- [1] A. S. Balankin, A continuum framework for mechanics of fractal materials I: From fractional space to continuum with fractal metric, Eur. Phys. J. B, 88(90) (2015). Doi:10.1140/epjb/e2015-60189-y.
- [2] M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Fields, 79 (1988), 543–623.
- [3] M. F. Barnsley, Fractals everywhere, Academic press, 2014.
- [4] M. Czachor, Waves along fractal coastlines: From fractal arithmetic to wave equations, Acta Phys. Pol. B, 50 (2019), 813–831.
- [5] L. Debnath and D. Bhatta, Integral transforms and their applications, CRC Press, 2014.
- [6] R. DiMartino and W. Urbina, On Cantor-like sets and Cantor-Lebesgue singular functions, arXiv preprint arXiv:1403.6554 (2014).
- [7] K. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley & Sons, 2004.
- [8] K. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, Hoboken, New York, 1997.
- [9] A. K. Golmankhane, K. K. Ali, R. Yilmazer, and M. K. A. Kaabar, Economic models involving time fractal, J. Math. Model. Financ, 1 (2020), 181–200.
- [10] A. K. Golmankhaneh and C. Cattani, Fractal logistic equation, Fractal Fract 3(3) (2019), 41–53. Doi:10.3390/fractalfract3030041.
- [11] A. K. Golmankhaneh and C. Tun¸c, Sumudu transform in fractal calculus, Appl.Math. Comput., 350 (2019), 386–401.
- [12] A. K. Golmankhaneh and D. Baleanu, Non-local integrals and derivatives on fractal sets with applications, Open Physics, 14(1) (2016), 542–548.
- [13] A. K. Golmankhaneh and A. Fernandez, Fractal Calculus of Functions on Cantor Tartan Spaces, Fractal Fract, 2(4) (2018), 30-40, Doi:10.3390/fractalfract2040030.
- [14] A. K. Golmankhaneh and A. Fernandez, Random Variables and Stable Distributions on Fractal Cantor Sets, Fractal Fract., 3(2) (2019), 31–44, Doi:10.3390/fractalfract3020031.
- [15] A. K. Golmankhaneh and A. S. Balankin, Sub-and super-diffusion on Cantor sets: Beyond the paradox, Phys. Lett. A, 382(14) (2018), 960–967.
- [16] A. K. Golmankhaneh and C. Tun¸c, On the Lipschitz condition in the fractal calculus, Chaos, Solitons & Fract., 95 (2017), 140–147.
- [17] A. K. Golmankhaneh and K. Welch, Equilibrium and non-equilibrium statistical mechanics with generalized fractal derivatives: A review, Mod. Phys. Lett. A, 36(14) (2021), 2140002.
- [18] A. K. Golmankhaneh, A review on application of the local fractal calculus, Num. Com. Meth. Sci. Eng., 1(2) (2019), 57–66.
- [19] A. K. Golmankhaneh, About Kepler’s Third Law on fractal-time spaces, Ain Shams Eng. J., 9(4) (2017), 2499– 2502.
- [20] A. K. Golmankhaneh, On the Fractal Langevin Equation, Fractal Fract., 3(1), (2019) , 11-20. Doi:10.3390/fractalfract3020031.
- [21] A. K. Golmankhaneh, A. Fernandez, A. K. Golmankhaneh, and D. Baleanu, Diffusion on middle-ξ Cantor sets, Entropy, 20(7) (2018), 504–517, Doi: 10.3390/e20070504.
- [22] C. P. Haynes and A. P. Roberts, Generalization of the fractal Einstein law relating con-duction and diffusion on networks, Phys. Rev. Lett., 103 (2009), 020601.
- [23] J. Kigami, Analysis on Fractals, Cambridge University Press, 2001.
- [24] M. L. Lapidus and M. Van Frankenhuijsen, Fractal geometry, complex dimensions and zeta functions: geometry and spectra of fractal strings, Springer Science & Business Media, 2012.
- [25] B. B. Mandelbrot, The fractal geometry of nature, New York, WH freeman, 1983.
- [26] T. Myint-U and L. Debnath, Linear partial differential equations for scientists and engineers, Springer Science & Business Media, 2007.
- [27] L. Nottale and J. Schneider, Fractals and nonstandard analysis, J. Math. Phys., 25 (1998), 1296–1300.
- [28] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W Clark, editors, NIST handbook of mathematical functions hardback and CD-ROM, Cambridge University Press, 2010.
- [29] A. Parvate and A. D. Gangal, Calculus on fractal subsets of real-line I: Formulation, Fractals, 17(01) (2009), 53–81.
- [30] A. Parvate and A. D. Gangal, Calculus on fractal subsets of real-line II: Conjugacy with ordinary calculus, Fractals, 19(03) (2011), 271–290.
- [31] A. Parvate, S. Satin, and A. D. Gangal, Calculus on fractal curves in Rn, Fractals, 19(01) (2011), 15–27.
- [32] Y. B. Pesin, Dimension theory in dynamical systems: contemporary views and applications, University of Chicago Press, 2008.
- [33] L. Pietronero and E. Tosatti, Fractals in physics, Elsevier, 2012.
- [34] R.D. Richtmyer, Principles of Advanced Mathematical Physics, Vol. I, Springer-Verlag, New York, 1978.
- [35] M. F. Shlesinger, Fractal time in condensed mattar, Ann. Rev. Phys. Chern. 39 (1988), 269–290.
- [36] R. S. Strichartz, Differential Equations on Fractals: A Tutorial, Princeton University Press, Princeton, 2006.
- [37] V.E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Springer Science Business Media, 2011.
- [38] S. Vrobel, Fractal time: Why a watched kettle never boils, World Scientific, 2011.
- [39] K. Welch, A Fractal Topology of Time: Deepening into Timelessness, Fox Finding Press, 2nd Edition, 2020.
|