تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,587 |
تعداد دریافت فایل اصل مقاله | 15,214,460 |
بهینهسازی متغیرهای دما و زمان پیشتیمار حرارتی و غلظت مواد آلی بهمنظور تولید بیشینه متان در هضم بیهوازی پسماندهای آلی | ||
مکانیزاسیون کشاورزی | ||
دوره 6، شماره 1، فروردین 1400، صفحه 69-79 اصل مقاله (1.44 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jam.2021.13134 | ||
نویسندگان | ||
سید مسعود کمالی1؛ رضا عبدی* 1؛ عباس روحانی2؛ شمس اله عبداله پور1؛ سیروس ابراهیمی3 | ||
1گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تبریز | ||
2گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد | ||
3دانشکده مهندسی شیمی، دانشگاه صنعتی سهند | ||
چکیده | ||
چکیده هضم بیهوازی پسماندهای آلی دارای مشکلاتی همچون کند بودن فرآیند و در نتیجه نیاز به حجم زیاد راکتور، عدم تولید متان کافی برای تامین انرژی مورد نیاز فرآیند و همچنین عدم اطمینان از سلامت مواد هضم شده برای استفاده در اراضی کشاورزی به عنوان کود آلی است. پیشتیمار حرارتی پسماندهای آلی میتواند به عنوان روشی برای حل مشکلات مطرح شده در خصوص فرآیند هضم بیهوازی در نظر گرفته شود. از سوی دیگر محققین بسیاری اعمال دماهای بالا بهمنظور پیشتیمار انواع مواد آلی مانند پسماندهای غذایی که به سهولت قابل تجزیه هستند را به دلیل تاثیر نامطلوب در فرآیند هضم و کاهش تولید متان توصیه نمیکنند. در این تحقیق تأثیر پارامترهای مستقل شامل دمای پیشتیمار در سه سطح 70، 90 و 110 درجه سلسیوس، زمان پیشتیمار در سه سطح 30، 75 و 120 دقیقه و غلظت در سه سطح 8، 12 و 16 درصد بر روی میزان تولید متان بررسی شدند. بهمنظور بهینهسازی این پارامترها، مدلسازی با استفاده از روش سطح پاسخ و در قالب طرح باکس بنکن انجام و سپس از الگوریتم ژنتیک برای یافتن سطوح بهینه متغیرهای مورد بررسی بهرهگیری شد. نتایج بهینهسازی فرآیند پیشتیمار حرارتی با استفاده از الگوریتم ژنتیک نشان داد که مطلوبترین مقادیر مربوط به دما و زمان پیشتیمار و غلظت مورد بررسی به ترتیب 96 درجه سلسیوس و 95 دقیقه و 12 درصد بودهاند. میزان مورد انتظار تولید متان بر اساس الگوریتم ژنتیک با اعمال شرایط بهینه دما و زمان پیشتیمار و غلظت برابر 354 میلیلیتر به ازای هر گرم ماده آلی فرار بوده که مطابقت خوبی با میزان واقعی متان حاصل شده پس از اعمال این پیشتیمار بر پسماندهای آلی داشته است (58/4 ± 347). | ||
کلیدواژهها | ||
واژههای کلیدی: پیشتیمار حرارتی؛ هضم بیهوازی؛ طرح باکس بنکن؛ بهینهسازی | ||
مراجع | ||
American Public Health Association (APHA). (2012). Standard methods for the examination of water and wastewater. 22. Washington DC (USA): American Public Health Association/American Water Works Association/Water Environment Federation. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., and Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water science and technology. 59(5): 927-934. Ariunbaatar, J., Panico, A., Frunzo, L., Esposito, G., Lens, P. N.,, and Pirozzi, F. (2014). Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods. Journal of environmental management. 146: 142-149. Barjenbruch, M., & Kopplow, O. (2003). Enzymatic, mechanical and thermal pre-treatment of surplus sludge. Advances in Environmental Research. 7(3): 715-720. Chynoweth, D.P., Owens, J.M., and Legrand, R. (2001). Renewable methane from anaerobic digestion of biomass. Renewable energy. 22(1-3): 1-8. Climent, M., Ferrer, I., del Mar Baeza, M., Artola, A., Vázquez, F., and Font, X. (2007). Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chemical Engineering Journal.133(1-3): 335-342. Gupta, P., Singh, R.S., Sachan, A., Vidyarthi, A.S., and Gupta, A. (2012). A re-appraisal on intensification of biogas production. Renewable and Sustainable Energy Reviews. 16(7): 4908-4916. Liu, X., Wang, W., Gao, X., Zhou, Y., and Shen, R. (2012). Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management. 32(2): 249-255. Ma, J., Duong, T. H., Smits, M., Verstraete, W., and Carballa, M. (2011). Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresource technology. 102(2): 592-599. Maghanaki, M.M., Ghobadian, B., Najafi, G., and Galogah, R.J. (2013). Potential of biogas production in Iran. Renewable and Sustainable Energy Reviews. 28:702-714. McLeod, J. D., Othman, M. Z., Beale, D. J., and Joshi, D. (2015). The use of laboratory scale reactors to predict sensitivity to changes in operating conditions for full-scale anaerobic digestion treating municipal sewage sludge. Bioresource technology. 189: 384-390. Neyens, E., and Baeyens, J. (2003). A review of thermal sludge pre-treatment processes to improve dewaterability Journal of hazardous materials. 