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Abstract
This paper deals with the numerical treatment of singularly perturbed delay differential equations having a delay
on the first derivative term. The solution of the considered problem exhibits boundary layer behavior on the left
or right side of the domain depending on the sign of the convective term. The term with the delay is approximated
using Taylor series approximation, resulting in an asymptotically equivalent singularly perturbed boundary value
problem. The uniformly convergent numerical scheme is developed using exponentially fitted finite difference
method. The stability of the scheme is investigated using solution bound. The uniform convergence of the scheme
is discussed and proved. Numerical examples are considered to validate the theoretical analysis.
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1. Introduction

A number of mathematical models appear in different application areas of science and engineering such as in
epidemiology, laser optics, control theory and etc. that considers not only the current state of a physical system but
also it includes its past history [14]. Such types of models are described as functional differential equations in general
cases or delay differential equations. It is known that time delays are natural components of the dynamic processes of
mechanics, economics, physiology, ecology and epidemiology [9] and to ignore them is to ignore reality [3]. Solution
methods for different types of delay differential equations are studied by different researchers [9]. For the behavior of
solution of delay differential equations, interested reader can refer [17] and the references cited there. The stability
estimate of numerical methods for delay parabolic differential and difference equations are discussed in [2].

A singularly perturbed delay differential equations (SPDDEs) are defined as differential equations in which its
highest order derivative is multiplied by a small perturbation parameter and having at least one delay term. Singularly
perturbed delay differential equations exists in several research areas of applied mathematics [23], to list few of them:
in water quality problem in river networks, in simulation of oil extraction from under-ground reservoirs, in convective
heat transport problem with large Peclet numbers, in atmospheric pollution, in fluid flow at high Reynolds number
and so on.

In general, when the perturbation parameter tends to zero the smoothness of the solution of the singularly perturbed
problems deteriorates and it forms boundary layer [16]. So, numerical methods developed for solving regular problems
turn out inapplicable for singular perturbation problem as the solution profile in this case depend up on the value of the
singular perturbation parameter. It is well-known that the standard numerical method in FDM, FEM and Collocation
methods on uniform meshes fail to converge uniformly with respect to the singular perturbation parameter [28]. The
efficiency of a numerical method is determined by its accuracy, simplicity in computing the discrete solution and
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its sensitivity to the parameters of the given problem. It is desirable to develop numerical methods which converges
uniformly. This motivates the researcher for developing simple, easy to use, parameter uniformly convergent numerical
methods for solving singularly perturbed differential equations.

The literature in singularly perturbed problems are very large to address all. We only mention few of the recently
published papers. Differently many numerical methods and techniques are discussed and highlighted in the review
papers [10, 11] for numerical treatment of different classes of singularly perturbed problems that involves boundary
layer phenomenon. Shah et al. in [24, 25] used collocation method based on Haar wavelets for the numerical solutions
of singularly perturbed boundary value problems. Ai-qing and Xu-ming in [1] apply the Haar wavelets collocation
method for singularly perturbed 2-D reaction diffusion problem.

The numerical treatments of singularly perturbed delay differential equations have received a great attention in
the present past because of their wide applications. It gives theoretical and practical interest to consider numerical
method for such problems. Owing to this, here we present some of the literatures pertinent on solution of SPDDEs.
Phaneendra and Lulu [19] consider singularly perturbed delay differential equation and approximate the problem
to equivalent singularly perturbed boundary value problem. They used Gaussian quadrature two-point formula for
treating the problem. Kumar [15] first approximating the delay term and applied a simple finite difference method
using mesh ratio. Kadalbajoo and Ramesh [12] after treating the delay term they used simple upwind , midpoint
upwind and a hybrid scheme on Shishkin mesh. The authors discuss the uniform convergence of the schemes. Reddy
et al. [21] first convert the problem to first order neutral type delay differential equation and then used the numerical
integration method.

Kanth and Kumar [20] after converting to equivalent BVPs, they proposed hybrid numerical scheme comprises
with the tension spline scheme in the boundary layer region and the midpoint approximation in the outer region on
piecewise uniform mesh. File and Reddy [5] proposed terminal boundary-value method for solving the problem, by
imposing a terminal point, the problem is decomposed into inner region and outer region problems. Both the inner and
outer region problems are solved using central difference method. In [6–8] the authors first replaced the problem by
equivalent first order neutral delay differential equations and they used Trapezoidal and Simpson integration formula
for treating the resulting problems. Reza and Khan [22] used Taylor series approximation for the terms with delay and
advance parameters and applied the Haar wavelats collocation method for solving the resulting singularly perturbed
problem. Woldaregay and Duressa [28] solved singularly perturbed problem that involves small delay and advance
parameters on the reaction terms. The authors applied the Richardson extrapolation technique to extend the rate
of convergence of the scheme. Daba and Duressa [4] considered a time dependent form of singularly perturbed delay
differential equation that arises from modeling of neuronal variability. The authors proposed implicit Euler method
in temporal discretization and exponentially fitted cubic spline method in spatial discretization. Their scheme gives
linear order uniform convergence.

Notations: The symbol N denoted for the number of mesh interval in the discretization. The symbol C denotes
positive constant independent of ε and N . The norm ∥.∥ denotes suprimum norm.

