تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,780 |
تعداد دریافت فایل اصل مقاله | 15,213,823 |
بررسی رفتار مقاومتی تثبیت خاکهای مارن و لایروبی با سربارههای فولادی کوره قوس الکتریکی و کوره اکسیژن | ||
نشریه مهندسی عمران و محیط زیست دانشگاه تبریز | ||
مقاله 5، دوره 53.1، شماره 110، خرداد 1402، صفحه 55-66 اصل مقاله (777.06 K) | ||
نوع مقاله: مقاله کامل پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jcee.2021.45077.2019 | ||
نویسندگان | ||
ایرج رحمانی* 1؛ مسعود صادقپور منفرد2؛ عطا آقایی آرایی1 | ||
1بخش ژئوتکنیک و زیرساخت، مرکز تحقیقات راه، مسکن و شهرسازی، تهران | ||
2پژوهشکده ساختمان و مسکن، تهران | ||
چکیده | ||
مارن سنگهایی هستند که از تهنشینی همزمان مصالح آهکی و رسی تشکیل شدهاند. خاک مارنی نتیجه هوازدگی فیزیکی و شیمیایی سنگ مادر است. ویژگیهای مارن شامل رفتار پیچیده، حساسیت به رطوبت، مقاومت و باربری کم، قابلیت فشردگی بالا و ویژگی خمیری زیاد؛ میباشند. در سراسر جهان؛ سالانه حجم زیادی خاک لایروبی تولید میگردد. این خاک اغلب ویژگیهای فنی مناسب برای استفاده در کارهای عمرانی ندارد؛ و بهناچار انباشته میشود. سرباره فولاد، یکی از محصولات جانبی صنعت فولاد است. با توجه به گرانی و مشکلات زیستمحیطی تولید تثبیتکنندههای سنتی مانند آهک و سیمان و همچنین حجم زیاد، جاگیر بودن و ویژگیهای مناسب؛ سرباره فولاد میتواند در تثبیت خاک بهکار رود. در این مقاله تثبیت خاک مارن تبریز و خاک لایروبی خلیجفارس با ریزدانه سربارههای BOF و EAF موردبررسی قرار گرفته است. برای این منظور آزمونههای 7 روزه خاک تثبیتشده با 4 درصد مختلف ریزدانه سربارههای فولاد BOF و EAF تهیه شدند. این آزمونهها تحت آزمایش فشاری تکمحوری محدود نشده بر روی نمونههای مکعبی با ابعاد 5 سانتیمتری قرار گرفتند. ضعیفترین ترکیبات بهترتیب خاک لایروبی و مارن دارای سرباره فولاد EAF هستند. در کل، سرباره فولادBOF بیشترین مقاومت فشاری تکمحوری و ضریب ارتجاعی E50 را در خاک مارن ایجاد کرد. مقاومت خاک لایروبی تثبیتشده از 2/0 تا kg/cm2 8/2 افزایش یافته است. سرباره EAF توانسته مقاومت تکمحوری مارن را اندکی بهبود داده از 6/1 به kg/cm28/1 برساند. تثبیت با %12 سرباره BOF موجب بیشترین مقاومت تکمحوری مارن kg/cm2 8/3 میشود. | ||
کلیدواژهها | ||
مارن؛ خاک لایروبی؛ سرباره EAF؛ سرباره BOF؛ تثبیت؛ مقاومت تک محوری | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
اصغری کلجاهی ا، پسند س ع، خیروری ذ، "بهسازی خاکهای مارنی غرب بندرعباس برای استفاده در خاکریزی"، دومین کنفرانس ملّی مهندسی ژئوتکنیک ایران، مهر 1393، کرمانشاه، ایران.
امیری م، عساکره ع، آتشپوش ح، "بررسی مقاومت و ساختار خاکهای مارنی تثبیت شده با سیمان و نانوسیلیس"، نشریه زمینشناسی مهندسی، 1399، 14 (1)، 29-52.
پاک ع، رحمانی ا، مقدم م، درخشان نیک، پ، "لایروبی (جلد دوم) راهنمای ارزیابی آثار زیستمحیطی"، پژوهشکده حمل و نقل، بخش پژوهشی حمل و نقل و تکنولوژی دریایی، تهران، 1390.
