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Abstract

We examine the diffusion equation on the sphere. In this sense, we answer the question of the symmetry clas-

sification. We provide the algebra of symmetry and build the optimal system of Lie subalgebras. We prove for
one-dimensional optimal systems of Eq.1.4, space is expanding Ricci solitons. Reductions of similarities related to

subalgebras are classified, and some exact invariant solutions of the diffusion equation on the sphere are presented.
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1. Introduction

Suppose (G, g) is a (pseudo-)Riemannian manifold, V a smooth vector field on (G, g), and % the Ricci tensor of g.
The space (G, g) is Ricci soliton, if g, %, and V satisfy the equation;

LV g + % = αg, (1.1)

where L and α are the Lie derivative and a real constant, respectively. According to α (α > 0, α = 0, or α < 0), the
space (G, g) can also be a shrinking, steady or expanding Ricci soliton. The Ricci solitons are important for researchers
to interpret equations. The second-order linear partial differential equation

κuxx + κuyy − ut = 0. (1.2)

is called the diffusion equation, where κ is a real constant called the diffusivity. Condensation of a diffuser or unstable
temperature in an area without a heat source is ruled by this equation. It is well known that the metric on S2×R is:

ds2 = dt2 − dx2 − sin2xdy2 f ∈ C∞(G). (1.3)

Adjusting the metric (1.3) on S2 × R and rewriting Equation (1.2), the diffusion differential equation on the sphere
would be:

ut = κuxx + κ(cotx)ux + κ(csc2x)uyy. (1.4)

where κ is a real constant. Performing the Lie symmetry group procedure, the problem of symmetry classification for
different equations is widely considered in various spaces [1, 2, 5, 8, 9, 11, 13]. On the other hand, the symmetry group
approach or Lei’s approach itself, which is a computational method algorithmic for finding group-invariant solutions,
is significantly used in the resolution of differential equations. Using this procedure, one can find appropriate solutions
through known ones, study the invariant solutions, and even decrease the order of ODEs [3, 4, 7, 10, 12, 15].

In this paper, using Lei’s method, we earn symmetries of the diffusion differential equation on the sphere. Then,
an optimal subalgebras system linked to the symmetries Lie algebra is given. The article is organized as follows. The
symmetry algebra infinitesimal generators of Eq.(1.4) are characterized, and several effects are obtained in section
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2. In section 3, we construct the optimal systems of subalgebras. In the next section, we prove for one-dimensional
optimal systems of Eq.(1.4), the space is expanding Ricci solitons. In section 4, we find the Lie invariants, similarity
solutions, and similarity reduction corresponding to the infinitesimal symmetries of Eq.(1.4). Finally, in section 5,
some exact invariant solutions of the diffusion equation on the sphere are presented.

2. The symmetry algebra of Eq.(1.4)

Generally,

∆α(X,U (p)) = 0, α = 1, ..., t, (2.1)

is a system of PDE of order pth, where X = (x1, ..., xm) and U = (u1, ..., un) are m independent and n dependent
variables respectively, and U (i) is the i− order derivative of U with respect to x, 0 ≤ i ≤ p. Infinitesimal transformations
Lie group acts on both X and U , is:

x̃i = xi + εξi(X,U) + o(ε2), i = 1, ...,m, (2.2)

ũj = uj + εφj(X,U) + o(ε2), j = 1, ..., n, (2.3)

where ξi and φj represent the infinitesimal transformations for {x1, ..., xp} and {u1, ..., uq}, respectively. An arbitrary
infinitesimal generator corresponding to the group of transformations (2.2) is

V =

p∑
i=1

ξi(X,U)∂xi +

q∑
j=1

φj(X,U)∂uj . (2.4)

Now in order to apply the Lie group procedure for Eq.(1.4), an infinitesimal transformation’s one parameter Lie group
is considered: (we use x, y and t instead of x1, x2 and x3 respectively in order not to use index. So, x1 = x, x2 =
y, x3 = t, u1 = u),

x̃ = x+ εξ1(x, y, t, u, f) + o(ε2),

ỹ = y + εξ2(x, y, t, u, f) + o(ε2),

t̃ = t+ εξ3(x, y, t, u, f) + o(ε2), (2.5)

ũ = u+ εφ1(x, y, t, u, f) + o(ε2).

