- [1] H. Ahmad, A. R. Seadawy, T. A. Khan, and P. Thounthong, Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations, Journal of Taibah University for science, 14 (2020), 346–358.
- [2] H. Ahmad, T. A. Khan, and S. Yao, An efficient approach for the numerical solution of fifth-order KdV equations, Open Mathematics, 18 (2020), 738–748.
- [3] H. Ahmad, T. A. Khan, P. S. Stanimirovic, and I. Ahmad, Modified Variational Iteration Technique for the Numerical Solution of Fifth Order KdV-type Equations, J. Appl. Comput. Mech., 6 (2020), 1220–1227.
- [4] I. Ahmad, H. Ahmad, P. Thounthong, Y. Chu, and C. Cesarano, Solution of multi-term time-fractional PDE models arising in mathematical biology and bhysics by local meshless method, Symmetry, 12 (2020), 1195
- [5] E. Aksoy, A. C. C¸ evikel, and A.Bekir, Soliton solutions of (2+1)-dimensional time-fractional Zoomeron equation, Optik, 127 (2016), 6933–6942.
- [6] D. Baleanu and Y. Uˇgurlu, Inc M, et al. Improved (G’/ G)-expansion method for the time-fractional biological population model and Cahn.Hilliard equation, J. Comput Nonlinear Dyn., 10 (2015), 051016.1 – 051016-8.
- [7] A. Bekir, E. Aksoy, and O¨ . Gu¨ner, Optical soliton solutions of the Long-Short-Wave interaction system, Journal of Nonlinear Optical Physics and Materials, 22(2) (2013), 1350015, (11 pages).
- [8] A. Bekir, O¨ . Gu¨ner, and A. C. C¸ evikel, Fractional complex transform and exp-function methods for fractional differential equations, Abstr Appl Anal., (2013) ,Article ID 426462.
- [9] A. Bekir, O¨ . Gu¨ner, A. H. Bhrawy et al., Solving nonlinear fractional differential equations using expfunction and (G’/G) expansion methods, Rom J Phys.,60 (2015) 360-378.
- [10] A. Bekir and O¨ . Gu¨ner, Exact solutions of nonlinear fractional differential equations by (G’/ G)-expansion method, Chin Phys B., 22 (2013), 110202-1 – 110202-6.
- [11] A. Bekir and E. Aksoy, Application of the subequation method to some differential equations of time fractional order, Rom J Phys., 10 (2015), 054503-1 – 054503-5.
- [12] A. Bekir, and O¨ . Gu¨ner, Bright and dark soliton solutions of the (3 + 1)-dimensional generalized Kadomtsev- Petviashvili equation and generalized Benjamin equation, Pramana-J. Phys., 81(2) (2013), 203–214.
- [13] A. Bekir and O¨ . Gu¨ner, Topological (dark) soliton solutions for the Camassa-Holm type equations, Ocean Eng., 74 (2013), 276–279.
- [14] Z. Bin, (G’/ G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Commun Theor Phys., 58 (2012), 623–630.
- [15] A. Biswas, 1-Soliton solution of the B(m,n) equation with generalized evolution, Commun.Nonlinear Sci.Numer. Simul., 14 (2009), 3226–3229.
- [16] A. Biswas, 1-Soliton solution of the K(m,n) equation with generalized evolution, Phys. Lett. A, 372 (2008), 4601– 4602.
- [17] A. Biswas, Optical solitons with time-dependent dispersion, nonlinearity and attenuation in a power-law media, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 1078–1081.
- [18] A. Biswas and D. Milovic, Bright and dark solitons of the generalized nonlinear Schr¨odingers equation, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 1473–1484.
- [19] A. Biswas, H. Triki, T. Hayat, and O. M. Aldossary, 1-Soliton solution of the generalized Burgers equation with generalized evolution, Applied Mathematics and Computation, 217 (2011), 10289–10294.
- [20] A. Biswas, C. Zony, and E. Zerrad, Soliton perturbation theory for the quadratic nonlinear Klein–Gordon equation, Applied Mathematics and Computation, 203 (2008) 153.
- [21] H. Bulut, H. M. Baskonus, and Y. Pandir, The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation, Abstr Appl Anal., (2013) Article ID 636802.
- [22] Y. C¸ enesiz, D. Baleanu, A. Kurt et al. New exact solutions of Burgers’ type equations with conformable derivative, Waves Random Complex Media., 27 (2017), 103–116.
- [23] S. C¸ ulha and A. Das.cıo˜glu, Analytic solutions of the space time conformable fractional Klein Gordon equation in general form, Waves in Random and Complex Media 29 (2019), 775–790
- [24] S. M. Ege and E. Mısırlı, The modified Kudryashov method for solving some fractional-order nonlinear equations, Adv. Difference Equ. 2014 (2014), 135.
- [25] M. Eslami and H. Rezazadeh, The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo., 53 (2016) 475–485.
- [26] A. K. Golmankhaneh, A. Golmankhaneh, and D. Baleanu, On nonlinear fractional Klein-Gordon equation. Signal Processing, 91 (2011), 446–51.