2. Statement of the Problem

We consider a class of singularly perturbed delay differential equations of the form

−εu′′(x) + a(x)u′(x− δ) + b(x)u(x) = f(x), x ∈ Ω = (0, 1), (2.1)

with interval-boundary conditions

u(x) = ϕ(x), −δ ≤ x ≤ 0 , u(1) = ψ(1), (2.2)

where, ε, 0 < ε ≪ 1 is singular perturbation parameter and δ is delay parameter satisfying δ < ε. We assume the
coefficient functions a(x), b(x) and the source function f(x) are sufficiently smooth and bounded for guaranteeing the
existence of unique solution. The coefficient function b(x) assumed to satisfy

b(x) ≥ β > 0, x ∈ Ω̄,

for β is lower bound of b(x).
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In case δ = 0, equation (2.1)-(2.2) reduces to singularly perturbed boundary value problem, in which for small ε it
exhibits boundary layer. The layer is maintained for δ ̸= 0 but sufficiently small.

2.1. Approximation for the delay term. For the case δ < ε, using Taylor’s series approximation for treating the
delay term is appropriate [26]. So, we approximate u′(x− δ) as

u′(x− δ) ≈ u′(x)− δu′′(x) +O(δ2). (2.3)

Substituting (2.3) into (2.1), we obtain

−(ε− δα)u′′(x) + a(x)u′(x) + b(x)u(x) = f(x), (2.4)

with the boundary conditions

u(0) = ϕ(0), u(1) = ψ(1), (2.5)

where α > 0 is lower bound of a(x). For small values of δ, (2.1)-(2.2) and (2.4)-(2.5) are asymptotically equivalent,
since the difference between the two equations is O(δ2). The differential operator L is denoted for the differential
equation in (2.4)–(2.5) and defined as

Lu(x) = −(ε− δα)u′′(x) + a(x)u′(x) + b(x)u(x).

The problem in (2.4)-(2.5) exhibits regular boundary layer of thickness O(ε− δα) and the position of the boundary
layer depends on the conditions: If a(x) < 0 left boundary layer exist and for a(x) > 0 right boundary layer exist. In
case of a(x), x ∈ Ω̄ change sign interior layer will exist [13].

The problem obtained by setting ε− δα = 0 in (2.4)-(2.5) is called reduced problem and given as

a(x)u′0(x) + b(x)u0(x) = f(x), x ∈ Ω,

u0(0) = ϕ(0), u0(1) ̸= ψ(1),
(2.6)

for right boundary layer case it does not satisfy the right boundary condition. For left boundary layer case it does
not satisfy the left boundary condition(i.e. u0(0) ̸= ϕ(0), u0(1) = ψ(1)). For small values of ε the solution u(x) of
(2.4)-(2.5) is very close to the solution u0(x) of (2.6).

2.2. Properties of the continuous solution. The continuous solution of the problem in (2.4)-(2.5) satisfies the
maximum principle, stability estimate or solution bound given in next Lemmas.

Lemma 2.1. (The maximum principle.) Let z be a sufficiently smooth function defined on Ω which satisfies z(0) ≥ 0
and z(1) ≥ 0. Then, Lz(x) ≥ 0, x ∈ Ω implies that z(x) ≥ 0, ∀x ∈ Ω̄.

Proof. Suppose that there exist x∗ ∈ Ω̄ such that z(x∗) = minx∈Ω̄ z(x) < 0. It is clear that x∗ /∈ {0, 1} i.e. x∗ ∈ Ω.
Since z(x∗) = min(x)∈Ω̄ z(x) using elementary calculus, which implies z′(x∗) = 0 and z′′(x∗) ≥ 0. Giving that Lz(x∗) =
−(ε − δα)z′′(x∗) + a(x∗)z′(x∗) + b(x∗)z(x∗) < 0 which is contradiction to the assumption made Lz(x∗) ≥ 0, x ∈ Ω.
Therefore, z(x) ≥ 0, ∀x ∈ Ω̄. □

Lemma 2.2. (Stability estimate.) The solution u(x) of the continuous problem in (2.4)-(2.5) is bounded as

|u(x)| ≤ β−1∥f∥+max{|ϕ(0)|, |ψ(1)|}. (2.7)

Proof. Define two barrier functions ϑ± as ϑ±(x) = β−1∥f∥+max{|ϕ(0)|, |ψ(1)|} ± u(x). On the boundary points, we
obtain

ϑ±(0) = β−1∥f∥+max{|ϕ(0)|, |ψ(1)|} ± u(0) ≥ 0,

ϑ±(1) = β−1∥f∥+max{|ϕ(0)|, |ψ(1)|} ± u(1) ≥ 0.
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On the domain x ∈ Ω, we have
Lϑ±(x) =− (ε− δα)ϑ′′±(x) + a(x)ϑ′±(x) + b(x)ϑ±(x)

=− (ε− δα)(0± u′′(x)) + a(x)
(
0± u′(x)

)
+ b(x)

(
β−1∥f∥+max{|ϕ(0)|, |ψ(1)|} ± u(x)

)
=b(x)

(
β−1∥f∥+max{|ϕ(0)|, |ψ(1)|}

)
± [−(ε− δα)u′′(x) + a(x)u′(x) + b(x)u(x)]

=b(x)
(
β−1∥f∥+max{|ϕ(0)|, |ψ(1)|}

)
± f(x)

≥0, since b(x) ≥ β > 0.