The corresponding symmetry generator is as follows:

V = ξ1(x, y, t, u, f)∂x + ξ2(x, y, t, u, f)∂y + ξ3(x, y, t, u, f)∂t+
φ1(x, y, t, u, f)∂u.

(2.6)

The proviso of being invariance corresponds to the equations:

Pr(2)V [κuxx + κ(cotx)ux + κ(csc2x)ut − ut] = 0, whenever
κuxx + κ(cotx)ux + κ(csc2x)ut − ut = 0.

Since ξ1, ξ2, ξ3, and φ1 are only dependent on x,y, t and u, setting the individual coefficients equal to zero, we have
the following system of equations: 

−κ2ξ3
uu = 0,

κcos(x)2ξ2
u − κξ2

u = 0,

2κcos(x)2ξ3
u − 2κξ3

u = 0,

...

The total number of these equations is 26. By solving these PDE equations, we earn the following result:
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Table 1. Lie algebra for Eq.(1.4).

[ , ] X1 X2 X3 X4 X5

X1 0 0 X4 −X3 0
X2 ∗ 0 0 0 0
X3 ∗ ∗ 0 X1 0
X4 ∗ ∗ ∗ 0 0
X5 ∗ ∗ ∗ ∗ 0

Theorem 2.1. The point symmetries Lie group of equation (1.4) possesses a Lie algebra generated by (2.6), whose
coefficients are the following infinitesimals:

ξ1 = c3siny − c2cosy,
ξ2 = cotx(c3cosy + c2siny) + c4,
ξ3 = c1,
φ1 = c5u+ α(u),

(2.7)

where ci ∈ R, i = 1, ..., 5 and α(u) is a function satisfying Eq.(1.4).

Corollary 2.2. Every point symmetry’s one-parameter Lie group of Eq.(1.4) has the infinitesimal generators as
follows:

X1 = ∂y,
X2 = ∂t,
X3 = −cosy ∂x + cotx siny ∂y,
X4 = siny ∂x + cotx cosy ∂y,
X5 = u∂u,
Xα = α∂u.

(2.8)

We provide Lie algebra for Eq.(1.4) by Table (1). The expression [Xi, Xj ] = XiXj −XjXi determines the entry in
row ith and column jth, i, j = 1, ..., 5.

For example, the flow of vector field X1 in Corollary 2.2 is shown by

Φε = (x, y + ε, t).

3. Classification of one-dimensional subalgebras

Using the symmetry group, we can determine the one-parameter optimal system of Eq.(1.4). It’s important to
obtain those subgroups which present different kinds of solutions. Thus, we need to search for invariant solutions that
are not linked by a transformation in the full symmetry group. This subject leads to the notion of an optimal set of
subalgebras. The problem of classifying one-dimensional subalgebras would be the same as the question of classifying
the adjoint representation orbits. An optimal set of subalgebras problem is solved by considering one representative
from every group of corresponding subalgebras [14] and [12]. The definition of the adjoint representation of each Xt,
t = 1, ..., 5 would be:

Ad(exp(s.Xt).Xr) = Xr − s.[Xt, Xr] +
s2

2
.[Xt, [Xt, Xr]]− · · · , (3.1)

where s is a parameter and [Xt, Xr] is defined in Table (1) for t, r = 1, · · · , 5 ([12],page 199). Let g, be the Lie algebra
that produced by (2.8). We obtain the adjoint action for g in Table (2).
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Table 2. Adjoint representation of the Lie algebra

Ad X1 X2 X3 X4 X5

X1 X1 X2 cos(s)X3 − sin(s)X4 cos(s)X4 + sin(s)X3 X5

X2 X1 X2 X3 X5 X5

X3 cos(s)X1 + sin(s)X4 X2 X3 cos(s)X4 − sin(s)X1 X5

X4 cos(s)X1 − sin(s)X3 X2 cos(s)X3 + sin(s)X1 X4 X5

X5 X1 X2 X3 X4 X5

Theorem 3.1. One-dimensional subalgebras of Eq.(1.4) are as follows:

1) X1 + c1X2 + c2X5,
2) X3 + c1X2 + c2X5,
3) X4 + c1X2 + c2X5,
4) X2 + c1X5,

where ci ∈ R are arbitrary numbers for i = 1, · · · , 5.

