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Abstract

In this manuscript, we review fractal calculus and the analogues of both local Fourier transform with its related

properties and Fourier convolution theorem are proposed with proofs in fractal calculus. The fractal Dirac delta

with its derivative and the fractal Fourier transform of the Dirac delta is also defined. In addition, some important
applications of the local fractal Fourier transform are presented in this paper such as the fractal electric current

in a simple circuit, the fractal second order ordinary differential equation, and the fractal Bernoulli-Euler beam

equation. All discussed applications are closely related to the fact that, in fractal calculus, a useful local fractal
derivative is a generalized local derivative in the standard calculus sense. In addition, a comparative analysis

is also carried out to explain the benefits of this fractal calculus parameter on the basis of the additional alpha

parameter, which is the dimension of the fractal set, such that when α = 1, we obtain the same results in the
standard calculus.

Keywords. Fractal calculus, Fractal local Fourier transform, Fractal differential equation, Fractal Fourier convolution theorem, Fractal Dirac delta
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1. Introduction

In the 1970s, the mathematician Mandelbrot explored a new geometry of nature that accepts the irregular structures
of items including coastlines, lightning bolts, clouds, and molecular trajectories. Then, mathematicians had started
studying in the late 19th century. The key characteristic of these objects, which Mandelbrot named fractals, is that
their borders are so irregular that is not easy to comprehend how simple metric concepts and operations can be applied
to them [25]. Mandelbrot has guided us to think in a new scientific manner about the edges of the clouds, the shapes
of the tops of the forest on the horizon, and the complex shifting structure of the feathers on the wings of a bird as it
flies [3, 25].

The concept of complex dimensions of fractal strings has been established by Lapidus et al. [24]. Such complex
dimensions are identified as the poles of the corresponding zeta function [24]. Under an explicit formula, the oscillations
in the geometry or frequency spectrum of the fractal string are represented. These oscillations are not found in smooth
geometry [24]. Fractal geometry offers a strong method for the quantitative description of complex, highly irregular
and random structures [7, 24, 32]. Besides, it can be used to define the processes that contribute to the creation
and physical behavior of these structures [7, 32, 33]. The analysis on fractals has a key role in applications and
modeling of processes with fractal structures. Scientists have developed various techniques to study fractal analysis,
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like harmonic analysis, probabilistic approaches, metric theory, fractional calculus, fractional spaces, and time-scale
calculus [1, 2, 4, 8, 23, 27, 36, 37]. The methods of ordinary calculus are inadequate or not applicable to fractals.
Some examples of fractals that have been seen in calculus are the Weierstrass functions and Cantor staircase functions.
However, ordinary calculus is unable to deal with problems such as fractal dynamics and fractal time phenomena
[35, 38, 39].

In the seminal papers [29–31], a calculus based on fractal subsets of the real line has been introduced by Parvate and
Gangal, which is appropriate to integrate functions with fractal support. In addition, the fractional-order derivatives
have been specified, which are local, in contrast to the classical fractional derivative. This has a very significant role
in physics: first, so as not to violate causality, second, since measurement in physics is local. The classical non-local
fractional integrals and derivatives based on fractal sets have been generalized in [12], and non-local derivatives are
appropriate for modeling processes with memory effects. The benefits of this method are, firstly, the order of the
fractal derivative has a geometric meaning, being equal to the dimension of support for the function, and secondly,
the order of the fractal derivative also has a physical meaning by providing a relationship with the spectral dimension
[15, 22]. This method is based on the Riemann-like approach which is beneficial from an algorithmic viewpoint. The
line of reasoning of using the Riemann method owing to its simplicity among others is not uncommon, e.g. [34].

Recently, several other applications of fractal calculus are addressed in the literature. For instance, a review and
summary of applications in classical mechanics, quantum mechanics, and optics can be found in [18]; the fractal Euler
method was used to solve fractal differential equations in [10], integrals and derivatives of functions on Cantor tartan
spaces of different dimensions were defined in [13], analogues of Laplace and Sumudu transforms in fractal calculus
were introduced in [11], and also other relevant studies can be seen in [14, 16, 19, 20]. Fractal calculus has found a
connection with some new types of local fractional derivative such as conformable derivative.