With the hypothesis of the maximum principle ϑ±(x) ≥ 0, ∀x ∈ Ω̄, implies the required bound. □

The next lemma gives a bound for the derivatives of solution.

Lemma 2.3. The derivative of the solution u(x) of the problem in (2.4)-(2.5) is bounded as∣∣u(k)∣∣ ≤ {
C
(
1 + (ε− δα)−k exp

( −αx
ε−δα

)
, for left layer,

C
(
1 + (ε− δα)−k exp

(−α(1−x)
ε−δα

)
, for right layer,

for 0 ≤ k ≤ 4, where α is lower bound of a(x).

Proof. See in [16]. □

3. Numerical Scheme Formulation

Generally, there are two strategies for designing numerical methods which have small truncation errors in the
boundary layer. The first approach is the class of fitted mesh methods which uses fine mesh in the layer region and
coarse mesh in outer layer. The convergence analysis of this approach is well developed. The second approach is the
fitted operator methods in which it uses uniform mesh and an exponentially fitting factor is determined for stabilizing
the term containing the singular perturbation parameter. In this approach the difference schemes reflect the qualitative
behaviour of the solution inside the layer. In this article, we formulate fitted operator finite difference method to find
the solution of the problem in (2.4)-(2.5). Using the solution techniques developed in asymptotic method for treating
singularly perturbed boundary value problems. We consider and treat separately the left and the right boundary layer
cases.

Let us discretize the domain [0, 1] as xi = ih, i = 0, 1, 2, ..., N with x0 = 0, xN = 1 and h is mesh length defined as
h = 1/N where N number of subintervals.

3.1. Case I: Right boundary layer problem. For singularly perturbed boundary value problem of the form in
(2.4)-(2.5) having right boundary layer, the asymptotic solution up to zero order approximation is given as [18]:

u(x) =u0(x) +
a(1)

a(x)
(ψ(1)− u0(1)) exp

(
−
∫ 1

x

( a(x)

ε− δα
− b(x)

a(x)

)
dx

)
+O(ε− δα), (3.1)

where u0 is the solution of the reduced problem.
Using Taylor series approximation for a(x) and b(x) centred x = 1 and simplifying, we obtain

u(x) = u0(x) + (ψ(1)− u0(1)) exp
(
− a(1)

ε− δα
(1− x)

)
. (3.2)

Considering h is small enough for each i, the discretized form of (3.2) becomes
u(xi) = u0(ih) + (ψ(1)− u0(1)) exp

(
− a(1)(1/(ε− δα)− iρ)

)
, (3.3)

where ρ = h/(ε− δα), h = 1/N .
Using Taylor’s series approximation for u0((i+ 1)h) and u0((i− 1)h) up to first order, we obtain

u(xi+1) =u0(ih) + (ψ(1)− u0(1)) exp
(
− a(1)(1/(ε− δα)− (i− 1)ρ)

)
,

u(xi−1) =u0(ih) + (ψ(1)− u0(1)) exp
(
− a(1)(1/(ε− δα)− (i+ 1)ρ)

)
.

(3.4)
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We multiply exponentially fitting factor σ1(ρ) for the term having the perturbation parameter to handle the disturbance
of the perturbation parameter as

Next, on discretized domain Ω̄N = {xi}Ni=0, using the difference approximations

u′(x) =
u(xi+1)− u(xi−1)

2h
+ τ1

and
u′′(x) =

u(xi−1)− 2u(xi) + u(xi+1)

h2
+ τ2,

where τ1 = −h2

6 u
(3)(xi) and τ2 = −h2

12u
(4)(xi).

We multiply exponentially fitting factor �1(�) for the term having the perturbation parameter to handle the distur-
bance of the perturbation parameter.

Let Ui be an approximate solution for u(x) at grid point xi, then we write the numerical scheme for (??) in operator
form as

Lh
RUi = fi, i = 1, 2, ..., N − 1, (3.5)

where Lh
RUi = −(ε− δα)σ1(ρ)

Ui−1−2Ui+Ui+1

h2 + a(xi)
Ui+1−Ui−1

2h + b(xi)Ui.
Since h is small and (fi − b(xi)Ui) is bounded, multiplying (3.5) by h and truncating the term h(fi − b(xi)Ui), results
to

−σ1(ρ)
ρ

(
Ui−1 − 2Ui + Ui+1

)
+
a(xi)

2

(
Ui+1 − Ui−1

)
= 0. (3.6)

Substituting the results in (3.3) and (3.4) into (3.6) and simplifying, the fitting factor is obtained as

σ1(ρ) =
ρa(xi)

2
coth

(
a(1)

ρ

2

)
. (3.7)

Hence, the required finite difference scheme becomes

Lh
RUi = fi, i = 1, 2, ..., N − 1, (3.8)

with the boundary conditions U0 = ϕ(0) and UN = ψ(1).

