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Abstract

In this study, a robust computational method involving exponential cubic spline for solving singularly perturbed
parabolic convection-diffusion equations arising in the modeling of neuronal variability has been presented. Some
numerical examples are considered to validate the theoretical findings. The proposed scheme is shown to be an
e—uniformly convergent accuracy of order O ((At) + h?).
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1. INTRODUCTION

The motivation for considering the problem for this study lies in the mathematical model given by Stein [20], about
the time evolution trajectories of the membrane potential described in terms of the families of singular perturbation
problems described as [13]:

ou  o%0d%u x\ Ou
5t Tom - 7) 5
where the reaction terms are correspond to the superposition of excitatory and inhibitory inputs.

Because of the structure of the model (1.1), one can hardly obtain its exact solution. Therefore, to study the
behavior of this model, it is very important to devise efficient numerical methods that provide more accurate solutions
to the problem.

Various scholars tried to develop numerical methods for solving singularly perturbed delay parabolic partial differ-
ential equations (SPDPPDESs) with shift arguments in the space variable of the type (1.1) and analyzing the effects
of shift parameters on the solution profile, [10, 11, 15, 16, 22] are some to mention. The methods in [11, 15, 16] were
developed an adaptive Shishkin mesh discretization type method to resolve the layer, but requires a priori knowledge
of the position and width of the boundary layer of the problem. This requires experience and in depth insight about
the problem which may be difficult for the beginners to understand.

Further, authors [2, 3] developed numerical methods that are applicable for the general arguments where the delay
and advance parameters are both smaller, o (¢) and greater, O (¢) than the perturbation parameter for the problem of
the type (1.1). However, their convergence is not independent of the perturbation parameter that highly affects the
solution profile of the family of the problems under consideration.

More recently, Bullo et al. [9], suggested an e—uniform numerical method to solve singularly perturbed parabolic
reaction-diffusion problem using fitted operator technique. Nowadays, non-polynomial spline methods have gained

+ Asu(z + as, t) + wsu(x +is,t) — (As + ws)u(z, t) =0, (1.1)
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popularity as a powerful technique to solve partial differential equations. For instance, Zadvan and Rashidinia [23],
developed a collocation method using T'S B-spline functions to solve the nonlinear Klein-Gordon equation.

Further, numerical treatment of families of the problem under consideration using most contemporary numerical
methods on a uniform step size could not capture the solution in the layer region of the solution and hence such
numerical methods are unstable [18]. To overcome this limitation, the layer adaptive meshes have been developed
by Bakhvalov [1], Shishkin [19], and others, but they require a priori knowledge of the location and breadth of the
boundary layer(s) that in turn increase the difficulty of finding the solution of the problem under consideration.

Hence, the objective of this study is to develop a numerical method that does not require a priori information
about the location and width of the boundary layer, parameter uniform convergent and requires less computational
effort to solve the families of the problem under consideration that arises in the modeling of neuronal variability. The
formulation of the method and its corresponding error analysis are treated in the subsequent sections.

2. CONTINUOUS PROBLEM

In this paper, we consider the following model problem on the domain D = Q, x Q; = (0,1) x (0, T):

gy —522307; +&(2) 8% + v(z)u(x — 6,t) + o(z)u(z, t) = n(=,1),

(z, )EDu(x,O): o(x),x € Do = {(x,0) : x € Q_}, B 2.1)
(wt) Ti(x,t),9(2,t) € Dp = {(z,t) : =6 < <0,t € Q},

( ’ ) ( ’ ) VtEQta

where 0 < € < 1is a singular perturbation parameter and § is a delay parameter of o (¢). The functions &(z), v(x), o(x),
n(x,t), T1(x,t), T2(1,t) and ug(z) are considered to be sufficiently smooth, bounded and independent of €. We also
considered v(z) + o(z) > ¢ > 0 Va € €, for some positive constant (.