98(1-3): 51-67. Pérez-Elvira, S., Fdz-Polanco, M., Plaza, F. I., Garralón, G., & Fdz-Polanco, F. (2009). Ultrasound pre-treatment for anaerobic digestion improvement. Water Science and Technology. 60(6): 1525-1532. Prorot, A., Julien, L., Christophe, D., and Patrick, L. (2011). Sludge disintegration during heat treatment at low temperature: a better understanding of involved mechanisms with a multiparametric approach. Biochemical engineering journal. 54(3): 178-184. Rafique, R., Poulsen, T. G., Nizami, A. S., Murphy, J. D., and Kiely, G. (2010). Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy, 35(12): 4556-4561. Raposo, F., De la Rubia, M. A., Fernández-Cegrí V., and Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews. 16(1): 861-877. Saxena, R. C., Adhikari, D. K., and Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: A review. Renewable and sustainable energy reviews. 13(1): 167-178. Scherzinger, M., and Kaltschmitt, M. (2021). Thermal pre-treatment options to enhance anaerobic digestibility – A review. Renewable and sustainable energy reviews. 137: 110627.
American Public Health Association (APHA). (2012). Standard methods for the examination of water and wastewater. 22. Washington DC (USA): American Public Health Association/American Water Works Association/Water Environment Federation. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., and Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water science and technology. 59(5): 927-934. Ariunbaatar, J., Panico, A., Frunzo, L., Esposito, G., Lens, P. N.,, and Pirozzi, F. (2014). Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods. Journal of environmental management. 146: 142-149. Barjenbruch, M., & Kopplow, O. (2003). Enzymatic, mechanical and thermal pre-treatment of surplus sludge. Advances in Environmental Research. 7(3): 715-720. Chynoweth, D.P., Owens, J.M., and Legrand, R. (2001). Renewable methane from anaerobic digestion of biomass. Renewable energy. 22(1-3): 1-8. Climent, M., Ferrer, I., del Mar Baeza, M., Artola, A., Vázquez, F., and Font, X. (2007). Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chemical Engineering Journal.133(1-3): 335-342. Gupta, P., Singh, R.S., Sachan, A., Vidyarthi, A.S., and Gupta, A. (2012). A re-appraisal on intensification of biogas production. Renewable and Sustainable Energy Reviews. 16(7): 4908-4916. Liu, X., Wang, W., Gao, X., Zhou, Y., and Shen, R. (2012). Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management. 32(2): 249-255. Ma, J., Duong, T. H., Smits, M., Verstraete, W., and Carballa, M. (2011). Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresource technology. 102(2): 592-599. Maghanaki, M.M., Ghobadian, B., Najafi, G., and Galogah, R.J. (2013). Potential of biogas production in Iran. Renewable and Sustainable Energy Reviews. 28:702-714. McLeod, J. D., Othman, M. Z., Beale, D. J., and Joshi, D. (2015). The use of laboratory scale reactors to predict sensitivity to changes in operating conditions for full-scale anaerobic digestion treating municipal sewage sludge. Bioresource technology. 189: 384-390. Neyens, E., and Baeyens, J. (2003). A review of thermal sludge pre-treatment processes to improve dewaterability Journal of hazardous materials. 98(1-3): 51-67. Pérez-Elvira, S., Fdz-Polanco, M., Plaza, F. I., Garralón, G., & Fdz-Polanco, F. (2009). Ultrasound pre-treatment for anaerobic digestion improvement. Water Science and Technology. 60(6): 1525-1532. Prorot, A., Julien, L., Christophe, D., and Patrick, L. (2011). Sludge disintegration during heat treatment at low temperature: a better understanding of involved mechanisms with a multiparametric approach. Biochemical engineering journal. 54(3): 178-184. Rafique, R., Poulsen, T. G., Nizami, A. S., Murphy, J. D., and Kiely, G. (2010). Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy, 35(12): 4556-4561. Raposo, F., De la Rubia, M. A., Fernández-Cegrí V., and Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews. 16(1): 861-877. Saxena, R. C., Adhikari, D. K., and Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: A review. Renewable and sustainable energy reviews. 13(1): 167-178. Scherzinger, M., and Kaltschmitt, M. (2021). Thermal pre-treatment options to enhance anaerobic digestibility – A review. Renewable and sustainable energy reviews. 137: 110627.