Proof. From Table (1), it is clear that the center of Lie algebra is 〈X2, X5〉. Hence, it would be sufficient to determine
the sub-algebras of

〈X1, X3, X4〉.
For t = 1, · · · , 5, the map: {

F st : g→ g

X 7→ Ad(exp(sXt).X)

is a linear function. Considering basis {X1, · · · , X5}, the matrixes Ms
t of F st , t = 1, · · · 5 are given by:

Ms
1 =


1 0 0 0 0
0 1 0 0 0
0 0 cos(s1) −sin(s1) 0
0 0 sin(s1) cos(s1) 0
0 0 −s 0 1

 Ms
2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.

Ms
3 =


cos(s2) 0 0 sin(s2) 0

0 1 0 0 0
0 0 1 0 0

−sin(s2) 0 0 cos(s2) 0
0 0 0 0 1

 Ms
4 =


cos(s4) 0 −sin(s4) 0 0

0 1 0 0 0
sin(s4) 0 cos(s4) 0 0

0 0 0 1 0
0 0 0 0 1

.

Ms
5 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.
By applying these matrixes on a vector field X =

∑5
i=1 aiXi alternatively, we can simplify X as follows:

For a1 6= 0, the coefficients of X3 and X4 can be disappeared by setting s4 = −tan−1(a3/a1) and s3 = tan−1(a4/a1)
respectively. If needed, by scaling X, we suppose a1 = 1. Thus, X turns into (1).

For a1 = 0 and a3 6= 0, the coefficients of X4 can be disappeared by setting s1 = −tan−1(a4/a3). If needed, by
scaling X, we suppose a3 = 1. Thus, X turns into (2).

For a1 = a3 = 0 and a4 6= 0, if needed, by scaling X, we suppose a4 = 1. Thus, X turns into (3).
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Table 3. Lie invariants and similarity solution.

i Hi ξi ηi wi ui
1 X1 x t u h(ξ, η)
2 X2 x y u h(ξ, η)

3 X1 + cX2 x y − t

c
u h(ξ, η)

4 X1 + cX5 x t lnu− cy ecy+h(ξ,η)

5 X1 + c1X2 + c2X5 x y − t

c1
lnu− c2

c1
t e

c2
c1
t+h(ξ,η)

6 c1X2 + c2X5 x y lnu− c2
c1
t e

c2
c1
t+h(ξ,η)

Table 4. Reduced equations regarding infinitesimal symmetries.

i Reduction of equations
1 κhξξ + κ(cotξ)hξ − hη = 0
2 κhξξ + κ(cotξ)hξ + κ(csc2ξ)hηη = 0

3 κhξξ + κ(cotξ)hξ + κ(csc2ξ)hηη +
1

a
hη = 0

4 κhξξ + κh2
ξ + κ(cotξ)hξ + c2κ(csc2ξ)− hη = 0

5 κhξξ + κh2
ξ + κ(cotξ)hξ + κ(csc2ξ)(hηη + h2

η) +
1

c1
hη − c2 = 0

6 κhξξ + κh2
ξ + κ(cotξ)hξ + κ(csc2ξ)(hηη + h2

η)− c2
c1

= 0

For a1 = a3 = 0 and a4 = 0, X turns into (4). �

4. Ricci soliton with one-dimensional optimal system

We are now reporting some essential concepts on Ricci solitons [6]. The Ricci soliton spaces are an inherent
generalization of Einstein field spaces. According to Theorem 6.1, we characterize the vector fields which are satisfied
with Equation (1.1) in the following theorem.

Theorem 4.1. For one-dimensional optimal systems of Eq.(1.4), (S2 ×R, g) is expanding Ricci soliton as follows:

1) X1 + ΦX2,
2) X3 + ΦX2,
3) X4 + ΦX2,
4) ΦX2,

where Φ = −1

2
t+ C1 for all four cases.