3.2. Case II: Left boundary layer problem. For the case of left boundary layer problem, the asymptotic solution
up to zeroth order approximation is given as [18]

u(x) =u0(x) +
a(0)

a(x)
(ϕ(0)− u0(0)) exp

(
−
∫ x

0

( a(x)

ε− δα
− b(x)

a(x)

)
dx

)
+O(ε− δα), (3.9)

by using Taylor series at x = 0 for a(x) and b(x) then simplifying we obtain

u(x) = u0(x) + (ϕ(0)− u0(0)) exp
(
− a(0)

ε− δα
x
)
, (3.10)

where u0 is the solution of the reduced problems.
Using the same procedure as the right boundary layer case, the fitting factor is obtained as

σ2(ρ) =
ρa(xi)

2
coth

(
a(0)

ρ

2

)
. (3.11)

and the required finite difference scheme becomes

Lh
LUi = fi, i = 1, 2, ..., N − 1, (3.12)

with the boundary conditions U0 = ϕ(0) and UN = ψ(1), where

Lh
LUi = −(ε− δα)σ2(ρ)

Ui−1 − 2Ui + Ui+1

h2
+ a(xi)

Ui+1 − Ui−1

2h
+ b(xi)Ui.
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3.3. Uniform convergence analysis. Here we show the convergence analysis for right boundary layer case and the
left boundary layer case follows in similar manner. First, we need to prove the discrete maximum principle for the
discrete scheme in (3.8).

Lemma 3.1. (Discrete maximum principle.) Assume that the mesh function z(xi) satisfies z(x0) ≥ 0 and z(xN ) ≥ 0.
If Lhz(xi) ≥ 0 for 1 ≤ i ≤ N − 1, then z(xi) ≥ 0 ∀i, 0 ≤ i ≤ N .

Proof. Let choose k such that z(xk) = minxi
z(xi) < 0, 1 ≤ i ≤ N − 1. If z(xk) ≥ 0, the the proof completed. We can

see that z(xk+1)− z(xk) ≥ 0 and z(xk)− z(xk−1) ≤ 0. Now from (3.5), we obtain

Lhz(xk) =− (ε− δα)σ(ρ)
z(xk−1)− 2z(xk) + z(xk+1)

h2
+ a(xk)

z(xk+1)− z(xk−1)

2h
+ b(xk)z(xk)

=− (ε− δα)σ(ρ)
(z(xk+1)− z(xk)) + (z(xk−1)− z(xk))

h2

+ a(xk)
(z(xk+1)− z(xk)) + (z(xk)− z(xk−1))

2h
+ b(xk)z(xk)

<0,

which contradicts Lhz(xk) ≥ 0 . Hence, the assumption is wrong. So, we conclude that z(xi) ≥ 0, ∀i, 0 ≤ i ≤ N . □

Lemma 3.2. (Discrete uniform stability estimate.) The solution Ui of the discrete scheme in (3.8) satisfy the following
bound.

|Ui| ≤ β−1∥LhUi∥+max{|U0|, |UN |}. (3.13)

Proof. Let p = β−1∥LhUi∥ +max{|U0|, |UN |} and define the barrier function ϑ±i by ϑ±i = p ± Ui. On the boundary
points, we obtain

ϑ±0 = p± U0 = β−1∥LhUi∥+max{|U0|, |UN |} ± ϕ(0) ≥ 0,

ϑ±N = p± UN = β−1∥LhUi∥+max{|U0|, |UN |} ± ψ(1) ≥ 0.

On the discretized spatial domain xi, 0 < i < N , we obtain

Lhϑ±i =− cεσ(ρ)
(p± Ui+1 − 2(p± Ui) + p± Ui−1

h2
)
+ a(xi)

(p± Ui+1 − p± Ui−1

2h

)
+ b(xi)(p± Ui)

=b(xi)p± LhUi

=b(xi)
(
β−1∥LhUi∥+max{|U0|, |UN |}

)
± f(xi)

≥0, since b(xi) ≥ β.

Using the discrete maximum principle in Lemma 3.1 gives ϑ±i ≥ 0, ∀xi ∈ Ω̄N . Hence the required bound is obtained.
□

Let us define the difference operators for approximating the derivatives as

D−u(xi) =
ui − ui−1

h
, D+u(xi) =

ui+1 − ui
h

,

D0u(xi) =
ui+1 − ui−1

2h
, and D+D−u(xi) =

ui−1 − ui + ui+1

h2
.

(3.14)

The next theorem gives the error bound of the developed scheme.

Theorem 3.3. Let u(xi) and Ui be respectively the exact solution of (2.4)-(2.5) and computed solution of (3.8), then
for sufficiently large N , the following error bound satisfied:∣∣Lh(u(xi)− Ui)

∣∣ ≤ CN−2

N−1 + (ε− δα)

(
1 + (ε− δα)−3 exp

(
− α(1− xi)

(ε− δα)

))
. (3.15)
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Proof. Consider the discretization error as
Lh(u(xi)− Ui) =(ε− δα)

(
u′′(xi)− σ(ρ)D+D−u(xi)

)
+ a(xi)

(
u′(xi)−D0u(xi)

)
,

=(ε− δα)
[
a(xi)

ρ

2
coth

(
a(1)

ρ

2

)
− 1

]
D+D−u(xi) + (ε− δα)

(
u′′(xi)−D+D−u(xi)

)
+ a(xi)

(
u′(xi)−D0u(xi)