When 6 < ¢, the use of Taylor’s series expansion for the terms containing shift arguments is valid [21]. Consequently,
we considered this case, and applying Taylor’s series expansion, we get

ou(z,t) n ﬁazu(:ﬂ,t)
Ox 2 0z
Substituting Eq. (2.2) into Eq. (2.1), we obtain:

u(a — 8,t) ~ u(x,t) — o +O(8%). (2.2)

L(u(w) ) = ?(x)aué";t) - sazgiﬁ’t) + Q(x)w +9(x)u(z, t) = y(z,1),
ug(x),xr € Qﬁ’ 2.3
u(0,1) = T(0,1),1 € 0, 23)
u(1,t) = To(1,t),t € Q,

where

r(z) = W 0(z) = (W)
9z VZ”;?EI ) A, t) = (%) _

For small §, Eq. (2.1) and Eq. (2.3) have an almost equal approximate solution. We assume that 0 < r(z) <
1/ (5 - (%) K) =r , where, {(x) > 2K. It is also assumed that §(x) > 6* > 0, V x € Q, and some constant 6*,

which implies that the boundary layer occurs near z = 1 . If (z) < 6* < 0, V z € €, then the boundary layer will
occur near = = 0. Moreover, it is assumed that ¢(z) > 9* > 0, Vx € Q for some constant J*.

To elude conflict between boundary and initial condition, we assume the compatibility conditions on the corner of
the domain (0,0) and (0,1) as [12]

up(0) =Y1(0,0), wuo(1) ="T2(1,0),

(=)
[E)NE
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and

{rm)”lgiw =250 1 0(0) 2% + 9(0)uo (0) = 7(0,0),
r(1) 2210 sagsél +0(1) 220 1 y(1)ue(1) = ~(1,0).
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Lemma 2.1. ( Mazimum principle). Let Z(z,t) € C>'D. If Z(x,t) > 0,Y(x,t) € 0D (0D = D — D) and

L.=(x,t) > 0,V(x,t) € D, then Z(x,t) > 0,V(x,t) € D.
Proof Let (#,%) € D be such that

Z(2,t) = min Z(x,t) < 0.

(z,t)eD
Then, we have (z,%) ¢ 0D, and Z,(&,1) = 0,Z4(2,%) = 0, Epp (&, 1) > 0. Now

=(4 f 292 (4 £
L.E(2,1) = r(x) 8_(83;,@ - 58 =@, ¢

that contradicts the assumption made above. It follows that Z(#,%) > 0 and hence Z(z,t) > 0,V(x,t) € D.

Lemma 2.2. The solution u(x,t) of Eq. (2.3) satisfies
lull < (@) {1yl + max {luo ()], max {| 71 (0,6)], Y (L, )[}}
where, ||.|| is the Loo norm given by |lu| = max, 5 |u(z,?)].
Proof Let Z%(z,t) be two barrier functions defined by
E- (w,t) = (0) 7 |y ]| + max {Juo (x)] ,max {|T1 (0,0)], Y2 (L, 6)]}} Hu(x, t).
Then at the initial value and the two end points, we have
*(@,0) = (9°) " 7| + max {uo ()], max {|Y1 (0,0)|, | T2 (1,0)[}} +u(=,0) >
£(0,4) = ()" Iyl + max {Jug (0)],max {| Y1 (0,0)], | T2 (1, £)[}} £u(0, 1) >
F(L) = (@) Il + max {Juo ()], max {| Y1 (0,8)], [Tz (1,6)[}} +u(1, 1) >
Using L. operator in Eq. (2.3) on 2% (z,¢) we have
O=E(x,t)  9°EE(w,t O=E (2, t
L.E%(z,t) = r(x) (@.6) _ € (@, +6(x 9= (@)

ot Ox? () ox
) () Il + mae {fup (@) max {73 (0,8)], [T (1,1)]}} ) £Lou(a, 1),

e
9(@) (%)™ I 4+ ma {fug ()], max {1 (0,0)], 1 (1,0)[}}) 5z, )
> 9(z) (max {Juo (2)], max {7y (0,0)], T2 (L[} +0(2) (89) " Il £5(a. ).

(1]

(1]

0,
0.