دستورالعمل تثبیت لایههای خاکریز و روسازی راهها، نشریه شماره 268، سازمان مدیریت و برنامهریزی کشور، 1382.
رحمانی ا، آقایی آرایی ع، عطارچیان ن، سلامت ا س، "بررسی اثر غرق آب شدن، دانهبندی و جنس سرباره فولاد بر مشخصات فنی خاکریزهای مهندسی"، پروژه تحقیقاتی مرکز تحقیقات راه، مسکن و شهرسازی، بخش ژئوتکنیک و زیرساخت، 1396.
رحمانی ا، افشاری م، آقاییآرایی ع، عطارچیان ن، "بررسی اثر انرژی تراکم، دانه بندی و نوع سرباره فولادی بر مشخصات تراکمی و نسبت باربری کالیفرنیا (CBR)"، فصلنامه علمی پژوهشنامه حمل و نقل، 1399، 63 (2)، 137-150.
عساکره ع، امیری م، زارعی ح، " مطالعه ریزساختاری تثبیت خاک مارن جنوب با استفاده از آهک و نانوسیلیس"، مجله علمی- پژوهشی مهندسی عمران مدرس، 1398، 19 (3)، 111-122.
ماهوتی ا ع، کاتبی ه، "طبقهبندی خاکهای کربناته از دیدگاه مهندسی ژئوتکنیک (مطالعه موردی: خاک مارندار شهر تبریز)"، نشریه مهندسی عمران و محیط زیست دانشگاه تبریز، 1397، 48 (3)، 61 -73.
Aiban SA, Al-Abdul Wahhab HI, Al-Amoudi OSB, “Performance of a stabilized marl base: a case study”, Construction and Building Materials, 1998, 12, 329-340. Al-Amoudi OSB, Khan K, Al-Kahtani NS, “Stabilization of a Saudi calcareous marl soil”, Construction and Building Materials, 2010, 24, 1848-1854. Aldaood A, Bouasker M, Al-Mukhtar M, “Geotechnical properties of lime-treated gypseous soils”, Applied Clay Science, 2014, 88-89, 39-48. Aldeeky H, Al Hattemleh O, “Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil”, Advances in Civil Engineering, 2017, 2017, 1-11. Al-Mukhtar M, Khattab S, Alcover JF, “Microstructure and geotechnical properties of lime-treated expansive clayey soil”, Engineering Geology, 2012, 139, 17-27. Belhadj E, Diliberto C, Lecomte A, “Characterization and activation of Basic Oxygen Furnace slag”, Cement and Concrete Composites, 2012, 34, 34-40. Bensaifi E, Bouteldja F, Nouaouria MS, Breul P, “Influence of crushed granulated blast furnace slag and calcined eggshell waste on mechanical properties of a compacted marl”, Transportation Geotechnics, 2019, 20, 100244 Benyahia S, Boumezbeur A, Lamouri B, Fagel N, “Swelling properties and lime stabilization of N'Gaous expansive marls, NE Algeria”, Journal of African Earth Sciences, 2020, 170, 103895. Brazilian Steel Industry Annual Statistics (in Portuguese), Brazilian Steel Industry Institute, Rio de Janeiro, 1998. Chan C, Mizutani T, Kikuchi Y, “Reusing dredged marine clay by solidification with steel slag: A study of Compressive strength”, International Journal of Civil and Structural Engineering, 2011, 2 (1), 270-279. Chan CM, Shahri Z, “Geo-characterisation of dredged marine soils for potential reuse assessment in civil engineering applications”, ARPN Journal of Engineering and Applied Sciences, 2016, 11 (11), 7193-7197. Deng YF, Zhang TW, Zhao Y, Liu QW, Wang Q, “Mechanical behavior and microstructure of steel slag-based composite and its application for soft clay stabilization”, Eur. J. Environ. Civil Eng., 2017, 21, 1-16. Druijf B, “The use of additives to stabilise dredged material”, M.Sc. Thesis, Delft University of Technology, the Wroclaw University of Science and Technology, and the University of Miskolc, 2016. Dubois V, Dubois NE, Zentar Z, Ballivy G, “The use of marine sediments as a pavement base material”, Waste Management, 2009, 29, 774-782. Elert K, Azañón JM, Nieto F, “Smectite formation upon lime stabilization of expansive marls”, Applied Clay Science, 2018, 158, 29-36. EUROSLAG-The European Association Representing Metallurgical Slag Producers and Processors. Available online: https://www.euroslag.com/products/statistics/statistics-2016/ (accessed on 20 January 2020). Fookes PG 8, Higginbotrom