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Abstract r )

In this paper, we are interested in the construction of an explicit third-order stochastic Runge-Kutta (SRK3)
schemes for the weak approximation of stochastic differential equations (SDEs) with the general diffusion co-
efficient b(t,z). To this aim, we use the Ité-Taylor method and compare them with the stochastic expansion
of the approximation. In this way, the authors encountered a large number of equations and could find to de-
rive four families for SRK3 schemes. Also, we investigate the mean-square stability (MS-stability) properties of
SRK3 schemes for a linear SDE. Finally, the proposed families are implemented on some examples to illustrate
convergence results.
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1. INTRODUCTION

Stochastic differential equations (SDEs) are widely known as useful tools for describing those phenomena which are
influenced by some random factors. Such models have been used with great success in a variety of application areas,
including biology, epidemiology, mechanics, economics, and finance (see, e.g., [9, 10, 19, 32]). Since in many cases,
analytic solutions to these equations are not available so we are forced to use numerical schemes to approximate them.
In recent years many authors presented some efficient numerical schemes for solving different types of SDEs with
different properties (see [1, 2, 11, 12, 24, 29, 31]). Recently, the development of numerical schemes for strong and weak
approximate solutions of SDEs has focused amongst others on Runge-Kutta type schemes (see [4, 5, 2022, 25, 28]).

In various works, mean-square and weak numerical schemes have been also derived and extended presentations on
this subject are given in Kloeden & Platen [17]. Runge-Kutta schemes in the strong sense have been proposed, for
example, by Klauder & Petersen [18]. Furthermore, Guo et al. [13] studied asymptotic strong MS-stability of explicit
Runge-Kutta Maruyama methods for stochastic delay differential equations. Also, Haghighi et al. [14] provided a
structure of the MS-stability matrix of the strong diagonally drift implicit stochastic Runge-Kutta schemes for the
general form of the linear SDEs. On the other hand, Tocino (see [25, 28]) presented stochastic Runge—Kutta schemes
in the weak sense for the constant diffusion term.

Based on the proposed papers, the main difficulty in the first objective of constructing Runge-Kutta schemes,
arises from the fact that the It6 expansion depends on multiple integrals, and this complicates any kind of matching.
In this way, weak approximations of multiple Ito integrals are implemented, and we succeeded to introduce a class
of four SRK3 families with stochastic diffusion terms by comparing the coefficients of the Ito-Taylor expansion and
approximate solution which yields large quantities of equations. Moreover, MS-stability analysis of the proposed
families is implemented on a linear test SDE with specific coefficient numbers.
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The remainder of the paper is organized as follows. Section 2 presents some notations and preliminaries to obtain
Ito-Taylor expansions and the third-order weak Taylor scheme. In section 3 we outline SRK3 schemes for the weak
approximation of SDEs with the general diffusion coefficient b(¢,z) in the Ité sense and derive for SRK3 families.
MS-stability properties of the proposed four families are illustrated in section 4. At final, in section 5 convergence
results are shown for some examples and they are compared with similar papers.

2. WEAK APPROXIMATIONS AND ITO0-TAYLOR EXPANSIONS OF THIRD ORDER
Let us consider the following scalar Ité stochastic differential equations (SDEs):
dX; = a(t, X;)dt + b(t, X;)dW (¢), tg <t < T,
Xty = o, (2.1)

where a,b: [to,T] x R — R are the drift and diffusion coefficients, and W (t) represents the one-dimensional Wiener
process defined on this probability space.

Assumption 2.1. We suppose that the coefficients a and b are measurable functions and satisfy the following condi-
tions:

(i) (Lipschitz condition) There exists a constant K; > 0 such that:
la(t, 2) — al(t,y)| + [b(t, 2) = b(t,y)| < Kilz =y,

for all t € [to,T] and z,y € R.
(ii) (Linear growth condition) There exists a constant K5 > 0 such that:

la(t, 2)[* + [b(t, 2)|* < Ka(1 + |2f),
for all t € [to,T] and = € R.

These requirements ensure existence and uniqueness of solution The numerical schemes presented here are all
constructed along time discretizations ty < t; < ... <ty =T with constant stepsize:
T —to

N

Then, t,, = tog +nA4, n € {0,1,..., N} denotes the nth step point. In the following, we shall use the notation X,, to
denote the value of the approximation of the exact solution X at time ¢,,.

A= > 0.