[1]

+ 9(z)Z* (, 1)

Y

Using the fact 9(z) > 9* > 0, we have 9(z) (9*) "' > 1 and substituting it in the above inequality, we obtain

L.E%(z,t) >0,, VY(z,t) €D, since ||y| > ~(z,t).
This implies that L.=*(z,t) > 0. Hence by Lemma (2.1) we have, 2% (z,t) > 0, ¥(x,t) € D, which gives
lull < (9%) 7" Il max {Juo ()], max {| Y1 (0,1)] ,| T2 (1,2)[}} -

3. FORMULATION OF THE NUMERICAL SCHEME

(2.4)

To formulate the numerical scheme, we first discretize the temporal variable using the implicit Euler scheme ( i.e.,

theta-scheme 6 = 1) on a uniform mesh.

(&)=
[ENE
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3.1. Temporal discretization. So far, the construction of §—scheme for the time variable discretization in problems
consisting of PDEs has been popular. See for instance, [4-8] and references therein. We divide the time domain [0, T']
into M equidistant mesh with time step size At such that

T
DM{(IZZ,t])JJEQm,tjjAtj(M) , VOS]ﬁM}

Applying the implicit Euler scheme on ¢, yields

LU (z) = 1 (2),

U( ) Uo( ), S ﬁm,

U1 (0) = TIH0) Vo< j+1<M,

Uit (1) =14 (1) Yo<ji+1< M,
where, LMUj+1( ) w+9( )aUJ (=) —|—8( )Uj+1(:p),
(@) = (2 +9(@), (@) = (9 (x) + D)

Lemma 3.1. (Discrete mazimum principle). Let Z(x) € C*(Qy). If Z7T1(0) > 0, Z7+1(1) > 0, and LMET+(x) >
0,V(x) € Qg, then =71 (x) > 0,V(z) € Q.

Proof The proof can easily be derived by using a similar argument as used in Lemma 2.1 ([
Lemma 3.2. [Local error estimate(LEE)]. If‘% <C, V(x,t) € D,k=0,1,2, then the LEE €41 = u(x,tj41) —
UitL(x) in the temporal direction at (j + 1)th time level satisfies
2
lejall < C(A2)”.

Proof The detailed proof of this lemma is given in [3]. O

Lemma 3.3. [Global error estimate]. Under the hypothesis of Lemma 5.2, the global error estimate (E;) in the
temporal direction at (§)th time level satisfies

1Bl < C(At), Vj <T/At,

Proof Using LEE up to jth time step given in Lemma 3.3, we have

1Bl o Zez , < T/At,
< ||61Hoo + ||62||oo +lleslloo + -+ llell
<ec1j (At)Q, by Lemma 3.2,
< 1 (JAL) At,
< T (At), (jJALtLT)
< C(At),
where C' is a positive constant independent of € and At. ]

3.2. Spatial discretization. We divide the space domain [0, 1] into N equidistant mesh with spatial step size h such
that

N —Az;=ih,¥Vi=1,2,3,--- \N,xo=0,2y = 1,h =1/N}.
Let us rewrite Eq. (3.1) forx € Q,,j=0,1--- ,M — 1 as

2773+1 j+1
LU ()+9(xaU (z)

57 )+ s(@ U (@) = v (@), (32)
[ ]v]
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subject to the boundary conditions

Uitt0) = 1771(0), and UIT(1) = T4TH(1). (3.3)
Now, we use an exponential cubic spline method to find the approximate solution of Egs. (3.2) and (3.3) on a uniform
step size as follows. Let U/T' be an approximation to the exact solution U/*1(z;) of Eqs. (3.2) and (3.3) obtained
by the segment Ea(x) passing through the points <x2, UJH) and (l'iJr]_, U1++1 ) Each mixed spline segment Ei+1(x)
has the form [24]:

