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Abstract

Recently, finding exact solutions of nonlinear fractional differential equations has attracted great interest. In this
work, the space time-fractional Klein-Gordon equation with cubic nonlinearities is examined. Firstly, suitable

exact soliton solutions are formally extracted by using the solitary wave ansatz method. Some solutions are also
illustrated by the computer simulations. Besides, the modified Kudryashov method is used to construct exact

solutions of this equation.
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1. Introduction

Fractional differential equations are generalization of the differential equations. In recent years, non-linear fractional
differential equations (FDEs) have gained importance in various disciplines and have become popular. Recently,
the theory and applications of FDEs have been the focus of many studies since they appear frequently in various
applications in mathematics, physics, biology, engineering, signal processing, systems identification, control theory,
finance, fractional dynamics, and have increasingly fascinated the attention of many scientists. FDEs have been studied
and many researchers published books and articles in this field [40, 43, 48]. Many methods have been introduced to
obtain exact solutions of FDEs. For instance the first integral method [22, 25, 44, 49, 52], exp-function method
[8, 9, 27], (G′/G) expansion method [6, 10, 14], sub-equation method [5, 11], functional variable method [28, 46], trial
equation method [21, 47], local meshless method [4].

A dependable and powerful method called the ansatz method has been put forward to search for traveling wave
solutions of nonlinear partial differential equations by Biswas [16, 38]. Although this method has been used by many
authors, the applications of this method are very low in nonlinear FDEs. The installation of exact and analytical
traveling wave solutions of nonlinear FDEs is one of the most significant and basic duties in nonlinear science because
they will characterize miscellaneous natural cases such as vibrations, solitons, and finite speed distribution. The
Ansatz method is one of the efficient methods used to obtain exact soliton solutions of FDEs.

The solitary wave study has made important progress recently. In mathematics and physics, a soliton or a solitary
wave is a self-reinforcing single wave that moves at a constant velocity, while maintaining its shape. Solitons represent
solutions of the class of largely weak nonlinear distributive partial differential equations associated with physical
systems. This field of study has recently made a huge progress [1–3, 7, 12, 13, 15–19, 37, 39, 54, 57]. In the present
study, FDEs will be converted into integer-order differential equations by fractional complex transformation, and then
various exact solutions will be obtained to determine bright soliton solutions, dark soliton solutions, and the singular
soliton solutions [29, 30, 45].
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One of the approaches that led to creating exact solutions of fractional differential equations is a modified version
of the Kudryashov method [42]. The modified Kudryashov method is a powerful solution method for finding exact
solutions of nonlinear partial differential equations (PDEs) in mathematical physics and biology. This method was
first applied in fractional differential equations by Ege and Misirli [24]. Recently, this method has gained considerable
attention due to the ability of PDEs to extract new complete solutions both in integer order and in fractional order
[32, 41, 50].

Nonlinear Klein - Gordon equations have important application areas in science and engineering such as solid
state physics, nonlinear optics, and quantum field theory [56]. This equation is a relativistic field equation for scalar
particles and is a relativistic generalization of the well-known Schrödinger equation. Despite other relativistic wave
equations, the Klein-Gordon equation (KGE) is the most frequently studied equation in quantum field theory, since
it is used to describe particle dynamics [20]. They have been studied by many researchers and various methods have
been used to solve them. Some of these studies can be listed as follows: Homotopy perturbation method [26], a semi-
analytical method called fractional-reduced differential transformation method with the appropriate initial condition
[53], modified Kudryashov method [33], fractional complex transformation, (G′/G) and (w/g) expansion methods [55],
the well-organized ansatz method [34], a direct analytic method [23], the modified expanded Tanh method [51].

The study consists of five sections. In the first section, brief information about fractional differential equations is
given. In addition, an introduction about Nonlinear Klein - Gordon equations which form the basis of the publication,
and the ansatz and modified Kudryashov method that will be used to solve this equation are explained. In the
second section, the modified Riemann-Liouville derivative and methodology of the solution are explained. In section
3, modified Kudryashov method which is an important method for the solution is mentioned. The section 4 contains
that the various new explicit exact solutions of the space time-fractional KGE with cubic nonlinearities are obtained
by both the ansatz method and the modified Kudryashov method. Finally, the last section contains an explanation of
the results.