)
,

where σ(ρ) = a(xi)
ρ
2 coth

(
a(1)ρ2

)
, and ρ = N−1

ε−δα . Now for z > 0 and for C1 and C2 are constants, then we have the
following relation

C1
z2

z + 1
≤ z coth(z)− 1 ≤ C2

z2

z + 1
, (3.16)

(ε− δα)
(N−1/(ε− δα))2

N−1/(ε− δα) + 1
=

N−2

N−1 + (ε− δα)
. (3.17)

Using Taylor series expansion for u(xi−1) and u(xi+1) at xi as,

u(xi±1) = u(xi)± hu′(xi) +
h2

2!
u′′(xi)±

h3

3!
u(3)(xi) +

h4

4!
u(4)(xi)± ...

we obtain the bound for∣∣D+D−u(xi)
∣∣ ≤C∥∥u(2)(xi)∥∥,∣∣u′′(xi)−D+D−u(xi)
∣∣ ≤CN−2

∥∥u(4)(xi)∥∥. (3.18)

Similarly for first derivative approximation error,∣∣u′(xi)−D0u(xi)
∣∣ ≤ CN−2

∥∥u(3)(xi)∥∥. (3.19)

where
∥∥u(k)(xi)∥∥ = supxi∈(x0,xN)

|u(k)(xi)|, k = 2, 3, 4.

Using the bounds in (3.18) and (3.19), and the results in (3.16) and (3.17), we obtain∣∣Lh(u(xi)− Ui)
∣∣ ≤C N−2

N−1 + (ε− δα)

∥∥u′′(xi)∥∥+ (ε− δα)CN−2
∥∥u(4)(xi)∥∥+ CN−2

∥∥u(3)(xi)∥∥
≤ N−2

N−1 + (ε− δα)

∥∥u′′(xi)∥∥+ CN−2
[
(ε− δα)

∥∥u(4)(xi)∥∥+
∥∥u(3)(xi)∥∥].

Using the results in Lemma 2.3 for bounds of the derivatives of the solution, we obtain∣∣Lh(u(xi)− Ui)
∣∣ ≤ CN−2

N−1 + (ε− δα)

(
1 + (ε− δα)−2 exp

(
− α(1− xi)

ε− δα

))
+ CN−2

[
(ε− δα)

(
1 + (ε− δα)−4 exp

(
− α(1− xi)

ε− δα

))
+
(
1 + (ε− δα)−3 exp

(
− α(1− xi)

ε− δα

))]
≤ CN−2

N−1 + (ε− δα)

(
1 + (ε− δα)−2 exp

(
− α(1− xi)

ε− δα

))
+ CN−2

[(
(ε− δα) + (ε− δα)−3 exp

(
− α(1− xi)

ε− δα

))
+
(
1 + (ε− δα)−3 exp

(
− α(1− xi)

ε− δα

))]
which simplifies to∣∣Lh(u(xi)− Ui)

∣∣ ≤ CN−2

N−1 + ε− δα

(
1 + (ε− δα)−3 exp

(
− α(1− xi)

ε− δα

))
, (3.20)
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since (ε− δα)−3 ≥ (ε− δα)−2 and CN−2

N−1+ε−δα ≥ CN−2. □

Lemma 3.4. For a fixed number of mesh numbers N and for ε− δα→ 0, it holds

lim
(ε−δα)→0

max
1≤i≤N−1

(ε− δα)m exp
( −αxi
ε− δα

)
= 0, m = 1, 2, 3, ... (3.21)

lim
(ε−δα)→0

max
1≤i≤N−1

(ε− δα)m exp
(−α(1− xi)

ε− δα

)
= 0, m = 1, 2, 3, ... (3.22)

where xi = ih, h = 1/N, i = 1, 2, ..., N − 1.

Proof. See in [27]. □

Theorem 3.5. Let u(xi) and Ui be the exact solution of (2.4)-(2.5)and discrete solution of (3.8) respectively. Then
the following error bound holds

sup
0<ε−δα≤1

∥∥u(xi)− Ui

∥∥ ≤ CN−2

N−1 + ε− δα
. (3.23)

Proof. Substituting the results in Lemma 3.4 into Theorem 3.3 and applying the discrete maximum principle, gives
the required bound. □

Remark 3.6. As one sees the error bound in (3.23), for the case ε − δα > N−1 the scheme secures second order
convergence. This means that for the case mesh size less than perturbation parameter the scheme is second order
convergent. We expect to lose an order of convergence for the case ε − δα ≤ N , and in fact it turns out that the
scheme is first-order uniformly convergent.

4. Numerical Results and Discussion

In this section, we consider numerical examples to illustrate the theoretical findings of the developed schemes.

Example 4.1. We consider an example of constant coefficient problem with right boundary layer

−εu′′(x) + u′(x− δ) + u(x) = 0

with interval-boundary conditions u(x) = 1, −δ ≤ x ≤ 0, u(1) = −1. The exact solution is given as

u(x) =
(1 + em2)em1x − (1 + em1)em2x

em2 − em1
,

where m1 =
1−

√
(1+4(ε+δ)

2(ε+δ) and m2 =
1+

√
(1+4(ε+δ)

2(ε+δ) .