E£+1(ac) = a;ef@=2) L e~k @=2) 4o — 2) + d;,i=0,1,2,--- N, (3.4)

where, a;, b;,c;, and d; are constants and k # 0 is a free parameter that will be used to raise the accuracy of the
method. To find the unknown coefficients in Eq. (3.4), let us denote:

j+1 i+1 j+1 1
E2f_+(1m =yt Ej&j (fli+1) Uit 55)
O0°E’, xT; O°E’, ZT; N
BA:DQ( ) = Mia Aamg ) = Mi+1~
Straightforward manipulations yields:
R (Mip1—Me™?) WA (Me®—M;4q)
a; = 207smh(p) bi = —sgzsmngey (3.6)
J J . .
o= WHUT) _ hOgoMy g it (42 01:)
Using the continuity condition of the first derivative at @ = x;, that is Ea_1(z;) = Ea(x;), we obtain
B2 (Mg +2BM; + aMy) = (U2 = 2077 + UJf) i = 1,2, N - 1, (3.7)
where
o sinh'(ﬂ) -0 and § = 20 cosh(@)' — 2sinh (0)
62 sinh (9) 62 sinh (9)
Equation (3.2) at = xj, can be written as:
ouitt .
_EMIc‘FGkT(m—FSkUJ'H(l‘ Y=l k=iit1, (3.8)
z
where we approximate % as:
oI e, UL +aU au)
ox ~ N . 2h ’
3Uj+1(zi) UZJ‘:I Ui]j—l (39)
F) ~ ’
oU 5y BUT—aUTH U
ox ~ 2h :

Substituting Eqgs. (3.8) and (3.9) into Eq. (3.7) and introducing a fitting factor o (p), which is used to handle the
effect of the singular perturbation on solution behavior, into the resulting equation gives

_ . . 4 2 :
( Op(p) — 304921 LI £0; + 0491_;,_1 + hOéSi_l)Ui]j_ll + ( O-p( ) + 2a;_1 — 2a9i+1 + Zhﬁsi)Ui]—H (310)
GZ 36; ;
( - e + B0; + 2“ + ha8i+1)Ui]:_r11

h( J+1 4 Byyﬂ " aufjf)
where p = %
Taking the limit of Eq. (3.10) as h — 0:
limy o (@) (U3 (ih — h) — 2U9+1(ih) + U3+ (ih + h)) + (3.11)
(a4 B) limy, 0 (8(ih)) (UF T (ih + h) — UI T (ih — h)) = 0. '
an
BB
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For problems with a layer at the right end of the interval, using the theory of singular perturbations, the solution of
Egs. (3.2) and (3.3) takes the form [14]

Ut (z) = U (2) + ch))(rg“u) — U (1)) exp <9(x)(15’”)> +0 (), (3.12)

where UJ ™" (z) is the solution of the reduced problem

OUg " ()

5 T s(x) UL (@) = v (2), with U7 (1) = 147 (1).

0(z)

Taking Taylor’s series expansion for 6(x) about the point = 1 and restricting to their first terms, Eq. (3.12) becomes
, . . . 1—
Ui () = UI (@) + (05T — U (1)) exp (—0(1)(536)) +0(e). (3.13)
Equation (3.13) at «; = ¢h and as h — 0 becomes

lim UL (ih) ~ UZHL(ih) + (Y3 — U1 (1)) exp (9(1) C - ip>) +0(e). (3.14)

Plugging Eq. (3.13) into Eq. (3.10), we obtain the required fitting factor

o(1
o (p) = 0(0) (a + B) coth ((2)9) , (3.15)
Equation (3.10) can be written as:
AU - B U + Ul = F, fori=1,2,-- N -1, (3.16)

where

<

A, = =2 _ 30‘9% — 86, + O195‘+1 T hasi_1,

)
B, = %(p) —2ab;_1 — 2049i+1 + 2hfs;,

:%(p)_$+/80i+%%+ah5i+h

F,=h (ayijfll + 261/17-+1 + ou/grll) .

<

)

4. ERROR ANALYSIS

Lemma 4.1. The solution of the semi-discrete problem (3.2) satisfies the bound
Ui () — U < Oh2,
where C' is a constant independent of € and h.