IE, “The classification and description of near-shore carbonate sediments for engineering purposes”, Geotechnique, 1975, 25 (2), 406-411. Goodarzi AR, Salimi M, “Stabilization treatment of a dispersive clayey soil using granulated blast furnace slag and basic oxygen furnace slag”, Applied Clay Science, 2015, 108, 61-69. Guo JL, Bao YP, Wang M, “Steel slag in China: treatment, recycling, and management”, Waste Management, 2018, 78, 318-330, He J, Shi XK, Li ZX, Zhang L, Feng XY, Zhou LR, “Strength properties of dredged soil at high water content treated with soda residue, carbide slag, and ground granulated blast furnace slag”, Construction and Building Materials, 2020, 242, 118126, 1-9. Huo B, Li B, Huang S, Chen C, Zhang Y, Banthia N, “Hydration and soundness properties of phosphoric acid modified steel slag powder”, Construction and Building Materials, 2020, 119319. Kang G, Cikmit AA, Tsuchida T, Honda H, Kim YS, “Strength development and microstructural characteristics of soft dredged clay stabilized with basic oxygen furnace steel slag”, Construction and Building Materials, 2019, 203, 501-513. Kotsewara Rao D, Sravani G, Bharath N, “A laboratory study on the affect of steel slag for improving the properties of marine clay for foundation beds”, International Journal of Scientific & Engineering Research, 2014, 5 (7), 253-259. Limeira J, Agulló L, Etxeberria M, “Dredged marine sand as construction material”, European Journal of Environmental and Civil Engineering, 2012, 16 (8), 906-918. Liu Y, Chang M, Wang Q, Wang Y, Liu J, Cao C, Zheng W, Bao Y, Rocchi I, “Use of sulfur-free lignin as a novel soil additive: a multi-scale experimental investigation”, Engineering Geology, 2020, 269, 105551, 1-10. MolaAbasi H, Naderi Semsani S, Saberian M, Khajeh A, Li J, Harandi M, “Evaluation of the long-term performance of stabilized sandy soil using binary mixtures: A micro- and macro-level approach”, Journal of Cleaner Production, 2020, 267, 122209, 1-18. Motz H, Geiseler J, “Products of steel slags an opportunity to save natural resources”, Waste Management, 2001, 21 (3), 285-293. Ojuri OO, Adavi AA, Oluwatuyi OE, “Geotechnical and environmental evaluation of lime-cement stabilized soil-mine tailing mixtures for highway construction”, Transportation Geotechnics, 2017, 10, 1-12. Poh HY, Ghataora GS, Chazireh N, “Soil stabilization using basic oxygen steel slag fines”, Journal of Materials in Civil Engineering, ASCE, 2006, 18 (2), 229-240. Pooni J, Robert D, Giustozzi F, Setunge S, Xie YM, Xia J, “Performance evaluation of calcium sulfoaluminate as an alternative stabilizer for treatment of weaker subgrades”, Transportation Geotechnics, 2021, 27, 100462. Portland Cement Association, “Soil-Cement Laboratory Handbook”, Portland Cement Association, Illinois, 1992. Proctor DM, Fehling KA, Shay EC, Wittenborn JL, Green JJ, Avent C, Bigham RD, Connolly M, Lee B, Shepker TO, Zak MA, “Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags”, Environmental Science & Technology, 2000, 34, 1576-1582. Qiang W, Mengxiao S, Jun Y, “Influence of classified steel slag with particle sizes smaller than 20 μm on the properties of cement and concrete”, Construction and Building Materials, 2016, 123, 601-610. Ranaivomanana H, Razakamanantsoa A, Amiri AO, “Effects of cement treatment on microstructural, hydraulic, and mechanical properties of compacted soils: characterization and modeling”, International Journal of Geomechanics, 2018, 18 (9), 04018106. Salimi M, Ghorbani A, “Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers”, Applied Clay