Integral transformations have been widely used to solve various problems in applied mathematics, mathematical
physics, and engineering [5, 26, 28]. Fourier transforms can be traced back to Joseph Fourier’s seminal dissertation
[5]. Fourier’s essay offered applications for the modern mathematical theory of heat conduction. In his essay, Fourier
reported a remarkable result, now widely known as the Fourier Integral Theorem. In an attempt to extend his ideas
to functions defined on an infinite interval, Fourier defined the integral transform and its inversion formula, which
are nowadays known as the Fourier transform and the inverse Fourier transform, respectively [5]. The pros of our
work are to shed the light on the significant need for a powerful tool with the help of fractal calculus, particulary
local fractal derivative, to solve equations that can be encountered in various phenomena of physics and engineering.
However, some possible cons of this work can be argued that working with non-local fractional derivatives can explain
the dynamics of solutions better than the local ones due to the property of nonlocality and some systems pose memory
effects. However, fractal calculus can be applied to some interesting models [9] over their corresponding classical
versions with an advantage that is the presence of one arbitrary order of derivatives in the local fractal sense that has
a physical meaning, and two arbitrary orders in the non-local fractal sense that allow taking the benefits of memory
effect.

This paper is organized as follows: In section 2, the basic definitions are provided. In section 3, the local fractal
Fourier transform is defined, and some of its properties are presented with all their proofs. In section 4, the main
results of this paper are presented, which contain the fundamental fractal equation that defines derivatives of the
fractal delta function, and the application of the local fractal Fourier transform to some suggested equations is also
presented. In section 5, the conclusion is given.

2. Some fundamental tools

2.1. Staircase functions. In this subsection, we present some basic tools of fractal calculus on thin Cantor-like set
Cκ which is shown in Figure 2.1(a) [6, 21, 29–31].

Definition 2.1. ([29–31]) Let p[a1, a2] be a subdivision of an interval I = [a1, a2] which is a collection of points
{a1 = t0, t1, ..., tn = a2}, such that ti < ti+1.
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(a) The thin Cantor-like set Cκ (κ = 1/3) by iteration. (b) The integral staircase function for the thin Cantor set

Cκ for the case of (κ = 1/3).

(c) Ψ − dimension of the thin Cantor set Cκ (κ = 1/3). (d) Characteristic function thin Cantor set Cκ with (κ =
1/3).

Figure 1. Graphs corresponding to thin Cantor set Cκ with (κ = 1/3).

Definition 2.2. ([29–31]) Assume that Cκ ⊂ R, is a fractal set and p[a1, a2] is a subdivision. The mass function is
given by

Ψα (Cκ, a1, a2) = lim
ς→0

Ψα
ς , (2.1)

where

Ψα
ς = inf

{p[a1,a2]:|p|≤ς}

m−1∑
j=0

Γ (α+ 1) (tj+1 − tj)αφ (Cκ, [tj+1 − tj ]) (2.2)

and

φ (Cκ, [tj+1 − tj ]) =

{
1, Cκ ∩ [tj+1 − tj ] 6= ∅;
0, otherwise.

(2.3)

|p| = max
0≤j≤m

(tj+1 − tj) .
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Definition 2.3. ([29–31]) Assume that c0 ∈ R. The staircase function of order α is given by

SαCκ (t) =

{
Ψα (Cκ, c0, t) , if t ≥ c0,
−Ψα (Cκ, c0, t) , otherwise.

(2.4)

The figure of the integral staircase function is presented in Figure 2.1(b).

Definition 2.4. ([6, 21, 29–31]) The Ψ− dimension is defined using the mass function, which is given by

dimΨ (Cκ ∩ [a1, a2]) = inf {α : Ψα (Cκ, a1, a2) = 0}
= sup {α : Ψα (Cκ, a1, a2) =∞} .

(2.5)

Figure 2.1(c) presents Ψ− dimension which is the intersection point of the red line with the blue line.

Definition 2.5. ([6, 21, 29–31]) The characteristic function χCκ(α, t) for a given thin Cantor set Cκ is defined by

χCκ(α, t) =


1

Γ (α+ 1)
, t ∈ Cκ,

0, otherwise.
(2.6)

2.2. Local Fractal Calculus. In this subsection, the definitions of the local fractal derivative and fractal integral
are presented.