Proof From the approximations given in Eq. (3.9) we have

raudtl(ey) AUt 2 93Ut (@) nt 9PUIT(xa)
€ = ox. T T oz 7+1_F Oz 120 dx> ’ )
6/» _ 8UJ+1(aci+1) _ 6U7.,+1 _ ﬁ83U”1(zi) L384UJ+1(M) n h7485U]+1(Xi) <4.1)
i+1 Ox O 3 Ox3 12 Ox? 30 Oxb® ’
faUt () AU p2 93Ut (wy)  R2 9MUTTl(x) | Bt OPUTH(xi)
€i—1 = ox - T ox T3 Ox3 T 12 oxt + 30 Ox° ’
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where ;1 < x < Zjy1.

j+1 . .
Now, using oeMj, = 0 8%’%6 + skUg'H — ui“, k=14,i+1, in Eq. (3.7) gives

i+1 i1 i1 ouit! Uit - -
g (p) g (Uzjjl — 2Uij+ + Ui]J-:l ) = h2a 09,*,1 62.;1 + Sl;lUifl — Vi1 | + 2h25 91 alx + SlU1J+ — Vg+ (42)

2 an]rll J+1 _ i+
+ha | 04 o +si Uy — vl |-

Considering the corresponding exact solution to Eq. (4.2) we have

o (p)e (U7 (i 1) — 209 (@) + Ulmigy)) = hﬂae(xi_l)% n hQa(s(xi_l)Uj“(xi_l) (4.3)
_ ,,j+1(xi_1))
+2h%3 (9(@)%;;(5”” + s(xi)Uj“(m))
— 228 (v (z)
+ha <9($i+1)a[]jt)ffi+l) + (i) U (@i41) — Vj+1($i+1)> :

Subtracting Eq. (4.2) from Eq. (4.3) and substituting e, = U/ () — U™, for k =i,i+ 1 we arrive at
(0 (p)e — h2asi_1) ei_1 + (—20 (p)e — 2h255i) e; + (U (p)e — h2a5i+1) €it1 (4.4)
= h2 (0491'716;71 + 2ﬁ926; + a9i+16;+1) .

Using Eq. (4.1) into Eq. (4.4), we obtain

(O’ (p)e — hzasi_l) ei_1+ (720 (p)e— ZhQﬂsi) e; + (cr (p)e— h2asi+1) €it1 (4.5)
ht h?
= 3 (a@i,l — Bo; + a9i+1) U(3)($i) + D] (—aei,l + abit) U@ (.’L‘Z>
h6
+ % (20&@;1 — 691 + 2049i+1) U(5)(X,‘).

Using the expressions 6;_; = 0; — h; + %79(2)(90') and 0,11 = 0; + ho} + g@u)(xi) in Eq. (4.5) provides
(o (p)e —h’asi—1) ei—1 + (20 (p)e — 2h*Bs;) e; + (0 (p) € — hPasit1) eip1 = Ti(h), (4.6)

where T; (h) = %4 (20 — B) ;U (x;) + O(h®). Therefore, T; (h) = O (h*) for the choice of parameters o + 3 = 1/2.
The matrix representation of Eq. (4.6) is

(D-M)r =T, (4.7)
where
D =trid(—o (p)£,20 (p)e, —0o (p)€), M = trid (h®as;—1,2h*as;, hPasiy1),
T=le1,ea, - ,eN_l]T and T' = [-T1(h), —To(h), -, —TN_l(h)}T. Following [17], it can be shown that
C
7| < 75 %0 (h*) = Ch?, (4.8)
where C' is a constant, independent of h and e. ]
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Lemma 4.2. Let u(x;,t;41) be the solution of problem (2.3) at each grid point (x;,tj41) and Uin be its approximate
solution obtained by the proposed scheme given in Eq. (3.16). Then, the error estimate for the fully discrete scheme
is given by

u(zi, tjt1) — Uin’ < C((At)+h?).
Proof Combining Lemma 3.3 and Lemma 4.1, we get the required estimate. (|

5. NUMERICAL EXAMPLES AND ILLUSTRATIONS

Two examples are presented to testify the theoretical findings. In all cases, we performed numerical experiments
by taking o = le — 04 and 8 = 4.999¢ — 01. As the exact solutions of these examples are not known, the maximum
pointwise error for the given examples is computed by using the double mesh principle given in [22]:

N,M
ENM —

N,M 2N,2M
.6 max U, -U;;

1<i,j<N—1,M—1| ®J

)

N,M : . . 2N,2M
where U, ;™" are computed numerical solutions obtained on the mesh DN = QY x QM and U;»*" are computed

numerical solutions on the mesh D*V:2M = 02N » O2M with N and M mesh intervals in the spatial and temporal
directions respectively.