Example 4.2. Now we consider variable coefficient problem with right boundary layer

−εu′′(x) + exp(x)u′(x− δ) + xu(x) = 0

with interval-boundary conditions u(x) = 1, −δ ≤ x ≤ 0, u(1) = 1.

Example 4.3. Now we consider a constant coefficient problem with left boundary layer

−εu′′(x)− u′(x− δ) + u(x) = 0

with interval-boundary conditions u(x) = 1, −δ ≤ x ≤ 0, u(1) = 1.
The exact solution is given as

u(x) =
(1− em2)em1x + (em1 − 1)em2x

em1 − em2

where m1 =
−1−

√
(1+4(ε−δ)

2(ε−δ) and m2 =
−1+

√
(1+4(ε−δ)

2(ε−δ) .
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Example 4.4. Now we consider a variable coefficient problem with left boundary layer
−εu′′(x)− exp(−0.5x)u′(x− δ) + u(x) = 0

with interval-boundary conditions u(x) = 1, −δ ≤ x ≤ 0, u(1) = 1.

The exact solution of the variable coefficient problems is not known. So, we use the double mesh technique to
calculate maximum absolute error. Let UN

i denoted for the computed solution of the problem where N is the number
of mesh points and U2N

i is used to denote the computed solution on double number of mesh points 2N by including
the mid-points xi+1/2 = xi+1+xi

2 into the mesh points. The maximum absolute error is given by

EN
ε,δ = max

i
|UN

i − u(xi)|, or EN
ε,δ = max

i
|UN

i − U2N
i |,

and the ε-uniform error is calculated using
EN = max

ε,δ

∣∣EN
ε,δ

∣∣.
The rate of convergence of the scheme is calculated using

rNε,δ = log2
(
EN

ε,δ/E
2N
ε,δ

)
.

and the ε- uniform rate of convergence is calculated using
rN = log2

(
EN/E2N

)
.

Table 1 Maximum absolute error and rate of convergence of Example 1 for δ = 0.5ε.

ε ↓ N → 26 27 28 29 210

2−2 1.5959e-06 3.9901e-07 9.9754e-08 2.4940e-08 6.2334e-09
1.9999 2.0000 1.9999 2.0004 -

2−4 4.1786e-05 1.0453e-05 2.6137e-06 6.5345e-07 1.6336e-07
1.9991 1.9998 1.9999 2.0000 -

2−6 2.2228e-04 5.5990e-05 1.4025e-05 3.5078e-06 8.7706e-07
1.9891 1.9972 1.9994 1.9998 -

2−8 8.2386e-04 2.2774e-04 5.8521e-05 1.4733e-05 3.6899e-06
1.8550 1.9604 1.9899 1.9974 -

2−10 1.4084e-03 6.2171e-04 2.0857e-04 5.7563e-05 1.4785e-05
1.1797 1.5757 1.8573 1.9610 -

2−12 1.4222e-03 7.1487e-04 3.5492e-04 1.5608e-04 5.2294e-05
0.9924 1.0102 1.1852 1.5776 -

2−14 1.4222e-03 7.1490e-04 3.5837e-04 1.7940e-04 8.8896e-05
0. 9923 0.9963 0.9983 1.0130 -

2−16 1.4222e-03 7.1490e-04 3.5837e-04 1.7941e-04 8.9759e-05
0.9923 0.9963 0.9982 0.9991 -

2−18 1.4222e-03 7.1490e-04 3.5837e-04 1.7941e-04 8.9759e-05
0.9923 0.9963 0.9982 0.9991 -

2−20 1.4222e-03 7.1490e-04 3.5837e-04 1.7941e-04 8.9759e-05
0.9923 0.9963 0.9982 0.9991 -

EN 1.4222e-03 7.1490e-04 3.5837e-04 1.7941e-04 8.9759e-05
rN 0.9923 0.9963 0.9982 0.9991 -

The solution of the problems in Examples 1 and 2 exhibits right boundary layer behaviour and in Example 3 and
4 exhibits left boundary layer behaviour. In Figure 2 we observe, as the perturbation parameter ε goes small the
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Table 2 Maximum absolute error and rate of convergence of Example 2 for δ = 0.5ε.

ε ↓ N → 26 27 28 29 210

2−2 6.8034e-06 1.7016e-06 4.2542e-07 1.0636e-07 2.6593e-08
1.9994 1.9999 1.9999 1.9998 -

2−4 4.5971e-05 1.1505e-05 2.8771e-06 7.1933e-07 1.7984e-07
1.9985 1.9996 1.9999 1.9999 -

2−6 1.9210e-04 4.8570e-05 1.2177e-05 3.0463e-06 7.6172e-07
1.9837 1.9959 1.9990 1.9997 -

2−8 6.5653e-04 1.8758e-04 4.8706e-05 1.2296e-05 3.0817e-06
1.8074 1.9453 1.9859 1.9964 -

2−10 1.0133e-03 4.6602e-04 1.6568e-04 4.7120e-05 1.2218e-05
1.1206 1.4920 1.8140 1.9473 -

2−12 1.0184e-03 5.1326e-04 2.5636e-04 1.1715e-04 4.1517e-05
0.9885 1.0015 1.1298 1.4966 -

2−14 1.0184e-03 5.1327e-04 2.5766e-04 1.2908e-04 6.4280e-05
0. 9885 0.9943 0.9972 1.0058 -