Proof. The above statement is obtained from a case-by-case argument. For instance, we detail the computations for
case (1). Let g be the metric which is described by the Eq. (1.3). We apply {∂i = ∂

∂xi : i = 1...4} for local basis of
the tangent space. Considering

2g(∇UV,Z) = Xg(V,Z) + Y g(Z,U)− Zg(U, V )

− g(X, [V,Z]) + g(Y, [Z,U ]) + g(Z, [U, V ]),
(4.1)

the non-vanishing elements of the connection can be obtained:

∇∂1∂2 = cot(x)∂2,

∇∂2∂2 = −sin(x)cos(x)∂1,
(4.2)
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The tensor of curvature is determined by using R(U, V ) = [∇U ,∇V ] − ∇[U,V ]. The non-vanishing elements of R are
determined by relations:

R(∂1, ∂2) = sin2(x)∂1dy,

R(∂2, ∂1) = ∂2dx,
(4.3)

Putting R(∂k, ∂l)∂j = Rijkl∂i, we can create the Ricci tensor % by contracting on the second and third indices of R.
The Ricci tensor matrix is as follows;

%(∂i, ∂j) =

 1 0 0
0 sin2(x) 0
0 0 0

 . (4.4)

From (4.4), it is not hard to see that (S2 × R, g) is not Einstein. For the four cases in Theorem 6.1, we separately
assume that:

1) X1 = X1 + ΦX2 + ΨX5,
2) X2 = X3 + ΦX2 + ΨX5,
3) X3 = X4 + ΦX2 + ΨX5,
4) X4 = ΦX2 + ΨX5,

where Φ and Ψ are functions. We consider X1 = X1 + ΦX2 + ΨX5, for the other cases we have the same result.
Because the meter g is in three-dimensional mode, the Lie derivative of g with respect to a four-dimensional vector
field X is impossible, so we assume Ψ = 0, although if we generalize the meter eventually again Ψ = 0. The Lie
derivative of g with respect to X = X1 + ΦX2 is:

LXg = ∂1Φdxdt+ ∂2Φdydt+ 2∂3Φ(dt)2

Applying Eqs. (1.3) and (4.4) in the Eq. (1.1), we earn the following set of PDEs:
(λ+ 1)sin2(x) = 0,
2∂3Φ− λ = 0,
λ+ 1 = 0,
∂1Φ = 0,
∂2Φ = 0,

which admits the following solution {
λ = −1,

Φ = −1

2
t+ C1,

for a real constant C1.
�

For example, the flow of vector field X1 is shown by

Φε = (x, y + ε, 2 + e−
1
2 ε(t− 2)).

The flow Φε is plotted in Figure 1.

5. Similarity reduction of Equation (1.4)

Here, we want to classify symmetry reduction of Eq.(1.4) concerning subalgebras of Theorem 6.1. We need to search
for a new form of Eq. (1.4) in specific coordinates so that it would reduce. Such a coordinate will be constructed
by finding independent invariant ξ, η, k, h regarding the infinitesimal generator. So, expressing the equation in new
coordinates applying the chain rule reduces the system. For 1-dimensional subalgebras in the Theorem 6.1 the similarity
variables ξi, ηi, ki and hi are listed in Table 3. Each similarity variable is applied to find the reduced PDE of Eq.(1.4)
which, they are listed in Table 4.
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Figure 1. The plot of flow Φε.

For instance, we compute the invariants associated with subalgebra H5 := X1 + c1X2 + c2X5 by integrating the
following characteristic equation.

dx

0
=
dy

1
=
dt

c1
=

du

c2u
.

Hence, the similarity variables would be:

ξ = x, η = lnu− t

c1
, h = lnu− c2

c1
t,

Substituting the similarity variables in Eq.(1.4) and applying the chain rule it results that, the solution of Eq.(1.4) is:

u = e
c2
c1
t+h(ξ,η)

where h(ξ, η) satisfies a reduced PDE with two variables as follows:

− 1

c1
hη + c2 = κhξξ + κh2

ξ + κcotξhξ + κcsc2ξ(hηη + h2
η). (5.1)

Subalgebra X1 + c1X2 + c2X5 and the reduced Eq. (5.1) are shown in Tables 3 and 4, by the case (5).