Definition 2.6. ([29]) A function f : R → R is said to be Cα−continuous (fractal continuity) at x ∈ Cκ if f (x) =
Cα- lim
y→x

f (y) .

Definition 2.7. ([6, 21, 29–31]) If Cκ is α− perfect set, then the Cα-derivative (fractal derivative) of f (t) at t is
defined by

Dα
Cκf (t) =

Cα- lim
y→t

f (y)− f (t)

SαCκ (y)− SαCκ (t)
, if t ∈ Cκ,

0, otherwise,

(2.7)

if the limit exists.

Definition 2.8. ([29–31]) The Cα-integral (fractal integral) of f (t) on [a1, a2] is defined by∫ a2

a1

f (t) dαCκt ≈
n∑
j=1

fj (t) (SαCκ (tj)− SαCκ (tj−1)). (2.8)

Definition 2.9. ([17, 29–31]) The fractal Dirac delta function on a thin Cantor set Cκ is defined by

δCκ(t− t0) = 0, if t 6= t0, (2.9)

and its fractal integral is given by∫ a+ε

a−ε
f(t)δCκ(t− t0)dCκt = Γ(α+ 1)f(t0). (2.10)

The fractal step function uCκ,t0(t) is related to the fractal Dirac delta function as follows:∫ t

−∞
δCκ(t− t0)dCκt = uCκ,t0(t) (2.11)

where

uCκ,t0(t) =

{
0, t < t0

1
Γ(α+1) , t ≤ t0. (2.12)

By recalling the Fundamental Theorem of Fractal Calculus [6, 21, 29–31], we have the following :

Dα
CκuCκ,t0(t) = δCκ(t− t0). (2.13)
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2.3. Non-Local Fractal Calculus.

Definition 2.10. ([12, 17]) For a function f(t), t ∈ Cκ, the fractal left-sided Riemann-Liouville integral is
defined by

aJβt f (t) =
1

ΓαCκ (β)

∫ t

a

f (x)

(SαCκ (t)− SαCκ (x))
α−β d

α
Cκx, (2.14)

where t > a.

Definition 2.11. ([12, 17]) The fractal left-sided Caputo derivative is given by

C
a D

β
t f (t) =

1

ΓαCκ (n− β)

∫ t

a

(Dα
Cκ)nf(x)

(SαCκ(t)− SαCκ(x))−nα+β+α
dαCκx, (2.15)

where nα− α < β ≤ nα, n ∈ N.

Definition 2.12. ([12, 17]) The fractal left-sided Riemann–Liouville derivative is given by

aDβt f (t) =
1

ΓαCκ (n− β)
(Dα

Cκ)
n
∫ t

a

f (x)

(SαCκ (t)− SαCκ (x))
−nα+β+α

dαCκx, (2.16)

where nα− α ≤ β < nα, n ∈ N.
Some important formulas of local and non-local fractal calculus are listed as follows [12, 17]:

Dα
CκaχCκ = 0, a is constant, (2.17)

0Dγt aχCκ =
aSαCκ(t)−γ

ΓαCκ(1− γ)
(2.18)

Dα
CκS

α
Cκ(t) = χCκ(α, t), (2.19)

Dα
CκS

α
Cκ(t)m = mSαCκ(t)m−1 (2.20)

Dα
Cκ cos(SαCκ(t)) = −χCκ(α, t) sin(SαCκ(t)) (2.21)

Dα
Cκ(f(t)g(t)) = Dα

Cκ(f(t))g(t) + f(t)Dα
Cκ(g(t)), (2.22)

0Dγt f(t)g(t) =

∞∑
n=0

(
γ

n

)
0Dnt f(t)0Dγ−nt g(t), (2.23)∫

SαCκ(t)ndαCκt =
SαCκ(t)n+1

n+ 1
+ c, (2.24)

f(t) =

∞∑
n=1

Dnα
Cκf(t)|t=a

n!
(SαCκ(t)− SαCκ(a)), (2.25)

3. The local fractal Fourier transform

In this section, we define the local fractal Fourier transform to apply it for the fractal differential equations [5].

