the effectiveness of the proposed model for 

improving the QoS parameters, it is simulated using the 

NS-2. To evaluate the real performance of the model, three 

parameters named throughput, delay, and energy 

consumption are examined. First, we simulate the 

proposed model with one node and continue the simulation 

for up to 150 nodes in the network. A simulation set is 

performed when SDN is enabled. Another simulation is 

done with OpenTCP [34] context and another simulation 

with TCP protocol.  

  For considering the input traffic, please observe the table 

2 and 3 which are showing the parameters and features of 

that. We have assumed that input traffic is randomly 

applied on the nodes for the large scale networks with 100 

or 150 nodes but in more simple conditions the situation is 

completely explained in detail. 

    First, we test our method on a simple network including 

only two nodes. We suppose that we have three kinds of 

flows including High Priority, Low Priority, and Best 

Effort. In this simple network, we have the topology as 

Figure 3. 

 
Fig. 3. Simple network with two nodes. 

 

The simulation parameters are as table II. 

 

Table II. Simulation parameters for a network with 2 

nodes. 

Flow 

CBR 

(Kbps) 

RTT 

(ms) 

Start 

(Sec) 

End 

(Sec) 

Packet 

Length 

(Byte) 

High 

Priority 

5000 7.66 3 100 500 

Low 

Priority 

3000 5.4 7 95 250 

Best 

Effort 

3000 8.3 17 32 250 

  

We compare the simulation result of these three methods 

as follows. 

 
Fig. 4. Comparison of Throughput based on Mbps in a 

simple network with two nodes. The triangle line is 

related to the SDN-enabled network, the squared line 

represents the open-TCP network and the circled line is 

related to the network which is pure TCP 
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    It can be observed that using QDFSN has given us more 

throughputs on the congested link. As seen in Figure 4 the 

overall throughput of the network with SDN 

implementation is 8 Mbps while the overall throughput of 

OpenTCP implementation is 6 Mbps and TCP 

implementation is 4 Mbps. 

 In this situation, the utilization ratio is above 80% which 

is more than other methods. 

    At a second step, we assume a more complex network 

with 5 nodes. The topology of this network has been 

selected as in Figure 5. In this case, we still have a 

bottleneck link but with more routes in the next hops. To 

have a different condition we preferred to increase the 

bandwidth of the links to 12 Mbps. 

 

 
Fig. 5. Schematic view of a network with five nodes. 

 

    The simulated parameters are based on table III. 

 

Table III. Simulation parameters for a network with 5 

nodes. 

Flow 

CBR 

(Kbps) 

RTT 

(ms) 

Start 

(Sec) 

End 

(Sec) 

Packet 

Length 

(B) 

High 

Priority 

5000 7.66 3 100 500 

Low 

Priority 

4000 5.4 7 95 250 

Best 

Effort 

4000 8.3 17 32 250 

 

    The simulation has been done with three methods and 

the result has been demonstrated in Figure 6.  

 

 

 
Fig. 6. Comparison of Throughput based on Mbps in a 

simple network with five nodes. The triangle line is 

related to the SDN-enabled network, the squared line 

represents the open-TCP network and the crossed line is 

related to the network which is pure TCP. 

 

    A comparison between QDFSN and other methods 

shows that the overall throughput is getting better. In the 

test, the OpenTCP implementation has negligible jitter, but 

overally, the performance of SDN is better than OpenTCP 

and TCP implementations. The results show about 12 

Mbps for SDN-based network, 10 for OpenTCP 

implementation, and 8 Mbps for TCP. At the next step, we 

try to test the idea on the more complex network 

topologies. In this regard we built new random topology 

with 100, and also 150 nodes to simulate the model in a 

larger network. 

    View of these topologies is shown in Figures 7 and 8. 

 

 

 
Fig. 7. NAM representation of network (Closed view - 

Upper bound). 

  

 
Fig. 8. Schematic view of the simulated network (Bottom 

bound - closed view). 

 

    At this time, we focused on other parameters such as 

delay and energy consumption. Please notice that energy 

consumption is the power that is consumed in the central 

controller server for processing. Actually, it will show the 

amount of processing that is required to solve the 

equations of the model with convergence and calculate the 

required parameters for controlling the network traffic. As 

the first scenario, we load the network with three flows that 

have different levels of priority. These flows are 

transmitted into the network through random nodes. We 

select a congested network with minimum traffic. Now we 

can compare many quality-related parameters including 

throughput, delay, and energy consumption.      Please 

notice that the energy in the form of power can be also 
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saved by controlling the frequency of the central processor 

based on the volume of traffic [35]. 

    Like the first simulation, we choose the parameters 

based on table 2. The bandwidth of each link in the 

network is 10 Mbps and we are confident that the total 

amount of injected traffic is much higher than this value.  

    We tested this condition in different topologies and the 

results are evaluated for two random 100-nodes and 150-

nodes network. Consider that topology of these two 

networks is random and there is not any similarity between 

them, so it is possible that each network shows a specific 

response to the traffic congestion, and it is because of a 

possible bottleneck in their connections. 

    Figures 9 to 11 are shown the delay, energy 

consumption, and throughput in a 100-nodes random 

network.  