Science, 2020, 184, 105390, 1-15. Schanz T, Elsawy MB, “Stabilisation of highly swelling clay using lime-sand mixtures”, Proceedings of the Institution of Civil Engineers Ground Improvement, 2017, 170 (4), 218-230. Scrivener KL, Kirkpatrick RJ, “Innovation in use and research on cementitious material”, Cement and Concrete Research, 2008, 38, 128-136. Seco A, Ramírez F, Miqueleiz L, García B, Prieto E, “The use of non-conventional additives in Marls stabilization”, Applied Clay Science, 2011, 51 (4), 419-423. Shi CJ, Qian JS, “High performance cementing materials from industrial slags-a review”, Resources, Conservation and Recycling, 2000, 29, 195-207. Siham K, Fabrice B, Vincent D, Nor Edine A, “Beneficial use of marine dredged sand and sediments in road construction”, Arabian Journal for Science and Engineering, 2013, 1-8. Stoltz G, Cuisinier O, Masrouri F, “Multi-scale analysis of the swelling and shrinkage of a lime-treated expansive clayey soil”, Applied Clay Science, 2012, 61, 44-51. Tasalloti SMA, Indraratna B, Chiaro G, Heitor A, “Field investigation on compaction and strength performance of two coal wash-BOS slag mixtures”, [American Society of Civil Engineers IFCEE 2015 - San Antonio, Texas (March 17–21, 2015)] IFCEE 2015 - Field Investigation on Compaction and Strength Performance of Two Coal Wash-BOS Slag Mixtures., 2359–2368. Teng X, Li J, Wang Z, Liu W, Song D, Chun Z, Deng X, “Treatment of methyl blue wastewater by steel slag particle three-dimensional electrode system”, Science of Advanced Materials, 2020, 12 (3), 344-349. Thomas G, Rangaswamy K, “Dynamic soil properties of nanoparticles and bioenzyme treated soft clay”, Soil Dynamics and Earthquake Engineering, 2020, 137, 106324, 1-10. Wang F, Shen Z, Liu R, Zhang Y, Xu J, Al-Tabbaa A, “GMCs stabilized/solidified Pb/Zn contaminated soil under different curing temperature: Physical and microstructural properties”, Chemosphere, 2020, 239, 124738, 1-8. Wilkinson A, Haque A, Kodikara J, “Stabilisation of clayey soils with industrial by-products: part A”, Proceedings of the Institution of Civil Engineers Ground Improvement, 2010, 163 (G13), 149-163. World Steel in Figures, World Steel Association, 2020, https://www.worldsteel.org/steel-by-topic/statistics/World-Steel-in-Figures.html Worldsteel Association. Steel Industry Co-Products. Available online: https://www.worldsteel.org/en/dam jcr:1b916a6d-06fd-4e84-b35d-c1d911d18df4/Fact_By-products_2018.pdf (accessed on 20 January 2020). Worrell E, Price LK, Martin N, Hendriks C, Ozawa Meida L, “Carbon dioxide emissions from the global cement industry”, Annual Review of Energy and the Environment, 2001, 26, 303-329. Yaghoubi M, Arulrajah A, Miri Disfani M, Horpibulsuk S, Darmawan and Wang J, “Impact of field conditions on the strength development of a geopolymer stabilized marine clay”, Applied Clay Science, 2019, 167, 33-42. Yang Y, Wang L, Cao Z, Mou C, Shen L, Zhao J, Fang Y, “CO2 emissions from cement industry in China: A bottom-up estimation from factory to regional and national levels”, Journal of Geographical Sciences, 2017, 27, 711-30. Zeng LL, Bian X, Zhao L, Wang YJ, Hong ZS, “Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China”, Geomechanics for Energy and the Environment, 2021, 25, 100195, 1-11. Zhang WL, Zhao LY, McCabe BA, Chen YH, Morrison L, “Dredged marine sediments stabilized/solidified with cement and GGBS: Factors affecting mechanical behaviour and leachability”, Science of The Total Environment, 2020, 733, 138551, 1-16 | ||
آمار تعداد مشاهده مقاله: 543 تعداد دریافت فایل اصل مقاله: 200 |