- [27] O¨ . Gu¨ner, and A. Bekir, Exact solutions of some fractional differential equations arising in mathematical biology, Int J Biomath.,8 (2015), 1550003-1 – 1550003-17.
- [28] O¨ . Gu¨ner and D. Eser, Exact solutions of the space time fractional symmetric regularized long wave equation using different methods, Adv Math Phys., (2014), Article ID 456804.
- [29] O¨ . Gu¨ner, Singular and non-topological soliton solutions for nonlinear fractional differential equations, Chinese Physics B, 24 (2015), 100201
- [30] O¨ . Gu¨ner and A. Bekir, Solving nonlinear space-time fractional differential equations via ansatz method, Compu- tational Methods for Differential Equations, 6(1) (2018), 1-11.
- [31] J. H. He, S. K. Elegan, and Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Physics Letters A, 376 (2012), 257–259.
- [32] K. Hosseini and Z. Ayati, Exact solutions of space-time fractional EW and modified EW equations using Kudryashov method, Nonlinear Sci Lett A., 7 (2016), 58–66.
- [33] K. Hosseini, P. Mayeli, and R. Ansari, Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities, Optik, 130 (2017), 737–742.
- [34] K. Hosseini, P. Mayeli, and R. Ansari, Bright and singular soliton solutions of the conformable time-fractional Klein-Gordon equations with different nonlinearities, Waves in Random and Complex Media 28 (2018), 426–434
- [35] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51 (2006), 1367–1376
- [36] G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for nondifferentiable functions, Appl. Maths. Lett., 22 (2009), 378–385
- [37] S. B. Karakoc and K. K. Ali. New exact solutions and numerical approximations of the generalized KdV equation, Computational Methods for Differential Equations (2021), DOI: 10.22034/cmde.2020.36253.1628
- [38] E. V. Krishnan and A. Biswas, Solutions to the Zakharov Kuznetsov equation with higher order nonlinearity by mapping and ansatz methods, Phys. Wave Phenom., 18 (2010), 256–261.
- [39] C. M. Khalique and A. Biswas, Optical solitons with parabolic and dual-power law nonlinearity via Lie group analysis, Journal of Electromagnetic Waves and Applications, 23(7) (2009), 963–973.
- [40] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, (2006)
- [41] A. Korkmaz, Exact solitons to (3+1) conformable time fractional jimbo Miwa, Zakharov Kuznetsov and modified Zakharov Kuznetsov equations, Commun.Theor. Phys., 67 (2017), 479-–482.
- [42] N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simulat., 17(6) (2012), 2248—2253.
- [43] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
- [44] M. Mirzazadeh, M. Eslami, and A. Biswas, Solitons and periodic solutions to a couple of fractional nonlinear evolution equations, Pramana J Phys., 82 (2014), 465–476.
- [45] M. Mirzazadeh, Topological and non-topological soliton solutions to some time-fractional differential equations, Pramana-J. Phys. 85 (2015), 17–29
- [46] M. Matinfar, M. Eslami, and M. Kordy, The functional variable method for solving the fractional Korteweg de Vries equations and the coupled Korteweg de Vries equations, Pramana J Phys., 85 (2015), 583–592.
- [47] M. Odaba¸sı and E. Mısırlı, On the solutions of the nonlinear fractional differential equations via the modified trial equation method, Math Methods Appl Sci., (2015). DOI:10.1002/mma.3533
- [48] I. Podlubny, Fractional Differential Equations , Academic Press, California, 1999.
- [49] S. Ray, New exact solutions of nonlinear fractional acoustic wave equations in ultrasound, Comput Math Appl., 71 (2016), 859–868
- [50] S. Saha, New analytical exact solutions of time fractional KdV KZK equation by Kudryashov methods, Chin Phys B., 25 (2016), 040204-1 – 040204-7.
- [51] M. A. Shallal, H. N. Jabbar, and K. K. Ali, Analytic solution for the space-time fractional Klein-Gordon and coupled conformable Boussinesq equations, Results in Physics, 8 (2018), 372–378
- [52] N. Taghizadeh, F. M. Najand, and V. Soltani Mohammadi, New exact solutions of the perturbed nonlinear fractional Schr¨odinger equation using two reliable methods, Appl Math., 10 (2015), 139–148.
- [53] M. Tamsir and V. Srivastava, Analytical study of time-fractional order Klein-Gordon equation, Alexandria Engi- neering Journal 55 (2016), 561–567
- [54] H. Triki and A. M. Wazwaz, Bright and dark soliton solutions for a K(m,n) equation with t-dependent coefficients, Phys. Lett. A, 373 (2009), 2162–2165.
- [55] O. U¨ nsal, , O¨ . Gu¨ner, and A. Bekir, Analytical approach for space-time fractional Klein-Gordon equation, Optik, 135 (2017), 337–345
- [56] AM. Wazwaz, Compactons, solitons and periodic solutions for some forms of nonlinear Klein– Gordon equations, Chaos, Solitons Fractals, 28 (2006), 1005—1013.
- [57] A. Yokus, H. Durur, and H. Ahmad, Hyperbolic type solutions for the couple Boiti-Leon-Pempinelli system, Facta Universitatis, Series: Mathematics and Informatics, 35 (2020), 523—531.
|