2−16 1.0184e-03 5.1327e-04 2.5766e-04 1.2909e-04 6.4608e-05
0.9885 0.9943 0.9971 0.9986 -

2−18 1.0184e-03 5.1327e-04 2.5766e-04 1.2909e-04 6.4608e-05
0.9885 0.9943 0.9971 0.9986 -

2−20 1.0184e-03 5.1327e-04 2.5766e-04 1.2909e-04 6.4608e-05
0.9885 0.9943 0.9971 0.9986 -

EN 1.0184e-03 5.1327e-04 2.5766e-04 1.2909e-04 6.4608e-05
rN 0.9885 0.9943 0.9971 0.9986 -

boundary layer formation becomes visible. In this figure we plot for ε = 2−4, 2−5 and 2−6 for δ = 0.3ε. In Figure 1 one
can see the effect of the delay parameter on the solution of the problems. In this figure we plot for δ = 0, 0.2ε, 0.4ε and
0.6ε for ε = 0.1. As one see on the figures for right boundary layer problems as values of δ increases the thickness of
the boundary layer increases. For the case of left boundary layer problem as the values of the δ increases the thickness
of the boundary layer decreases.

In Tables 1-4, the maximum absolute error, rate of convergence of Examples 1 - 4 are given. As one see the results
in these tables the proposed scheme have second order of convergence for the case ε is greater than mesh size h, and
for the case ε goes small the scheme reduces to first order convergence as stated in Remark 3.6. As the perturbation
parameter goes small for each N , the maximum absolute error becomes stable and uniform. This shows that the
proposed scheme is uniformly convergent(converges independent of the perturbation parameter as the perturbation
parameter goes small) with rate of convergence one.

In Tables 5-7, the comparison of maximum absolute error of the proposed scheme and scheme in [21] are given. In
these tables the result are calculated for ε = 0.1 and different values of the delay parameter. In Table 8, the comparison
of the maximum absolute error of the proposed scheme and the hybrid Tension spline method with mid-point upwind
scheme on Shishkin mesh in [20] are given. As one observes the results in these tables the proposed scheme is more
accurate that the scheme in [20, 21].
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Table 3 Maximum absolute error and rate of convergence of Example 3 for δ = 0.5ε.

ε ↓ N → 26 27 28 29 210

2−2 3.0150e-05 7.5403e-06 1.8853e-06 4.7136e-07 1.1804e-07
1.9995 1.9998 1.9999 1.9976 -

2−4 1.6393e-04 4.1165e-05 1.0303e-05 2.5764e-06 6.4414e-07
1.9936 1.9984 1.9996 1.9999 -

2−6 6.5049e-04 1.7267e-04 4.3857e-05 1.1008e-05 2.7548e-06
1.9135 1.9771 1.9943 1.9985 -

2−8 1.3709e-03 5.4382e-04 1.6524e-04 4.3805e-05 1.1122e-05
1.3339 1.7186 1.9154 1.9777 -

2−10 1.4228e-03 7.1450e-04 3.4546e-04 1.3660e-04 4.1457e-05
0.9937 1.0484 1.3386 1.7203 -

2−12 1.4228e-03 7.1498e-04 3.5838e-04 1.7929e-04 8.6529e-05
0.9928 0.9964 0.9992 1.0510 -

2−14 1.4228e-03 7.1498e-04 3.5838e-04 1.7941e-04 8.9759e-05
0.9928 0.9964 0.9982 0.9991 -

2−16 1.4228e-03 7.1498e-04 3.5838e-04 1.7941e-04 8.9759e-05
0.9928 0.9964 0.9982 0.9991 -

2−18 1.4228e-03 7.1498e-04 3.5838e-04 1.7941e-04 8.9759e-05
0.9928 0.9964 0.9982 0.9991 -

2−20 1.4228e-03 7.1498e-04 3.5838e-04 1.7941e-04 8.9759e-05
0.9928 0.9964 0.9982 0.9991 -

EN 1.4228e-03 7.1498e-04 3.5838e-04 1.7941e-04 8.9759e-05
rN 0.9928 0.9964 0.9982 0.9991 -
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Table 4 Example 4, maximum absolute error for δ = 0.5ε.

ε ↓ N → 26 27 28 29 210

2−2 5.3033e-05 1.3263e-05 3.3167e-06 8.2919e-07 2.0729e-07
1.9995 1.9996 2.0000 2.0001 -

2−4 2.5937e-04 6.5064e-05 1.6280e-05 4.0719e-06 1.0181e-06
1.9951 1.9988 1.9993 1.9998 -

2−6 1.0006e-03 2.6041e-04 6.7107e-05 1.6825e-05 4.2093e-06
1.9420 1.9562 1.9959 1.9990 -

2−8 2.1551e-03 7.5387e-04 2.5253e-04 6.5640e-05 1.6909e-05
1.5154 1.5779 1.9438 1.9568 -

2−10 2.7057e-03 1.3242e-03 5.4455e-04 1.8896e-04 6.3279e-05
1.0309 1.2820 1.5270 1.5783 -

2−12 2.7072e-03 1.3642e-03 6.8440e-04 3.3296e-04 1.3651e-04
0.9887 0.9951 1.0395 1.2863 -