The e—uniform errors (E~M), order of convergence (I’évt’;M) and e—uniform order of convergence (FN M ) is calculated

using
EN’M EN:M
N,M N,M 4 =
ENM — HEI%X {Ee,(S } ’Fa,é = log, (W) and T = log, (EQN’ZM)
s £,0
respectively.

Example 5.1. [11]. Consider a SPDPPDEs of the form in (2.1)

Gu _ g2 g?«j + (242 +2%) %%+ (—1*‘2‘"’32) u(z — §,t) = sin(rz(1l — x)),
uo(x) = 0,u(x,t) = 0,V(z,t) IDp ={(x,t): =6 <2 <0,0<t<1}hu(l,t)=0, 0<t<1,T=1.
Example 5.2. [15]. Consider a SPDPPDEs of the form in (2.1)

%7; - 52% + (2 +x+x2)% + (1+2””2 Ju(z — 0,t) = sin(rz (1 — x))t,
uo(x) =0,Y(x,t) IDp ={(x,t): =6 <2 <0,0<t<1}hu(l,t)=0, 0<t<1,T=1.

o
[
©

e=272
g=27% 0.14F

e=272
e=278

o
e
[

o o

o 9 e

[ ™) I
T T

o

o

3

T

Numerical Solution

o
o
&

Numerical Solution

o o

o =3

5 >
T T

o
Q
]
T
o
o
o

o
o

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x—axis x—axis

o

(A) Example 5.1 (B) Example 5.2

FI1GURE 1. The solution behavior for different values of € at T =1, = 0.5 x ¢, and N = M = 128.

(=)
[E)NE
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TabLe 1. ENVM ENM PNM and TNM for Example 5.1 with 7 =1.0,0 = 0.5 x &, N = M.

el N=32 N=64 N=128 N=256 N=512 1024

Proposed Scheme

1072 7.4358¢-03 4.6461e-03 2.8525e-03 1.6499¢-03 9.2247e-04  4.9675e-04
0.67847 0.70379 0.78985 0.83880 0.89298

1073 7.4345e-03 4.6445e-03 2.8512e-03 1.6494e-03 9.2231e-04 5.06165e-04
0.67871 0.70395 0.78963 0.83862 0.86564

1074 7.4343e-03 4.7302e-03 2.8511e-03 1.6493e-03 9.2229¢-04 5.06164e-04
0.65230 0.73038 0.78966 0.83856 0.86562

1075 7.4343e-03 4.7302e-03 2.8511e-03 1.6493e-03 9.2229¢-04  5.06164e-04
0.65230 0.73038 0.78966 0.83856 0.86562

1076 7.4343e-03 4.7302e-03 2.8511e-03 1.6493e-03 9.2229¢-04  5.06164e-04
0.65230 0.73038 0.78966 0.83856 0.86562

1077 7.4343e-03 4.7302¢-03 2.8511e-03 1.6493¢-03 9.2229¢-04  5.06164e-04
0.65230 0.73038 0.78966 0.83856 0.86562

1078 7.4343e-03 4.7302e-03 2.8511e-03 1.6493e-03 9.2229¢-04  5.06164e-04
0.65230 0.73038 0.78966 0.83856 0.86562

EN-M  7.43580-03 4.6461e-03  2.8525¢-03  1.6499¢-03 9.2247¢-04 5.06165¢-04

N-M(0.67847 0.70379 0.78985 0.8388 0.86589

Results in [11]

102 8.25¢-03  4.91e-03  2.91e-03 1.68¢-03  9.38¢-04 5.15e-04

0.75 0.76 0.79 0.84 0.87

1073 8.48e-03  5.11e-03  3.07e-03 1.79e-03 1.02e-03 5.64¢e-04
0.73 0.74 0.78 0.81 0.85

1074 8.48¢-03  5.13¢-03  3.09¢-03 1.81¢-03 1.03e-03 5.74e-04
0.73 0.73 0.77 0.81 0.84

105 8.48¢-03  5.13¢-03  3.09e-03 1.81e-03 1.03e-03 5.75e-04
0.73 0.73 0.77 0.81 0.84