2. The modified Riemann-Liouville derivative and methodology of solution

With recent studies, it is well known that the dynamics of many physical processes are accurately described using
FDEs having different kinds of fractional derivatives. The most popular ones are the Caputo derivative, the Riemann-
Liouville derivative and Grünwald-Letnikov derivative. A different definition of the fractional derivative is given by
Jumarie with a little modification of the Riemann-Liouville derivative. In [35], f : R→ R, ω → f(ω) as a continuous
function (not necessarily differentiable), the modified Riemann-Liouville derivative of order α is given as follows

Dα
ωf(ω) =


1

Γ(1−α)
d
dω

∫ ω
0

f(τ)−f(0)
(ω−τ)α dτ , 0 < α < 1,

(f (n)(ω))(α−n) , n ≤ α ≤ n+ 1, n ≥ 1

(2.1)

where Γ(.) is the Gamma function. In addition, some important properties of the fractional modified Riemann-Liouville
derivative (mRLd) are listed as follows [36]:

Dα
ωω

γ =
Γ(1 + γ)

Γ(1 + γ − α)
ωγ−α , γ > 1, (2.2)

Dα
ω(c) = 0 (c constant) , (2.3)

Dα
ω(af(ω) + bg(ω)) = aDα

ωf(ω) + bDα
ωg(ω), (2.4)

where a 6= 0 and b 6= 0 are constants.
Now, we will take into account the following nonlinear space-time FDE of the type

H(u,Dα
t u,D

α
xu,D

2α
tt u,D

2α
xxu,D

α
t D

α
xu...) = 0, 0 < α < 1 (2.5)

where u is an unknown functions, H is a polynomial of u and its partial fractional derivatives, and α is order of the
mRLd of the function u = u(x, t).
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The traveling wave transformation is

u(x, t) = U(ε),

ε =
kxα

Γ(1 + α)
− ctα

Γ(1 + α)
,

(2.6)

with k 6= 0 and c 6= 0 are constants. We use the chain rule

Dα
t u = σt

∂U

∂ε
Dα
t ε,

Dα
xu = σx

∂U

∂ε
Dα
x ε,

(2.7)

with σt, σx are sigma indexes [31] and they can be σt = σx = L, where L is a constant.
Substituting (2.6) and applying (2.2) and (2.7) to (2.5), we get following nonlinear ordinary differntial equation (ODE).

N(U,
dU

dε
,
d2U

dε2
,
d3U

dε3
, ...) = 0. (2.8)

3. Modified Kudryashov method

Let the exact solution of (2.8) can be showed as follows

U(ε) = a0 + a1Q(ε) + ...+ aNQ(ε)N , (3.1)

where ai values (i = 0, 1, 2, ..., N) are arbitrary constants to be found later, but aN 6= 0. Q(ε) has the form

Q(ε) =
1

1 + dAε
(3.2)

which is a solution to the Riccati equation

Q′(ε) =
(
Q2(ε)−Q(ε)

)
lnA (3.3)

where d and A are nonzero constants with A > 0 and A 6= 1. N is revealed by balancing the highest order derivative
and nonlinear terms in (2.8). Substituting (3.1) into (2.8) and comparing the results of the terms with a series of
nonlinear equations, new exact solutions will be taken for (2.5).

4. Applications

4.1. Application of ansatz method to space time fractional KGE.
We consider the space-time fractional KGE of the form

D2α
tt u− a2D2α

xxu+ b2u− λu3 = 0, (t > 0, 0 < α ≤ 1), (4.1)

where a, b, λ are constants [23]. The bright, dark and singular soliton solutions will be applied to the solitary wave
ansatz method. In order to solve Eq. (4.1), using the traveling wave transformation (2.6), we obtain to an ODE

L2(a2k2 − c2)U ′′ − b2U + λU3 = 0, (4.2)

with U ′ = dU
dε .

4.1.1. The bright soliton solution.
For the bright soliton solution, we let A, k and, c be abritrary constants. Then suppose

U(ε) = Asechp(ε), (4.3)

where

ε =
kxα

Γ(1 + α)
− ctα

Γ(1 + α)
. (4.4)

It follows from ansatz (4.3) and (4.4) that

d2U

dε2
= Ap2sechp(ε)−Ap(p+ 1)sechp+2(ε), (4.5)
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and

U3 = A3sech3p(ε). (4.6)

Substituting the ansatz (4.3)-(4.6) into (4.2), the following equation is obtained

L2(a2k2 − c2)Ap2sechp(ε)− L2(a2k2 − c2)Ap(p+ 1)sechp+2(ε)

− b2Asechp(ε) + λA3sech3p(ε) = 0.
(4.7)

From (4.7), it is supposed that the exponents p+ 2 and 3p are equal and from that p is determined as 1. When this
value is placed in (4.7), it is reduced to the following equation

L2(a2k2 − c2)Asech(ε)− 2L2(a2k2 − c2)Asech3(ε)− b2Asech(ε)

+ λA3sech3(ε) = 0.
(4.8)

From (4.8), we obtain the following system of algebraic equations

{
λA2 − 2L2(a2k2 − c2) = 0,
L2(a2k2 − c2)− b2 = 0.