2−14 2.7072e-03 1.3642e-03 6.8480e-04 3.4308e-04 1.7161e-04
0.9887 0.9943 0.9971 0.9994 -

2−16 2.7072e-03 1.3642e-03 6.8480e-04 3.4308e-04 1.7171e-04
0.9887 0.9943 0.9971 0.9986 -

2−18 2.7072e-03 1.3642e-03 6.8480e-04 3.4308e-04 1.7171e-04
0.9887 0.9943 0.9971 0.9986 -

2−20 2.7072e-03 1.3642e-03 6.8480e-04 3.4308e-04 1.7171e-04
0.9887 0.9943 0.9971 0.9986 -

EN 2.7072e-03 1.3642e-03 6.8480e-04 3.4308e-04 1.7171e-04
rN 0.9887 0.9943 0.9971 0.9986 -

Table 5 Example 2, Comparison of maximum absolute error for ε = 0.1.

δ ↓ N → 102 103 104

Proposed Method
0.01 1.6856e-05 1.6864e-07 1.6691e-09
0.03 1.3270e-05 1.3275e-07 1.3270e-09
0.06 9.8506e-06 9.8535e-08 1.0152e-09
0.08 8.3261e-06 8.3278e-08 8.3463e-10
Result in [21]
0.01 0.00575975 0.00050842 5.02478e-05
0.03 0.003932768 0.00036132 3.58384e-05
0.06 0.002702569 0.00025507 2.53643e-05
0.08 0.00224689 0.00021413 2.13134e-05
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(a) (b) (c)

(d)

Figure 1 Delay effect on solution (a) Example 1, (b) Example 2, (c) Example 3 and (d) Example 4 for
ε = 0.1.

Table 6 Example 3, Comparison of maximum absolute error for ε = 0.1.

δ ↓ N → 102 103 104

Proposed Method
0.01 1.9342e-05 1.9348e-07 2.6703e-07
0.03 2.6592e-05 2.6607e-07 2.2057e-07
0.06 5.1266e-05 5.1346e-07 1.2318e-08
0.08 1.0854e-04 1.0915e-06 1.1049e-08
Result in [21]
0.01 0.01172 0.00122 1.231e-004
0.03 0.01505 0.00158 1.598e-004
0.06 0.02575 0.00281 2.839e-004
0.08 0.04781 0.00562 5.735e-004
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(a) (b) (c)

(d)

Figure 2 Effect of ε on solution with boundary layer, (a) Example 1, (b) Example 2, (c) Example 3 and (d)
Example 4 for δ = 0.3ε.

Table 7 Example 4, Comparison of maximum absolute error for ε = 0.1.

δ ↓ N → 102 103 104

Proposed Method
0.01 3.0968e-05 3.0994e-07 7.9967e-08
0.03 4.2151e-05 4.2161e-07 3.4257e-07
0.06 8.7483e-05 8.7707e-07 5.1270e-08
0.08 2.5205e-04 2.5655e-06 4.0077e-08
Result in [21]
0.01 0.00632996 0.000674268 6.7871251e-05
0.03 0.00815917 0.000882563 8.8986856e-05
0.06 0.01384760 0.001579726 1.6020004e-04
0.08 0.02477158 0.003173235 3.2602775e-04
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Table 8 Example 3, Comparison of maximum absolute error for δ = 0.5ε.

ε ↓ N → 25 26 27 28 29

Proposed Scheme
2−4 3.3570e-04 1.6393e-04 4.1165e-05 1.0303e-05 2.5764e-06
2−8 2.7500e-03 1.3709e-03 5.4382e-04 1.6524e-04 4.3805e-05
2−12 2.8165e-03 1.4228e-03 7.1498e-04 3.5838e-04 1.7929e-04
2−16 2.8165e-03 1.4228e-03 7.1498e-04 3.5838e-04 1.7941e-04
2−20 2.8165e-03 1.4228e-03 7.1498e-04 3.5838e-04 1.7941e-04
Result in [20]
2−4 1.52e-02 4.63e-03 1.16e-03 3.05e-04 8.50e-05
2−8 1.67e-02 5.59e-03 1.85e-03 6.01e-04 1.90e-04
2−12 1.67e-02 5.61e-03 1.85e-03 6.02e-04 1.90e-04
2−16 1.67e-02 5.61e-03 1.85e-03 6.02e-04 1.90e-04
2−20 1.67e-02 5.61e-03 1.85e-03 6.02e-04 1.90e-04
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5. Conclusion

In this paper, numerical treatment of singularly perturbed delay differential equations is considered. The solution
of the considered problem exhibits boundary layer behavior. Using Taylor’s series approximation for the delay term
asymptotically equivalent singularly perturbed boundary value problem obtained. The numerical schemes are devel-
oped using the exponentially fitted finite difference method. The stability of the schemes is investigated using the
barrier function for the solution bound and discrete maximum principle is used for the existence of the unique discrete
solution. The uniform convergence of the schemes is proved. The proposed scheme was investigated by considering
four test examples exhibiting boundary layers. The effect of the perturbation parameter and the delay parameter on
the solution is shown using figures and tables. The developed scheme is accurate and uniformly convergent with the
rate of convergence one.
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