1076 8.48¢-03  5.13¢-03  3.09e-03 1.81e-03 1.03e-03 5.75¢-04
0.73 0.73 0.77 0.81 0.84

1077 8.48¢-03  5.13¢-03  3.09¢-03 1.81e-03 1.03e-03 5.75e-04
0.73 0.73 0.77 0.81 0.84

10-8 8.48¢-03  5.13¢-03  3.09e-03 1.81e-03 1.03e-03 5.75e-04
0.73 0.73 0.77 0.81 0.84

ENM  848¢-03  5.13¢-03  3.09¢-03 1.81e-03 1.03e-03 5.75e-04

.M 0.73 0.73 0.77 0.81 0.84

The calculated EggM, EN’M,FQ(’;M and I'V'™ by the scheme in (3.16) for Examples 5.1 and 5.2 are presented in
Tables 1 - 4. From tables 1, 2, and 4, one can conclude that the scheme in (3.16) gives more accurate results and rate
of convergence than results in [11, 15, 16]. From Tables 1 and 3, one can observe that as ¢ — 0 EgéM decreases as [N
and M increase, which ratifies the e—uniform convergence and stability of the proposed numerical scheme.

The influences of the singular perturbation and delay parameters on the boundary layer of the solution for Examples
5.1 and 5.2 are shown in Figures 1 (A) and (B) and 2 (A) and (B). As observed in Figures 1 (A) and (B), when e — 0
strong boundary layer is formed near z = 1. From Figures 2 (A) and (B), we observe that as the size of the delay
parameter increases the thickness of the layer increases.

The physical behavior of the solution of Examples 5.1 and 5.2 for ¢ = 1073,6 = 0.8 x &, N = M = 128 and for

different time levels are demonstrated by Figures 3 (A) and (B) respectively. As observed from Figures 3 (A) and (B)

(&)=
[ENE
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TABLE 2. ENM and T'VM for Example 5.1 with 7' =1.0,6 = 0.9 x ¢ .

€ M=60 M=120 M=240 M=480 M=960
d N=32 N=64 N=128 N=256 N=512
Proposed Scheme

ENM59248e-03  3.6224e-03  2.1200e-03  1.1970e-03  6.5613e-04
ryM 0.70982 0.77288 0.82464 0.8674 0.8992
Upwind in [16]

ENM11359e-02 7.2877e-03 4.4807e-03  2.6516e-03 1.5173e-03
ryM 0.6403 0.7017 0.7569 0.8054 0.8429
Midpoint upwind in [16]

ENM  83467e-03  5.3894e-03  3.3649¢-03  2.0082e-03 1.1571e-03
ryM 0.6311 0.6796 0.7447 0.7954 0.8341

Tasrg 3. ENVM ENM TNM and TNM for Example 5.2 with 7 =1.0,0 = 0.5 x e, N = M.

ed N=32 N=64 N=128 N=256 N=512 1024

276 1.3793e-03 7.2750e-04 3.7345e-04 1.8921e-04 9.5228e-05 4.6380e-05
0.92292 0.96203 0.98093 0.99053 1.0379

278 1.3780e-03 7.2682e-04 3.7310e-04 1.8903e-04 9.5136e-05 4.7622e-05
0.92291 0.96204 0.98095 0.99055 0.99836

2710 1.3777e-03  7.2665¢-04 3.7301e-04 1.8899e-04 9.5113e-05 4.7612e-05
0.92293 0.96205 0.98090 0.99060 0.99832

2712 1.3776e-03 7.2660e-04 3.7299¢-04 1.8897e-04 9.5107e-05 4.7609e-05
0.92292 0.96202 0.98098 0.99053 0.99832

2714 1.3776e-03 7.2659¢-04 3.7299e-04 1.8897e-04 9.5106e-05 4.7608e-05
0.92294 0.96200 0.98098 0.99055 0.99833

2716 1.3776e-03 7.2659¢-04 3.7299e-04 1.8897e-04 9.5106e-05 4.7608¢-05
0.92294 0.96200 0.98098 0.99055 0.99833