 
Fig. 9. Comparison of delay imposed to network with 100 

nodes. The squared line is related to the SDN-enabled 

network, the crossed line represents the open-TCP 

network and the triangle liner is related to the network 

which is pure TCP. 

 

 
Fig. 10. Comparison of energy consumption of a network 

with 100 nodes. The squared line is related to the SDN-

enabled network, the crossed line represents the open-

TCP network and the triangle line is related to the 

network which is pure TCP. 

 

 
Fig. 11. Comparison of throughput gained from a 

network with 100 nodes. The squared line is related to the 

SDN-enabled network, he crossed line represents the 

open-TCP network and the triangle line is related to the 

network which is pure TCP. 

 

    To further evaluate our proposed model, we repeat the 

simulations with a higher number of nodes in a 150-nodes 

random network. This time, 150 nodes are in a simulation 

environment, and these results are obtained which are 

shown in Figures 12 to 14. 

 

 
Fig. 12. Comparison of delay imposed to network with 

150 nodes. The squared line is related to the SDN-

enabled network, the crossed line represents the open-

TCP network and the triangle line is related to the 

network which is pure TCP. 

 

 
Fig. 13. Comparison of energy consumption of a network 

with 150 nodes. The squared line is related to the SDN-

enabled network, the crossed line represents the open-

TCP network and the triangle line is related to the 

network which is pure TCP. 
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Fig. 14. Comparison of throughput from a network with 

150 nodes. The squared line is related to SDN-enabled 

network, the crossed line represents the open-TCP and 

the triangle line is related to the network which is pure 

TCP. 

 

    As seen, TCP pacing positively mitigates the TCP 

concurrent flows. In a large network or data center with 

thousands of simultaneous flows, it is almost impossible 

to guarantee that the number of live flows will always be 

less than any threshold. Consequently, providers are 

unwilling to permit pacing despite its proven efficiency. 

Nonetheless, with the proposed method, TCP can be 

dynamically managed to ensure the system works at its 

peak performance. 

    Diagrams show that using the QDFSN in a network with 

a noticeable number of the nodes can enhance the 

performance of the network. The Throughput in both 100 

and 150 nodes networks is higher than other methods. 

Consider that the numeric values of the throughput are not 

important because it deeply depends on the network 

topology and interconnection of its links. The same case 

applies for the delay. It is shown that the delay has been 

lowered for the flows using the QDFSN in comparison 

with other methods, and this means that flows with higher 

priority can pass through the network with guaranteed 

quality. 

      Although using QDFSN leads to better performance, it 

has its own price which is more energy consumption. As 

seen in the related diagrams, the energy consumption of 

the QDFSN method is higher than pure TCP, and also than 

open-TCP. For pure TCP it’s clear because there is not any 

calculation for pure TCP in meanwhile of flow transfer and 

all of the decisions are made end-to-end. But in 

comparison with open-TCP still we have more 

calculations to solve our more complex model in QDFSN 

and it takes more energy. Of course, the difference is not 

considerable and will be decreased by time. Notice that at 

the beginning of each calculation cycle, the volume of 

calculations in the QDFSN is much higher than other 

methods, and energy consumption diagrams are showing 

this. By passing a reasonable period, the input traffic that 

may have the burst nature will be controlled between the 

buffers and the amount of processing will be decreased in 

a result.  

5. Conclusion 

    Congestion control has been widely studied for several 

years. In light of the emerging popularity of centrally 

controlled SDN, we ask whether we can take advantage of 

the information available at the central controller to 

improve TCP. Specifically, in this paper, we examine the 

design and implementation of QDFSN, a dynamic and 

programmable TCP adaptation framework for SDN-

enabled data centers. QDFSN gathers information about 

the status of the network and traffic conditions through the 

SDN controller per node and uses this data to adjust TCP. 

QDFSN sporadically sends updates to nodes which, in 

turn, inform their behavior using a simple kernel part. In 

this paper, we discuss the architectural design of QDFSN, 

as well as its implementation and simulation with the 

open-source discrete event simulator NS-2.  

In other words, in this research, we proposed a new QoS 

framework for SDN called QDFSN. Compared with 

traditional TCP function, QDFSN-based congestion 

control shortens the process of adjusting TCP to network 

circumstances. Using the SDN concept, QDFSN can alter 

TCP's parameters. We take advantage of the information 

available in the central controller to improve the 

performance of TCP. In QDFSN, the network operator has 

complete control over the changes applied totally through 

the congestion control rules. Congestion control plans tell 

QDFSN how to adjust and which constraints to satisfy. 

Although this gives choice to the network operator, it runs 

the possibility of instability in the network. This is because 

the operator might define an unstable congestion control 

procedure or it might present mismatched congestion 

control policies in the whole network. Instability might 

likewise be caused if the operator chooses an inappropriate 

time scale to update TCP agents. QDFSN takes steps to 

guarantee the stability of the system in practice changing 

the default TCP parameters when it faces instability in the 

arrangement. A more prescribed definition of stability 

along with theoretical exploration and further trials 

remains an interesting future work. Besides, we had not 

any assumption about the location of the controller and the 

effect of the propagation delay of the command between 

the controller and the nodes, and it may become a 

challenging issue to study. 
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