- [1] S. Abbasbandy, H. Sahihi, and T. Allahviranloo, Implementing reproducing kernel method to solve singularly perturbed convection-diffusion parabolic problems, Math. Model. Anal., 26 (2021), 116–134.
- [2] A. Akgu¨l, M. Inc, and E. Karatas, Reproducing Kernel Functions for Difference Equations, Disc. Cont. Dynam. System. Serie. S., 8 (2015), 1055–1064.
- [3] A. Akgu¨l, M. Inc, E. Karatas, and D. Baleanu, Numerical solutions of fractional differential equations of Lane- Emden type by an accurate technique, Advan. Diff. Equ., 220 (2015), 1–12.
- [4] A. Akgu¨l, E. K. Akgu¨l, D. Baleanu, and M. Inc, New Numerical Method for Solving Tenth Order Boundary Value Problems, Math., 6 (2018), 1–9.
- [5] E. K. Akgu¨l, A. Akgu¨l, Y. Khan, and D. Baleanu, Representation for the reproducing kernel Hilbert space method for a nonlinear system, Math. Statis., 3 (2019), 1345–1355.
- [6] A. Akgu¨l and E. K. Akgu¨l, A Novel Method for Solutions of Fourth-Order Fractional Boundary Value Problems, Fractal. Fractional., 3 (2019), 1–13.
- [7] A. Akgu¨l, E. K. Akgu¨l, and S. Korhan, A New reproducing kernel functions in the reproducing kernel Sobolev spaces, AIMS. Math., 5 (2020), 482–496.
- [8] T. Allahviranloo and H. Sahihi, Reproducing kernel method to solve parabolic partial differential equations with nonlocal conditions, Num. Method. Partial. Diff. Equ., 36 (2020), 1758–1772.
- [9] T. Allahviranloo and H. Sahihi, Reproducing kernel method to solve fractional delay differential equations, Appl. Math. Comput., 400 (2021), 126095.
- [10] K. Atkinson and W. Han, Theoretical Numerical Analysis A Functional Analysis Framework, Third Edition, Springer Science, New York, USA, (2009).
- [11] E. Babolian, S. Javadi, and E. Moradi, Error analysis of reproducing kernel Hilbert space method for solving functional integral equations, J. Comput. Appl. Math., 300 (2016), 300–311.
- [12] E. Babolian and D. Hamedzadeh, A splitting iterative method for solving second kind integral equations in repro- ducing kernel spaces, J. Comput. Appl. Math., 326 (2017), 204–216.
- [13] Z. Chen and Z. J. Chen, The exact solution of system of linear operator equations in reproducing kernel spaces, Appl. Math. Comput., 203 (2008), 56–61.
- [14] M. Cui and Y. Lin Nonlinear numerical analysis in the reproducing kernel space, Nova Science, Hauppauge, New York, United States, (2009).
- [15] P. Das and S. Natesan, Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems, Appl. Math. Comput., 249 (2014), 265–277.
- [16] F. Z. Geng and M. G. Cui, Solving a nonlinear system of second order boundary value problems, J. Math. Anal. Appl., 327 (2007), 1167–1181.
- [17] R. K. Ghaziani, M. Fardi, and M. Ghasemi, Solving multi-order fractional differential equations by reproducing kernel Hilbert space method, Comput. Method. Diff. Equ., 4 (2016), 170–190.
- [18] W. Jiang and Z. Chen, solving a system of linear Volterra integral equations using the new reproducing kernel method, Appl. Math. Comput., 219 (2013), 10225–10230.
- [19] Y. Kan-On and M. Mimura, Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics, SIAM. J. Math. Anal., 29 (1998), 1519–1536.
- [20] R. Ketabchi, R. Mokhtari, and E. Babolian, Some error estimates for solving Volterra integral equations by using the reproducing kernel method, J. Comput. Appl. Math., 273 (2015), 245–250.
- [21] X. Li, Y. Gao, and B. Wu, Mixed reproducing kernel-based iterative approach for nonlinear boundary value problems with nonlocal conditions, Comput. Method. Diff. Equ., 9(3) (2020), 649-658, DOI: 10.22034/CMDE.2020.38153.1681.
- [22] Y. Z. lin, Y. L. Wang, F. G. Tan, X. H. Wan, H. Yu, and J. S. Duan, Solving a class of linear nonlocal boundary value problems using the reproducing kernel, Appl. Math. Comput., 265 (2015), 1098–1105.
- [23] X. Lu and M. G. Cui, Solving a singular system of two nonlinear ODEs, Appl. Math. Comput., 198 (2008), 534–543.
- [24] N. Madden, M. Stynes, and G. P. Thomas, On the application of robust numerical methods to a complete-flow wave-current model, in: Boundary and Interior Layers (BAIL), Toulouse, Hauppauge, New York, United States, (1998).
- [25] L. Mei and Y. Lin, Simplified reproducing kernel method and convergence order for linear Volterra integral equa- tions with variable coefficients, J. Comput. Appl. Math., 346 (2019), 390–398.
- [26] S. Matthews, E. O’Riordan, and G. I. Shishkin, A numerical method for a system of singularly perturbed reaction- diffusion equations, J. Comput. Appl. Math., 145 (2002), 151–166.
- [27] D.S. Naidu and K. A. Rao, Singular perturbation analysis of the closed-loop discrete optimal control problem, Opt. Cont. Appl. Method., 5 (1984), 19–37.
- [28] S. Natesan and N. Ramanujam, A booster method for singular perturbation problems arising in chemical reactor theory by incorporation of asymptotic approximations, Appl. Math. Comput., 100 (1999), 27–48.
- [29] S. Natesan and B. S. Deb, A robust computational method for singularly perturbed coupled system of reaction- diffusion boundary-value problems, Appl. Math. Comput., 188 (2007), 353–364.
- [30] W. H. Ruan and C. V. Pao, Asymptotic behavior and positive solutions of a chemical reaction diffusion system, J. Math. Anal. Appl., 159 (1992), 157–178.
- [31] H. Sahihi, S. Abbasbandy, and T. Allahviranloo, Reproducing kernel method for solving singularly perturbed differential-difference equations with boundary layer behavior in Hilbert space, J. Comput. Appl. Math., 328 (2018), 30–43.
- [32] H. Sahihi, S. Abbasbandy, and T. Allahviranloo, Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a delay, Appl. Math. Comput., 361 (2019), 583–598.
- [33] H. Sahihi, T. Allahviranloo, and S. Abbasbandy, Solving system of second-order BVPs using a new algorithm based on reproducing kernel Hilbert space, Appl. Num. Math., 151 (2020), 27–39.
- [34] N. Sharp and M. Trummer, A Spectral Collocation Method for Systems of Singularly Perturbed Boundary Value Problems, Proc. Comput. Sci., 1080 (2017), 725–734.
- [35] Y. Wang, T. Chaolu, and P. Jing, New algorithm for second-order boundary value problems of integro-differential equation, J. Comput. Appl. Math., 229 (2009), 1–6.
- [36] Y. Wang, L. Su, X. Cao, and X. Li, Using reproducing kernel for solving a class of singularly perturbed problems, Comput. Math. Appl., 61 (2011), 421–430.
- [37] Y. Wang, L. Su, and Z. Chen, Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems, Int. J. Comput. Math., 87 (2010), 367–380.
- [38] L. H. Yang, J. H. Shen, and Y. Wang, The reproducing kernel method for solving the system of the linear Volterra integral equations with variable coefficients, J. Comput. Appl. Math., 236 (2012), 2398–2405.
|