Definition 2.1. A sequence of approximation X = {Xo, X1,..., )_(N} is said to converges weakly with order 3 to the

solution X = {X;} of equation (2.1), if for each u € Z?D(ﬂﬂ)

0o > 0 such that:

there exist constants K, > 0 (independent on A) and

[B(u(xr) — E(u(Xn))| < Kua?, (2.2)
for each A € (0, do].

Next to the SDE (2.1) we consider the operators:

0 o 1,0° 0

(O = o2 2 1) —p
L 8t+a8x+2b 92’ L bax. (2.3)
Given 8 € N, we denote by I'g the set of all multi-indices a = (ji1,j2,...,Ji), jr € {0,1}, of length I € {1,2,...,5}.
As explained in Kloeden & Platen [17], taking f(¢,z) =  and based on the Ito-Taylor expansion of the process

X: = f(t, X¢) one can construct the weak-order 8 Taylor scheme:

Xn+1 = Xn + Z (Laf)(tny Xn)loz,na (24)
a€cly
[c [m]
(o] ¢ ]
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where for o = (j1, ..., ;) we have denoted:

Lo =gl o g,

t+A
Ia,n = / lda = / / / del dWsjzlv

with dW(© = dt. Once obtained the Taylor approximation (2.4), which has local order 8 + 1, simplified schemes of
order 3 can be constructed by changing the variables I, ,, by appropriate simpler variables I, ,,. A simplified order
weak Taylor scheme is given by:

Xop1=Xn+ > (L) (tn, Xn)am, (2.5)
acly
where the variables fa,n, are such that:
l

1
([ 1T10)

< KAPH, (2.6)

for a constant K > 0 and for all choices of multi-indices o, € I'g with k=1,...,l and I = 1,...,26 + 1. In the

sequel, for simplicity of notation we shall abbreviate I, fa,n and similar integrals to I, Aa, etc. respectively.
Simplified third-order weak Taylor schemes are obtained replacing the seven I,’s that appear in the above scheme by
new variables I,’s satisfying for some constant K > 0:

1 1
‘E(Elak—gf%)’<KA4, 1=1,2,...,7. (2.7)

If 3=3,d=m =1 and AW, is any variable satisfying the moment conditions:
[E(AW)| + [E((AW)?) — A + [E((AW)*) | + [E((AW,)) — 347
+ [E((AW,)®)] + [E((AW,)®) — 1543 + [E((AW,,)7)| < K A%, (2.8)

for some constant K > 0, it’s easy to prove that the following variables satisfy (2.6):

Lioyn = Lioyn = 4,

Iy = AW,
A 1
Lo,0),n = L(0,0),n = 5427
R . 1 .
I(O,l),n = I(l 0),n iAAan

1 ~
T = S((AW,)? - ),

1
I0,0,0),n = I(o,o,o),n = A3

[=p}

. R . 1 .
L0,0,1)0 = L(0,1,00,n = L(1,0,0)0 = EAQAWn,

SA((aw,)? - a),

1
6
1 o ~
I(l,l,l),n = éAWn((AWn)Q - 3A> . (29)

Ia1.0)m = I100)m = L0,
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Then, based on (2.5) and relations in (2.9) the third-order weak Taylor scheme is written as follows:
_ _ o 1 o N
Kntr =Ko + 04+ bAW, + Sbboy ((AW,L)Q - A) + bagi AZ,
1 . . 1 1
+ (blo + abm + §b2b02) (AAWn — AZn) + 5(&10 + aagr + §b2a02)A2
1 2 2 5.9 39
t3 <b20 + 2ab11 + b7b12 + arobo1 + 2aag1bor + a”bo2 + ib ap2bo1 + ib ao1bo2
1 1 1
+ ab®bos + bbroboz + abborboz + 5b°B51b02 + 557552 + b borbos + bbos + broaor
A 1
+ bad, + 2bay; + 2abagy + b3a03> AZAW,, + G (2ba01b01 + b%agy + 2bby1 + 2abbgy
5.9 3 2 B )2 1 2
+ ib bo1bo2 + b”bo3 + b1obo1 + abm) ((AWn) — A)A + 5 (ago + 2aa11 + b a2
3 1
+ ajpagr + aa(zn + a2a02 + §b2a01a02 + ab2a03 + bbigags + abagabgr + §b2b(2)1a02
1 1 1 - N
+ 56%b0za0s + B*borags + Zb4a04) A% 4 = (505, + b2bos) ((AWn)2 - 3A) AW, (2.10)
where AWn and AZn are correlated Gaussian random variables with:
. . 1 A 1
AW, ~N(0,4),  AZ,~N(0, §A3), E(AW,AZ,) = §A2, (2.11)
and for a function g = g(t,x) with ¢,z € R we have denoted:

