تعداد نشریات | 43 |
تعداد شمارهها | 1,275 |
تعداد مقالات | 15,751 |
تعداد مشاهده مقاله | 51,866,706 |
تعداد دریافت فایل اصل مقاله | 14,690,511 |
بررسی عددی اثر شکل، چیدمان و جهتگیری نازلها بر انتقال گرمای جتهای برخوردی همزمان در خنک کاری صفحه تخت | ||
مهندسی مکانیک دانشگاه تبریز | ||
دوره 52، شماره 1 - شماره پیاپی 98، اردیبهشت 1401، صفحه 207-216 اصل مقاله (1.08 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2021.45491.2876 | ||
نویسندگان | ||
میثم فیض اله زاده1؛ میریوسف هاشمی* 2؛ محسن فلاح3 | ||
1دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه شهید مدنی آذربایجان، تبریز، ایران | ||
2دانشیار، گروه مهندسی مکانیک، دانشگاه شهید مدنی آذربایجان، تبریز، ایران | ||
3استادیار، گروه مهندسی مکانیک، دانشگاه شهید مدنی آذربایجان، تبریز، ایران | ||
چکیده | ||
در این مطالعه هدف بررسی تأثیر تغییر زاویهی نازلهای بیضوی با چرخش حول محور عمود بر صفحه نازل بودهاست. جتهای برخوردی چندگانه به دلیل کارآمدی و انتقال گرمای بالا مورد توجه بسیاری از محققان قرار گرفتهاند. برای شبیهسازی جریان و انتقال گرمای آشفته از مدل آشفتگی SST k-omega استفاده شده است. ابتدا به بررسی توجیهپذیری استفاده از نازلهای بیضوی در مقایسه با نازلهای دایروی جهت خنک کاری پرداخته شده است و سپس تغییر چیدمان و زاویهی نازلها بررسی شده است. نتایج بهدستآمده نشان داد که تغییر زاویهی نازلها نسبت به محور عمودی میتواند در برخی از موارد باعث افزایش میزان شار گرمایی گردد. نتایج حاصل از مدل سازی نشان داد که در نسبت قطر 2 و 4 تغییر زاویه در نحوه چیدمان نازلها اثر منفی داشته است درحالیکه در نسبت قطر 3، تغییر زاویه در چیدمان نازلها توانسته است باعث افزایش انتقال گرما به میزان قابل توجه 71/3 درصدی شود. همچنین مطالعات عددی نشان دادند که تغییر زاویه تأثیر چندانی بر ایجاد یکنواختی انتقال گرما ندارد. | ||
کلیدواژهها | ||
جت برخوردی؛ جهتگیری نازل؛ نازل بیضوی؛ خنک کاری؛ مدل سازی عددی | ||
مراجع | ||
[1] Jahedi M. And Moshfegh B., Quenching hot rotary Hollow cylinder by 1-row and 2-row water impinging jet array, Journal of Fluid Flow, Heat and Mass Transfer, Vol. 8, pp. 178-188, 2021.
[2] Weigand B. and Spring S., Multiple jet impingement−a review, Heat Transfer Research, Vo. 42, No. 1, pp. 101-142, 2011.
[3] Friedman S. J. and A. C. Mueller, Heat transfer to flat surfaces, Inst. Mech. Engr. and ASME, Proc. of the General Discussion on Heat Transfer, pp. 138–142, 1951.
[4] Perry K. P., Heat transfer by convection from a hot gas jet to a plane surface, Proceedings of the Institution of Mechanical Engineers, Vol. 168, No. 1, pp. 775-784, 1954.
[5] Obot N. T., Majumdar A. S. and W. J. M. Douglas, The effect of nozzle geometry on impingement heat transfer under a round turbulent jet, American Society of Mechanical Engineers , Winter Annual Meeting, New York, N.Y., Dec. 2-7, 1979.
[6] Zumbrunnen D. A., Convective heat and mass transfer in the stagnation region of a laminar planar jet impinging on a moving surface, Journal of Heat Transfer, Vol. 113, No. 3, pp. 563-570, 1991.
[7] Lytle D. and Webb B. W., Air jet impingement heat transfer at low nozzle-plate spacing’s, International Journal of Heat and Mass Transfer, Vol. 37, No. 12, pp. 1687–1697, 1994.