Definition 3.1. Let f (t) be a function defined on a thin Cantor-like set Cκ, then f (t) is a fractal piecewise continuous
if and only if there exists a finite subdivision [a0, a1],...,[an−1, an] of Cκ ⊂ [a, b] where a0 = a and an = b, such that
∀i ∈ {1, 2, 3, ..., n} ; f (t) is a fractal continuous function on (ai−1, ai) .

Definition 3.2. Let f (t) be a function defined on a thin Cantor-like set Cκ, then f (t) is called absolutely fractal
integrable if and only if its absolute value of |f (t) | has a fractal integral.
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Definition 3.3. If f (t) is a fractal continuous, fractal piecewise smooth, and fractal absolutely integrable function,
then the fractal Fourier of f (t) with respect to t ∈ Cκ is denoted by G (w) and is given by

FαCκ {f (t)} = F (w) =
1√
2π

∞∫
−∞

exp (iSαCκ (w)SαCκ (t))f (t) dαCκt, (3.1)

where w is called the fractal Fourier transform variable and exp (−iSαCκ (w)SαCκ (t)) is called the fractal kernel of the
transform. Then, ∀w ∈ Cκ, the inverse local fractal Fourier transform of F (w) is defined by

Fα,Cκ
−1 {F (w)} = f (t) =

1√
2π

∞∫
−∞

exp (−iSαCκ (w)SαCκ (t))F (w) dαCκw, (3.2)

3.1. Properties of the local fractal Fourier transform. Some properties of the local fractal Fourier series are
presented. Their proofs are also given in this section.

Theorem 3.4. (Linearity). The local fractal Fourier transformation is linear.

Proof. We have

FαCκ {f (t)} =
1√
2π

∞∫
−∞

exp (iSαCκ (w)SαCκ (t))f (t) dαCκt. (3.3)

Then, for any constants γ and β,

FαCκ {γf (t) + βg (t)} =
1√
2π

∞∫
−∞

[γf (t) + βg (t)] exp (iSαCκ (w)SαCκ (t))dαCκt,

=
γ√
2π

∞∫
−∞

f (t) exp (iSαCκ (w)SαCκ (t))dαCκt+
β√
2π

∞∫
−∞

g (t) exp (iSαCκ (w)SαCκ (t))dαCκt,

= γFαCκ {f (t)}+ βFαCκ {g (t)} .
(3.4)

�

Theorem 3.5. (Shifting). Let FαCκ {f (t)} be a local fractal Fourier transform of f (t) . Then, we have

FαCκ [f (t− a)] = exp (iaSαCκ (t))FαCκ (f (t)) , (3.5)

where a is a real constant.

Proof. According to the definition, we have, for a > 0,

FαCκ [f (t− a)] =
1√
2π

∞∫
−∞

exp (iSαCκ (w)SαCκ (t))f (t− a) dαCκt,

=
1√
2π

∞∫
−∞

exp (iSαCκ (w)SαCκ (t))f (η) dαCκη, η = x− a

= exp (iSαCκ (w)SαCκ (t))FαCκ {f (t)} .

(3.6)

�
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Theorem 3.6. (Scaling). If FαCκ is a local fractal Fourier transform of f, then we obtain

FαCκ {f (SαCκ (λt))} =
1

|λα|
FαCκ

(
SαCκ (w)

λα

)
, (3.7)

where λ is a real nonzero constant.

Proof. For λ 6= 0,

FαCκ {f (SαCκ (λt))} =
1√
2π

∞∫
−∞

exp (iSαCκ (w)SαCκ (t))f (SαCκ (λt)) dαCκt. (3.8)

If we let η = λαSαCκ (t) , then we have

FαCκ {f (SαCκ (λt))} =
1

|λα|
1√
2π

∞∫
−∞

exp

(
i

(
SαCκ (w)

λα

)
η

)
f (η) dαCκη

=
1

|λα|
FαCκ

(
SαCκ (w)

λα

)
.

(3.9)

�

Remark 3.7. An example is the middle 1
3 thin Cantor set C, with a = 0, b = 1, α = 1n2

1n3 andλ= 1
3n for any positive

integer n.