8i+jg _

gij = m(tmxn)’ Li=12,..., (2.12)

and g = goo = g(tn, X»). In the sequel, for simplicity of notation we shall often abbreviate I, ., AW, AZ,, etc. to

I, AW, and AZ,, respectively. In the multi-dimensional and scalar cases, if AW and AZ verify (2.11), we have the
following 3-equivalences:

(AW)? SEVIN (2.13)

A 2 a2, (2.14)
2 (D) o a0

(AW)* = 342 (2.15)

3. THIRD-ORDER STOCHASTIC RUNGE-KUTTA (SRK3) SCHEMES

An important disadvantage of Taylor schemes is that they require us to determine many derivatives. Using the idea
of the deterministic and stochastic cases, we obtain SRK schemes. Now, we consider the following an explicit s-stage
stochastic Runge-Kutta scheme:

Xpp1=X,+A4 Zaja(tn +uiA,m;) + AW, Zﬁjb(tn +u;A,m;) + R, (3.1)

j=1 j=1
where py =0, n1 = X,, and

Jj—1 Jj—1
i=1 i=1

and R is a fit term. The numerical constants «;, B, pj, Aji, 75 and the term R must be chosen so that the
approximation (3.1) is S-equivalent to the order 8 Taylor scheme. Since the truncated expansion of order g8 of a
an
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process is, under appropriate conditions, -equivalent to the process, it suffices to choose the parameters and R so
that a S-equivalent approximation to the truncated expansion of order 3 of (3.1) is equal to the order 8 Taylor scheme.
Note that R is free, then it can be chosen so that the required equality is fulfilled. The coefficients of the SRK scheme
(3.1) are represented by the following extended Butcher arrays: As in the deterministic and stochastic cases, in order

pa | A2 Y21
Ns )\sl e )\s,s—l Ys1 Tt '75,5—1
R ‘ aq e Qs—1 Qg ‘ Bl e 65—1 65

to match the truncated expansion of (3.1) with the Taylor scheme we need an expression of the order 5 truncated
expansion of a process f(t + A, X; + AX) in terms of A and AX = Xy — X;. This expression has been obtained
by Tocino & Ardanuy [26] for 8 = 2 in the multi-dimensional case and for § = 3 in the scalar case.

Proposition 3.1. (Third-order expansion)(see [26]). Let {Xi} ey, ) be the solution of the SDE (2.1) where the
coefficients a and b have continuous partial derivatives of third-order. If f:[to,T] x R = R has continuous sizth
partial derivatives, the third-order Ito-Taylor truncated expansion of f(t, Xy) is:
®3) 1, A?
ft+ A4, Xy + AX) = foo + froA + fo AX + (f20 - Zboof04> -
(AX)*
2

+ fmAAX

3
+ fo2 + <f3o + ngofzz + 3bgobor f13 + oo (4631 + booboz) foa

3.4 3.5 L A3 2 3

+ Zboofm + ibooboﬁos + gboof%) o + (f21 + b3 f13 + bpbo1 foa
1 APAX 1 AAX)? | (AX)?

+ 1béof05> —5 + (f12 + §bgof04) 5 + fo3 5

Remark 3.2. It is sufficient to suppose the existence and continuity of the partial derivatives of a, b and f which
appear in the expressions (L9 £)(to, X;,) with 4, j, k=0, 1.

(3.3)

Numerical solutions for weak approximation do not need information about the driving Wiener process and their
random variables are simulated on different probability spaces. Thus, we can make use of random variables with
distributions which are easy to simulate. In this section we modify the SRK3 schemes for the non-constant diffusion
coefficient b(t, x), and we will obtain now four families of SRK3 schemes for scalar SDE’s (d = m = 1). In this case a
three-stage stochastic Runge-Kutta scheme of the form (3.1) can be written as follows:

Xpi1 =Xy + (oqa(tn, X)) + azalty + ped,n) + asa(t, + usA, 773)) A

+ (515)(%7 X)) + Bab(tn + p2d, n2) 4 B3b(ty + ps A, ﬂ3))AWn + R, (3.4)
where
n2 = Xy + Aara(tn + p1A,m) A+ Yo1b(ty, + 1 4, ﬂl)AWn, (3.5)
and