American Public Health Association (APHA). (2012). Standard methods for the examination of water and wastewater. 22. Washington DC (USA): American Public Health Association/American Water Works Association/Water Environment Federation. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., and Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water science and technology. 59(5): 927-934. Ariunbaatar, J., Panico, A., Frunzo, L., Esposito, G., Lens, P. N.,, and Pirozzi, F. (2014). Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods. Journal of environmental management. 146: 142-149. Barjenbruch, M., & Kopplow, O. (2003). Enzymatic, mechanical and thermal pre-treatment of surplus sludge. Advances in Environmental Research. 7(3): 715-720. Chynoweth, D.P., Owens, J.M., and Legrand, R. (2001). Renewable methane from anaerobic digestion of biomass. Renewable energy. 22(1-3): 1-8. Climent, M., Ferrer, I., del Mar Baeza, M., Artola, A., Vázquez, F., and Font, X. (2007). Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chemical Engineering Journal.133(1-3): 335-342. Gupta, P., Singh, R.S., Sachan, A., Vidyarthi, A.S., and Gupta, A. (2012). A re-appraisal on intensification of biogas production. Renewable and Sustainable Energy Reviews. 16(7): 4908-4916. Liu, X., Wang, W., Gao, X., Zhou, Y., and Shen, R. (2012). Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management. 32(2): 249-255. Ma, J., Duong, T. H., Smits, M., Verstraete, W., and Carballa, M. (2011). Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresource technology. 102(2): 592-599. Maghanaki, M.M., Ghobadian, B., Najafi, G., and Galogah, R.J. (2013). Potential of biogas production in Iran. Renewable and Sustainable Energy Reviews. 28:702-714. McLeod, J. D., Othman, M. Z., Beale, D. J., and Joshi, D. (2015). The use of laboratory scale reactors to predict sensitivity to changes in operating conditions for full-scale anaerobic digestion treating municipal sewage sludge. Bioresource technology. 189: 384-390. Neyens, E., and Baeyens, J. (2003). A review of thermal sludge pre-treatment processes to improve dewaterability Journal of hazardous materials. 98(1-3): 51-67. Pérez-Elvira, S., Fdz-Polanco, M., Plaza, F. I., Garralón, G., & Fdz-Polanco, F. (2009). Ultrasound pre-treatment for anaerobic digestion improvement. Water Science and Technology. 60(6): 1525-1532. Prorot, A., Julien, L., Christophe, D., and Patrick, L. (2011). Sludge disintegration during heat treatment at low temperature: a better understanding of involved mechanisms with a multiparametric approach. Biochemical engineering journal. 54(3): 178-184. Rafique, R., Poulsen, T. G., Nizami, A. S., Murphy, J. D., and Kiely, G. (2010). Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy, 35(12): 4556-4561. Raposo, F., De la Rubia, M. A., Fernández-Cegrí V., and Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews. 16(1): 861-877. Saxena, R. C., Adhikari, D. K., and Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: A review. Renewable and sustainable energy reviews. 13(1): 167-178. Scherzinger, M., and Kaltschmitt, M. (2021). Thermal pre-treatment options to enhance anaerobic digestibility – A review. Renewable and sustainable energy reviews. 137: 110627.
| ||
آمار تعداد مشاهده مقاله: 441 تعداد دریافت فایل اصل مقاله: 362 |