Theorem 3.8. (differentiation). Let f be fractal continuous and fractal piecewise smooth in (−∞,∞) . Let f (t)
approache zero as |t| → ∞. If f and Dα

Cκf are fractal absolutely integrable, then we have

Fακ {Dα
Cκf} = −iSαCκ (w)FαCκ {f (t)} = −iSαCκ (w)F (w) . (3.10)

Proof.

FαCκ
{
Dα
Cκ,tf (t)

}
=

1√
2π

∞∫
−∞

Dα
Cκ,tf (t) exp (iSαCκ (w)SαCκ (t)) dαCκt

=
1√
2π

[
f (t) exp (iSαCκ (w)SαCκ (t))|∞−∞ −

∞∫
−∞

f (t) exp (iSαCκ (w)SαCκ (t)) dαCκt
]

= −iSαCκ (w)FαCκ {f (t)} = −iSαCκ (w) F (w) .

(3.11)

In general, if f and its first (n− 1) derivatives are fractal continuous, and if its αth derivatives are fractal piecewise
continuous, then the local fractal Fourier transform of order n− 1 < α ≤ n, n ∈ N can be expressed as follows:

FαCκ
{(
Dα
Cκ,t

)n
f (t)

}
= (−iSαCκ (w))

n
FαCκ {f (t)} = (−iSακ (w))

n
F (w) , n = 0, 1, 2, ..., (3.12)

provided that f and its derivatives are fractal absolutely integrable. Furthermore, we suppose that f and its first
(n− 1) derivatives tend to zero as |t| approaches to infinity. �

Theorem 3.9. (Convolution Theorem). If F (w) and G (w) are the local fractal Fourier transforms of f (t)and g (t),
respectively, then the local fractal Fourier transform of the convolution (f ∗ g) is the product F (w)G (w) . That is,

FαCκ {f (t) ∗ g (t)} = F (w)G (w) . (3.13)

Or, equivalently,

Fα,−1
Cκ {F (w)G (w)} = f (t) ∗ g (t) . (3.14)
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More explicitly,

(f ∗ g) (x) =
1√
2π

∞∫
−∞

F (w)G (w) exp (iSαCκ (w)SαCκ (t)) dαCκt

=
1√
2π

∞∫
−∞

f (t− ξ)g (ξ) dαCκξ.

(3.15)

Proof. By definition, we have

FαCκ {(f ∗ g) (t)} =
1

2π

∞∫
−∞

exp (iSαCκ (w)SαCκ (t)) dαCCκ t

∞∫
−∞

f (t− ξ) g (ξ) dαCκξ

=
1

2π

∞∫
−∞

g (ξ) exp (iSαCκ (w)SαCκ (ξ)) dακξ ∗
∞∫
−∞

f (t− ξ) exp (iSαCκ (w) (SαCκ (t)− SαCκ (ξ))) dαCκt.

(3.16)

With the change of variable SαCκ (η) = SαCκ (t)− SαCκ (ξ) , we get

FαCκ{(f ∗ g)(t)} =
1√
2π

∞∫
−∞

g(ξ) exp t(iSαCκ(w)SαCκ(ξ))dαCκξ
1√
2π

∞∫
−∞

f(η) exp(iSαCκ(w)SαCκ(η))dαCκη

= F(w)G(w).

(3.17)

�

Table 1. Some analogies of the Fourier transform of both Cα- calculus and the ordinary calculus.
Function Fourier transform Local fractal Fourier transform

f (t) f (w) F (w)

f(t) =

{
1, |t| < b
0, |t| > b.

2 sinw

w

2 sinSαCκ (w)

SαCκ (w)

1

t2 + b2
π exp (−bw)

b

π exp (−bSαCκ (w))

b

t

t2 + b2
−iπ exp (bw) −iπ exp (bSαCκ (w))

f (n) (t) (iw)
n
f (w) (−iSαCκ (w))

n
F (w)

tnf (t) in
dnf

dwn
inDnα

Cκ,w (F (w))

f (bt) exp (ixt)
1

b
f

(
w − x
b

)
1

b
F

(
SαCκ (w)− SαCκ (x)

b

)

In Table 1, we have presented the fractal Fourier transform of some functions.