Solving this system, we get

A = ∓
√

2L2(a2k2 − c2)

λ
,
(a2k2 − c2

λ
> 0, λ 6= 0

)
c = ∓

√
L2a2k2 − b2

L2
, (L2a2k2 − b2 > 0).

(4.9)

Finally, we obtain the bright soliton solution for the Fractional Klein-Gordon as follows

u(x, t) = ∓
√

2L2(a2k2 − c2)

λ
sech

( kxα

Γ(1 + α)
∓
√
L2a2k2 − b2

L2

tα

Γ(1 + α)

)
. (4.10)

The physical behavior of (4.10) is displayed in Figure 1, in the interval 0 < x < 10 and 0 < t < 1.

4.1.2. The dark soliton solution.
To obtain dark soliton solution , suppose that

U(ε) = Atanhp(ε), (4.11)

where

ε =
kxα

Γ(1 + α)
− ctα

Γ(1 + α)
, (4.12)

which k, c and A are nonzero constant coefficients. From ansatz (4.11) and (4.12), we get

d2U

dε2
= Ap(p− 1)tanhp−2(ε)− 2Ap2tanhp(ε) +Ap(p+ 1)tanhp+2(ε), (4.13)

and

U3 = A3tanh3p(ε). (4.14)

Thus, substituting the ansatz (4.11)-(4.14) into (4.2), it is achieved

L2(c2−a2k2)[Ap(p−1)tanhp−2(ε)−2Ap2tanhp(ε) +Ap(p+ 1)tanhp+2(ε)] + b2Atanhp(ε)−λA3tanh3p(ε) = 0. (4.15)

From (4.15), equating exponents p+2 and 3p, that gives rise to p=1. By using this value, Eq. (4.15) reduces to

L2(c2 − a2k2)[−2Atanh(ε) + 2Atanh3(ε)] + b2Atanh(ε)− λA3tanh3(ε) = 0. (4.16)
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Figure 1. The physical behavior of u(x, t) when a = 2, k = 1, b = 1, L = 1, λ = 1.

From (4.16), we find the algebraic system

2L2(c2 − a2k2)− λA2 = 0,

− 2L2(c2 − a2k2) + b2 = 0.
(4.17)

Solving the system (4.17)

A = ∓
√

2L2(c2 − a2k2)

λ
,
(c2 − a2k2

λ
> 0, λ 6= 0

)
c = ∓

√
b2 + 2L2a2k2

2L2
.

(4.18)

Finally, we get the dark soliton solution for the Fractional Klein-Gordon as follows:

u(x, t) = ∓
√

2L2(c2 − a2k2)

λ
tanh

( kxα

Γ(1 + α)
∓
√
b2 + 2L2a2k2

2L2

tα

Γ(1 + α)

)
. (4.19)

The physical characteristic of (4.19) is shown in Figure 2, in the interval 0 < x < 10 and 0 < t < 1.

4.1.3. The singular soliton solution.
In finding singular soliton solution we assume

U(ε) = Acschp(ε), (4.20)

with

ε =
kxα

Γ(1 + α)
− ctα

Γ(1 + α)
, (4.21)
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Figure 2. The physical characteristic of u(x, t) when a = 2, k = 1, b = 1, L = 1, λ = 1.

where k, c and A are nonzero constant coefficients. From ansatz (4.20) and (4.21), we find

d2U

dε2
= Ap2cschp(ε) +Ap(p+ 1)cschp+2(ε), (4.22)

and

U3 = A3csch3p(ε). (4.23)

Substituting ansatz (4.20)-(4.23) into (4.2), yields

L2(c2 − a2k2)Ap2cschp(ε) + L2(c2 − a2k2)Ap(p+ 1)cschp+2(ε) + b2Acschp(ε)− λA3csch3p(ε) = 0. (4.24)

In (4.24), when equating exponents p+2 and 3p, leads p=1. Similarly using p = 1, Eq. (4.24) reduces to

L2(c2 − a2k2)Acsch(ε) + 2L2(c2 − a2k2)Acsch3(ε) + b2Acsch(ε)− λA3csch3(ε) = 0. (4.25)

From (4.25), we find the algebraic equation system{
2L2(c2 − a2k2)− λA2 = 0,
L2(c2 − a2k2) + b2 = 0.