6. The Diffusion solutions on the sphere

Consider the reduced equations cases (1) and (2) and thier 2 independent variables in Tables 3 and 4:

κhξξ + κ(cotξ)hξ − hη = 0,

κhξξ + κ(cotξ)hξ + κ(csc2ξ)hηη = 0,

We rewrite these Equations by substituting u and the variables x, y and y as follows:

κuxx + κ(cotx)ux − ut = 0, (6.1)

κuxx + κ(cotx)ux + κ(csc2x)uyy = 0. (6.2)

In the Eq. (6.1), u = u(x, t) and in the Eq. (6.2), u = u(x, y). Compering Equation (1.4) with these two equations,
we find out the term κ(csc2x)uyy in the Eq. (6.1) vanished, namely uyy = 0 and ut in the Eq. (6.2) vanished, namely
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ut = 0. Note that, u is independent of y in the Eq. (6.1) and independent of t in the Eq. (6.2). Therefore in the Eq.
(1.4), we can consider u = u(x, y, t) as u = f(x)g(y)h(t) where

ht = c1h
gyy = c2g

fxx = (cotx)fx − c2(csc2x)f +
c1
κ
f.

(6.3)

Thus by solving these three equations, we have{
h(t) =C1e

c1t,

g(y) =C2e
√
c2y + C3e

−√c2y,
(6.4)

which the third equation of (6.3) is a Legendre’s differential equation. Hence we discuss f .

(1) If c1 = 0, then

f(x) =C4sin

(
√
c2arctanh(

1

cos(x)
)

)
+ C5cos

(
√
c2arctanh(

1

cos(x)
)

)
,

(6.5)

Which f includes complex values.
(2) If c2 = 0, then the Eq. (6.3)III turns into a second-order linear ODE:

f(x) = C6hypergeom

(
[

√
κ+
√
−4c1 + κ

4
√
κ

,

√
κ−
√
−4c1 + κ

4
√
κ

], [
1

2
], cos2(x)

)
+C7cos(x)hypergeom

(
[
3
√
κ−
√
−4c1 + κ

4
√
κ

,

√
3κ+

√
−4c1 + κ

4
√
κ

], [
1

2
], cos2(x)

)
,

(6.6)

which in this case, for proper c1 and κ, f is a real function.
(3) If c1 6= 0 and c2 6= 0, then

f(x) = C8LegendreP

(
−
√
κ+
√
−4c1 + κ

2
√
κ

, i
√
c2, cos(x)

)
+ C9cos(x)LegendreQ

(
−
√
κ+
√
−4c1 + κ

2
√
κ

, i
√
c2, cos(x)

)
,

(6.7)

Which f includes complex values.

LegendreP and LegendreQ are Legendre functions of the first and second types, respectively, a Maple method for
expressing the solutions of Legendre equation. The Legendre equation can be turned into a hypergeometric differential
equation by changing variables, and its solutions can be found applying hypergeometric functions. We always deal
with functions with real value. Therefore we have to select c2 so that it allows us to find solutions with real value. If
c2 is chosen as a zero, we are able to select the real function (6.6). According to Eqs. (6.4), (6.5), (6.6), and (6.7), we
earn the result:
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Figure 2. The plot of u .

Theorem 6.1. Solutions of (1.4) are:

u = u(x, y, t) =

f(x)g(y)h(t) = (C6hypergeom

(
[

√
κ+
√
−4c1 + κ

4
√
κ

,

√
κ−
√
−4c1 + κ

4
√
κ

], [
1

2
], cos2(x)

)
+C7cos(x)hypergeom

(
[
3
√
κ+
√
−4c1 + κ

4
√
κ

,

3
√
κ−
√
−4c1 − κ

4
√
κ

], [
3

2
], cos2(x)

)
)

C1e
c1t(C2e

√
c2y + C3e

−√c2y),

where c1, c2, C1, C2, C3, C6, C7 ∈ R.

For c2 = 0, c1 = −1, κ = C1 = C2 = C3 = C6 = C7 = 1 we have

u = 2e−t(hypergeom

(
[
1 +
√

5

4
,

1−
√

5

4
], [

1

2
], cos2(x)

)
+cos(x)hypergeom

(
[
3 +
√

5

4
,

3−
√

5

4
], [

3

2
], cos2(x)

)
),

which is plotted in Figure 2.
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7. Conclusion

In this paper, by applying the method of Lie symmetries, we find the Lie point symmetries group of Eq. (1.4).
Also, we have obtained the one-parameter optimal system of sub-algebras for Eq. (1.4). We provide an initial
classification of group invariant solutions. The Lie invariants and similarity reduced equations corresponding to
infinitesimal symmetries are obtained.
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