4. Main results

In this section, the fundamental fractal equation that defines the fractal derivatives of the fractal Dirac delta func-
tion, and the application of the local fractal Fourier transform to some proposed physical equations are presented.
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Theorem 4.1. The fractal nth order derivative of the Dirac delta function is

SαCκ(t)
n
Dαn
CkδCk (t) = (−1)

n
n!δCk (t) . (4.1)

Using the fractal integration by parts [29], we have

∞∫
−∞

f (t)Dnα
CkδCk (t) dCκt = f (t)D

(n−1)α

Ck
δCk (t) |∞−∞ −

∞∫
−∞

Dα
Cκ,tf (t)D

(n−1)α

Ck
δCk (t) dCκt. (4.2)

According to the definition of the Dirac delta function f (t)D
α(n−1)
Cκ δCκ (t) |∞−∞ = 0, Eq. (4.2) reduces to the following

form:
∞∫
−∞

f (t)Dnα
CkδCk (t) dCκt = −

∞∫
−∞

Dα
Cκ,tf (t)D

(n−1)α

Ck
δCk (t) dCκt, (4.3)

By letting f (t) = SαCκ (t) g (t) and n = 1, then Eq. (4.2) reduces to the following form:

∞∫
−∞

SαCκ (t) g (t)Dα
CkδCk (t) dCκt = −

∞∫
−∞

δCk (t)Dα
Cκ,t [SαCκ (t) g (t)] dCκt

= −
∞∫
−∞

δCk (t)
(
g (t)χCκ(α, t) + SαCκ (t)Dα

Cκ,t (g (t))
)
dCκt

= −
∞∫
−∞

δCk (t) g (t)χCκ(α, t)dCκt,

(4.4)

since
∞∫
−∞

δCk (t)SαCκ (t)Dα
Cκ,tg (t) dCκt = 0, then Eq. (4.2) takes the following form:

SαCκ (t)Dα
CκδCκ (t) = −δCk (t)χCκ(α, t). (4.5)

In general, the same procedure gives

∞∫
−∞

[SαCκ(t)
n
g (t)]Dαn

CkδCk (t) dCκt = (−1)
n

∞∫
−∞

δCk (t)Dαn
Cκ,t (SαCκ(t)

n
g (t)) dCκt, (4.6)

but because of any power of SαCκ (t) times δCκ (t) integrates to it which implies that only the constant term contributes.
So, all terms multiplied by the derivative of g (t) disappear, leaving n!g (t) , so we have

∞∫
−∞

[SαCκ(t)
n
g (t)]Dαn

CκδCκ (t) dCκt = (−1)
n
n!

∞∫
−∞

g (t)δCk (t) dCκt, (4.7)

which means that

SαCκ(t)
n
Dαn
CkδCk (t) = (−1)

n
n!δCk (t) . (4.8)

The Dirac delta function is given as the Local fractal Fourier transform which can be expressed as follows:

FαCκ {1} = δCκ (t) =

∞∫
−∞

exp (−2πiSαCκ(w)SαCκ(t)) dCκw. (4.9)
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Similarly, we have

Fα,−1
Cκ {δCκ (t)} =

∞∫
−∞

δCκ (t) exp (2πiSαCκ(t)SαCκ(w)) dCκw = 1. (4.10)

The local fractal Fourier transform of the fractal Dirac delta is given by

FαCκ {δCκ (t− t0)} =

∞∫
−∞

δCκ (t− t0) exp(−2πiSαCκ(w)SαCκ(t))dαCκt

= exp (−2πiSαCκ(w)SαCκ(t0)) .

(4.11)

5. The application of local fractal Fourier transform to some suggested equations

1. The fractal electric current in a simple circuit. The present time (t) in a simple circuit including the
resistance R and the inductance L follows the following equation:

LDα
Cκ,t (I) +RI = E (t) , (5.1)

where E(t) represents the applied electromagnetic force and R and L are constants. Using E(t) = cos (t) , then by
applying the local fractal Fourier transform to Eq. (5.1), we obtain

(iSαCκ (w)L+R) I (w) =

√
π

2
(δCκ (−1 + SαCκ (w)) + δCκ (1 + SαCκ (w))) .