2718 1.3776e-03 7.2659¢-04 3.7299¢-04 1.8897e-04 9.5106e-05 4.7608¢-05
0.92294 0.96200 0.98098 0.99055 0.99833

2720 1.3776e-03 7.2659¢-04 3.7299e-04 1.8897e-04 9.5106e-05 4.7608e-05
0.92294 0.96200 0.98098 0.99055 0.99833

ENM1.3793e-03  7.2750e-04  3.7345e-04  1.8921e-04 9.5228e-05 4.7622e-05

ry.M 0.92292 0.96203 0.98093 0.99053 0.99976

a strong boundary layer is formed near x = 1 and as the size of time level increases the thickness of the layer increases.
The 3D view of the numerical solution for Examples 5.1 and 5.2 are plotted in Figures 4 (A) and (B) respectively
by taking e = 107%,5 = 0.5 x &, N = M = 512, which indicates the existence of the boundary layer near z = 1. To
depicts the relationship between an e—uniform Eév (;M and the space variable, we have used the Loglog plot in Figures
5 (A) and (B) for Examples 5.1 and 5.2 respectively.

6. CONCLUSIONS

The robust numerical scheme is proposed to solve the singularly perturbed parabolic convection-diffusion equations
with a small delay parameter in the spatial variable arising in the modeling of neuronal variability. The scheme is
developed, first the term with the shift is approximated by Taylor’s series expansion. Then the resulting SPPPDE
without shift is solved by using the implicit Euler method and exponentially cubic spline method for the temporal and
spatial variable discretization on uniform step sizes. The scheme has shown to be e—uniformly convergent accuracy of
order O ((At) + h2). Concisely, the proposed numerical scheme is simple, stable, more accurate, and does not require

(=)
[E)NE
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TasLe 4. EX3M for Example 5.2 with 7'=1.0,6 = 0.5 x .

5 M=2048

+ N=32 N=64 N=128 N=256
Proposed Scheme

26 3.5200e-03  2.0942¢-03  1.2371e-03  7.4919e-04
210 3.5148e-03  2.0912e-03  1.2355e-03  7.4837e-04
214 3.5144e-03  2.0910e-03  1.2354e-03  7.4832e-04
218 3.5144e-03  2.0910e-03  1.2354e-03  7.4832e-04
2720 3.5144e-03  2.0910e-03  1.2354e-03  7.4832e-04
Modified upwind method in [15]

276 1.19749¢e-02  9.50610e-03 6.56708¢-03  4.38502e-03
210 1.19643e-02 9.50508e-03 6.56490e-03 4.38488e-03
214 1.19637e-02 9.50502e-03 6.56476e-03 4.38487e-03
218 1.19636e-02  9.50501e-03 6.56475e-03  4.38487e-03
2720 1.19636e-02  9.50501e-03 6.56475¢-03  4.38487¢-03
Upwind method in [15]

26 1.29843e-02 9.85791e-03 6.76565e-03 4.47863e-03
210 1.29892e-02 9.86467e-03 6.76915e-03 4.48178e-03
2 14 1.29885-02  9.86460e-03 6.76901e-03 4.48177e-03
218 1.29885e-02  9.86459¢-03  6.76900e-03  4.48176e-03
2720 1.29885e-02  9.86459¢-03  6.76900e-03  4.48176e-03

— 5=0.0%¢
3=0.6*¢
3=0.9%

0.16

0.14F

0121

0.1r

Numerical Solution
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0.6
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— 8=0.0%¢

3=0.6*¢
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012

0.1r

0.081
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(A) Example 5.1 (B) Example 5.2

FIGURE 2. Effect of delay on the solution behavior for T =1, =274, and N = M = 128.

a priori information about the location and width of the boundary layer. The scheme can also be extendable for
solving higher order families of differential-difference problems. However, the limitation of the scheme is it’s
being restricted on small shift.
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Numerical Solution
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FIGURE 3. Effect of time t level on the solution behavior for ¢ = 1073, = 0.8 x &, N = M = 128.
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FIGURE 4. 3D view of numerical solution profiles for T'=1.0 ,c = 107%,6 = 0.5xe,and N = M = 512.
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FIGURE 5. Loglog plot of the maximum pointwise errors.
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