Solving this system, we get

A = ∓
√

2L2(c2 − a2k2)

λ

(c2 − a2k2

λ
> 0, λ 6= 0

)
,

c = ∓
√
L2a2k2 − b2

L2
(L2a2k2 − b2 > 0).

(4.26)
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Figure 3. The physical attitude of u(x, t) when a = 2, k = 1, b = 1, L = 1, λ = −1.

Finally, we find the singular soliton solution for the Fractional Klein-Gordon as follows

u(x, t) = ∓
√

2L2(c2 − a2k2)

λ
csch

( kxα

Γ(1 + α)
∓
√
L2a2k2 − b2

L2

tα

Γ(1 + α)

)
. (4.27)

The physical attitude of (4.27) is indicated in Figure 3, in the interval 0 < x < 10 and 0 < t < 1.

4.2. Application of modified Kudryashov method to space time fractional KGE.
We consider the space-time fractional KGE of the form (4.1). In order to solve Eq. (4.1), using the traveling wave

transformation (2.6), we obtain to an ODE

L2(c2 − a2k2)U ′′ + b2U − λU3 = 0, (4.28)

with U ′ = dU
dε . The balance of U3 and U ′′ gives N = 1. Therefore, we have

U(ε) = a0 + a1Q(ε), a1 6= 0. (4.29)

Substituting the solution (4.29) and its derivative into (4.28) gets(
2a1L

2(c2 − a2k2)(lnA)2 − λa3
1

)
Q3(ε)− 3

(
a1L

2(c2 − a2k2)(lnA)2 + λa0a
2
1

)
Q2(ε)

+
(
a1L

2(c2 − a2k2)(lnA)2 + b2a1 − 3λa2
0a1

)
Q(ε) + b2a0 − λa3

0 = 0.

(4.30)

Equating the coefficients of each power of Q(ε) and the constant term to zero, solving the resulting system of algebraic
equations, we get the following solutions.
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Figure 4. The physical characteristic of u(x, t) when A = e, a = 1, k = 1, b = 1, d = 1, L = 1, λ = 1.

Case 1:

a0 = − b

λ
√

1
λ

, a1 = 2b

√
1

λ
, c = ∓

√
(lnA)2a2k2L2 + 2b2 (4.31)

Substituting (4.31) into (4.29), we have

U(ε) = − b

λ
√

1
λ

+ 2b

√
1

λ

( 1

1 + dAε

)
, (λ > 0). (4.32)

Finally, we obtain the exact solution of (4.1)

u1(x, t) = − b

λ
√

1
λ

+ 2b

√
1

λ

( 1

1 + dA
kxα

Γ(1+α)
∓
√

(lnA)2a2k2L2+2b2tα

Γ(1+α)

)
, (λ > 0). (4.33)

The physical characteristic of (4.33) is displayed in Figure 4, in the interval 0 < x < 10 and 0 < t < 1.
Case 2:

a0 =
b

λ
√

1
λ

, a1 = −2b

√
1

λ
, c = ∓

√
(lnA)2a2k2L2 + 2b2 (4.34)
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Figure 5. The physical behavior of u(x, t) when A = e, a = 1, k = 1, b = 1, d = 1, L = 1, λ = 1.

Substituting (4.34) into (4.29), we get

U(ε) =
b

λ
√

1
λ

− 2b

√
1

λ

( 1

1 + dAε

)
, (λ > 0). (4.35)

Finally, we obtain the exact solution of (4.1)

u2(x, t) =
b

λ
√

1
λ

− 2b

√
1

λ

( 1

1 + dA
kxα

Γ(1+α)
∓
√

(lnA)2a2k2L2+2b2tα

Γ(1+α)

)
, (λ > 0). (4.36)

The physical behavior of (4.36) is indicated in Figure 5, in the interval 0 < x < 10 and 0 < t < 1.

5. Conclusion

In this article, the space time-fractional KGE with cubic nonlinearities has been investigated for soliton and exact
solutions. Complex fractional transformation is utilized to attain the nonlinear ODE from this equation. Bright,
dark and singular soliton solutions have been obtained with solitary wave ansatz method and some exact solutions
have been found with modified Kudryashov method which may be useful for describing some physical events. The
results are proof that these methods are accurate and effective. Therefore, it can be applied to solve other linear and
nonlinear fractional partial differential equations in engineering and mathematical physics. In addition, graphs of all
soliton solutions and exact solutions have been drawn for the appropriate coefficients.
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