Or,

I (w) =

√
π
2 (δCκ (−1 + SαCκ (w)) + δCκ (1 + SαCκ (w)))

(iSαCκ (w)L+R)
. (5.2)

Taking the inverse local fractal Fourier transform to both sides of Eq. (5.2), we get the following solution:

I (t) =
R cos (SαCκ (t)) + L sin (SαCκ (t))

L2 +R2
. (5.3)

By (a1t
α ≤ SαCκ(t) ≤ a2t

α) [29], we have

I (t) ≈ R cos (tα) + L sin (tα)

L2 +R2
. (5.4)

In Figure 2, we have illustrated Eqs. (5.3) and (5.4).
2. The fractal second order ordinary differential equation.

D2α
Cκ,t (u) + b2u = f (t) , −∞ < t <∞. (5.5)

Applying the local fractal Fourier transform method gives

U (w) =
F (SαCκ (w))

SαCκ(w)
2

+ b2
. (5.6)

Using the convolution Theorem 5, we obtain the following solution:

u (t) =
1

2a

∞∫
−∞

f (ξ) exp (−b (|SαCκ (t)− SαCκ (ξ)|)) dαCκξ. (5.7)

3. The fractal Bernoulli-Euler beam equation. Consider the vertical deflection specified vertical load of Q (t) .
The deflection of u (t) follows the following standard differential equation:

EID4α
Cκ,t (u) +Ku = Q (t) , −∞ < t <∞ (5.8)
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(a) We have sketched Eq. (5.3) setting R = 0.5, L =

1.5, κ = 1/2 (black color), κ = 2/3 (red color) and κ =
1/5 (blue color)

(b) We have plotted Eq. (5.4) using R = 0.5, and L =

1.5.

Figure 2. Graphs of the fractal electric current

where EI represents the flexural rigidity and K represents the foundation modulus of the beam. By setting up
Q(t) = t2sin(t), then Eq. (5.8) takes the following form:

D4α
Cκ,t (u) + b4u = t2sin(t), (5.9)

where b4 = K
EI . Applying the local fractal Fourier transform to Eq. (5.9), we get

U (w) =
i
√

π
2D

2α
CκδCκ (−1 + SαCκ (w)) + i

√
π
2D

2α
CκδCκ (1 + SαCκ (w))

Sακ (w)
4

+ a4
. (5.10)

Taking the inverse local fractal Fourier transform to both sides of Eq. (5.10), we have

u(t) =
8(1 + b4)SαCκ(t) cos(SαCκ(t))

(1 + b4)3
+

(4(−5 + 3b4) + (1 + b4)
2
SαCκ(t)

2
) sin(SαCκ(t))

(1 + b4)3
. (5.11)

In view of (a1t
α ≤ SαCκ(t) ≤ a2t

α) [29], we have

u (t) ≈
8
(
1 + b4

)
tα cos (tα) +

(
4
(
−5 + 3b4

)
+
(
1 + b4

)2
t2α
)

sin (tα)

(1 + b4)
3 . (5.12)

In Figure 3, we have shown Eqs. (5.11) and (5.12).

Remark 5.1. We note that one can obtain the ordinary (classical) result by choosing α = 1 in this research paper.

For some additional examples that consist of non-smooth solution, we can refer to the example 7 and example 8 in
[11] by similarly applying the local fractal Fourier transform method and using the convolution Theorem 5 to obtain
their solutions. Regarding the discrete transformation and how our work can be possibly parallelized in this case, we
refer to [10].

6. Conclusion

In this article, we have introduced the local fractal Fourier transform and proved some of its properties. The fractal
Dirac delta with its derivative and the fractal Fourier transform of the Dirac delta are defined. Besides, some models
in the local fractal calculus are investigated. In addition, we perform a comparative analysis by solving the given
equations in the standard version and in the local fractal calculus, and we also demonstrate that when α = 1, we
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(a) We have sketched Eq. (5.11) setting b = 2, κ =

1/2 (black color), κ = 2/3 (red color) and κ = 1/5 (blue
color).

(b) We have presented Eq. (5.12) using b = 2.

Figure 3. Graphs of the fractal Bernoulli-Euler beam equation.

get the same results in the standard version. In order to study the effect of a local fractal order derivative, we have
changed the values of α. Simulation analysis has been performed in order to explain the physical characteristics of
some given models.
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