[8] Yang G., Choi M. and Lee J. S., An experimental study of slot jet impingement cooling on concave surface: effects of nozzle configuration and curvature, International Journal of Heat and Mass Transfer, Vol. 42, No. 12, pp. 2199-2209, 1999.
[9] Gulati P., Katti V., and Prabhu S. V., Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet, International Journal of Thermal Sciences, Vol. 48, No. 3, pp. 602-617, 2009.
[10] Geers L. F., Tummers M. J. and Hanjalić K., Experimental investigation of impinging jet arrays, Experiments in fluids, Vol. 36, No. 6, pp. 946-958, 2004.
[11] Lee J. and Lee S. J., The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet, International journal of heat and mass transfer, Vol. 43, No. 4, pp. 555-575, 2000.
[12] Lou Z. Q., Mujumdar A. S. and Yap C., Effects of geometric parameters on confined impinging jet heat transfer, Applied Thermal Engineering, Vol. 25, No. 17–18, pp. 2677-2697, 2005.
[13] Goldstein R. J. and Timmers J. F., Visualization of heat transfer from arrays of impinging jets, International Journal of Heat and Mass Transfer, Vol. 25, No. 12, pp. 1857–1868, 1982.
[14] San J. Y. and Lai M. D., Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets” International Journal of Heat and Mass Transfer, Vol. 44, No. 21, pp. 3997–4007, 2001.
[15] Lee J., Ren Z., Ligrani P., Fox M. D. and Moon H. K., Cross flows from jet array impingement cooling: Hole spacing, target plate distance, Reynolds number effects, International Journal of Thermal Sciences, Vol. 88, pp. 7–18, 2015.
[16] Caliskan S., Baskaya S. and Calisir T., Experimental and numerical investigation of geometry effects on multiple impinging air jets, International Journal of Heat and Mass Transfer, Vol. 75, pp. 685–703, 2014.
[17] Wen Z. X., He Y. L. and Ma Z., Effects of nozzle arrangement on uniformity of multiple impinging jets heat transfer in a fast cooling simulation device, Computers & Fluids, Vol. 164, pp. 83–93, 2018.
[18] Tepe A. Ü., Uysal Ü., Yetişken Y. and Arslan K., Jet impingement cooling on a rib-roughened surface using extended jet holes, Applied Thermal Engineering, Vol. 178, Article 115601, 2020.
[19] Metzger D. E., Florschuetz L. W., Takeuchi D. I., Behee R. D. and Berry R. A., Heat transfer characteristics for inline and staggered arrays of circular jets with crossflow of spent air, Journal of Heat Transfer, Vol. 101, No. 3, pp. 526-531, 1979.
[20] Wang J., Deng H., Tao Z., Li Y. and Zhu J., Heat transfer in a rotating rectangular channel with impingement jet and film holes, International Journal of Thermal Sciences, Vol. 163, Article 106832, 2021.
[21] Zhu J., Dou R., Hu Y., Zhang S. and Wang X., Heat transfer of multi-slot nozzles air jet impingement with different Reynolds number, Applied Thermal Engineering, Vol. 186, Article 116470, 2020.
[22] تهور ع.، پورجم م.م. و حیدری ش.، مطالعه عددی و تجربی برخورد یک جت مستطیلی با یک صفحه تخت در راستای عمود بر محور. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 44، ش. 1، ص 53-58، 1393.
[23] فتحی ع. و آهنگر م.، مطالعه عددی جریان جت برخوردی تولید شده توسط رژیم تخلیه الکتریکی کرونا. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 49، ش. 3، ص 259-267، 1398.
[24] Mostafa N. A., Computational Fluid Dynamics Modelling of Three-Dimensional Jet Impingement Cooling on Concave Surfaces. Ph.D. Thesis, University of Manchester (United Kingdom), 2007.
[25] Xing Y., Spring S. and Weigand B., Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets, Journal of Heat Transfer, Vol. 132, No. 9, Article 092201, 2010. | ||
آمار تعداد مشاهده مقاله: 452 تعداد دریافت فایل اصل مقاله: 153 |