73 ZXn + ()\31(1(1’»” + [LlA,’Ih) + )\32a(tn + [IQA,’I?Q))A

+ (’731b(tn + 1A, m) 4 y32b(tn + 24, 772>)AW71- (3.6)

Here we have to find out the parameters and R in such a way that (3.4) is 3-equivalent to the third-order weak Taylor

scheme (2.10). We begin by evaluating the third-order truncated expansion of a(tn + pa A, 7]2) A and b(tn + p A, 772) AW,,.
an
(o] < |
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By using relations (3.3) and (3.5) we get:

(3) -
aty + p2d,m2) A ~2ald + agibyar AAW, + arope A* 4 aag Az A

1 n . N
+ §a02b27§1A(AWn)2 + a11bpaya A2 AW, + aagebAaryer A2AW,,

1 - 1

+ 5@03b37§1A2AWn + aai1 ool A3 + 50,2@02)\%1A3
1 b?

+ (a12 + §ao4b80)5

1
(ag0 — ibéoa04)u§A37 (3.7)

1
p2v3 A% + §aa03b27§1)\21ﬂ3
L1
2
and
N 3 ~ ~ ~ ~
b(tn + p2d, m2) AW, (N—)bAWn + bo1b721 (AW,,)? + biops AAW,, + abgi Aot AAW,,
1 A A N
+ 5b02b27221(AWn)3 + b11b/~L2’Y21A(AVVn)2 + ab02b)\21’)’21A(AWn)2

1 : . 1 R
+ *bogbB’Ygl(AWn)él + abllug)\zlﬂzAWn + 502b02>\§1A2AWn

6
1 1 o1 1 .

+ §(b20 — Zb30b04)u§A2AWn + 5(b12 + §b80b04)b2u27§1A(AWn)3
1 . 1 1 .

+ 5abog,wmglA(AWn)?’ +5 (ba1 + bjob1s + bioborbos + 1bgobog,)bug»yzlA?(AWn)?
1 . 1 .

+ §a2bb03)\§1721A2(AWn)2 + (blg + §b(2)0b04)abug)\gl’)/QlAQ(AWn)Q. (38)

Now let’s calculate the third-order truncated expansion of a(t, + pusA,n3) A and b(t,, + ps A4, Ug)AWn. For simplicity,
we define:

N:=n3—X,
= A31aA + Ngoa(ty + p2 A, m2) A+ v31bAW,, + 732b(t,, + oA, 10) AW, (3.9)

3) (3
Noting that A* (:) 0 (:) A3 - N and then, by using relations (3.3) and (3.6) we can obtaion:
3
2
N2 1 AZ. N2 A- N3

+ (a12 + 5530%4)#3 5 + ao3 6 (3.10)

- (3) 1
(l(tn + /,LgA,Xn + N)A ~aA + a10M3A2 +agA- N+ (a20 - zbéoa(m)/.t%

A
+ a1 pu3A* - N + age

b(tn + 3, X,y + N)AW, CoAW, + biois AAW, + boy AW, - N
1 A2AW,,
+ (b2o — 1530504)M§T
AAW,, - N2 b AW,, - N3
2 BT
A2AW,, - N
=

AW,, - N2

+ b s AAW,, - N + bgs 5

1
+ (b12 + 56(2)01704)%

1
+ (b21 + bgoblg + bgob01b04 + Zbéob%)u% (311)
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The third-order truncated expansion of N can be obtained from (3.7) and (3.8), it’s easy to show the equivalences:

(3) o R
AN~ (’}/31 + ’)/32)bAAWn + ()\31 + /\32)&A2 + b01b’}/21’}/32A(AWn)2
+ ao1b>\32721 AzAWn + b10#2’Y32A2AWn + a501/\21’Y32A2AWn

3 A 1
+ 5b02b2’722173242AWn + a1op2A32A% + aagr A2 A1 A® + §a02b2)\327§1A3

1
+ b11bpay21732 A% + aboabAa1va1v32 A% + §b03b37§1732437
(3) A
AN = (y31 + 732) bAZ AW, + (A1 + Ag2)ad® + by byar 32 A%,

AN D (ya1 + 752) 202 AAW,)? + 2ab(v51 + 732) a1 + Agz) A2AT,
+ 26%bg1v217v31 732 A (AW, )® + 2b2b01’ygl'y§2A(AWn)3
+ 2bb1o 231732 A2 (AW, )? + 2bbio a3, A% (AW,,)?
+ 2abbo1 Ao1 731732 A% (AW, )2 + 2abbor (As1 + As2) 21732 A% (AW,)?
+ 2abbo1 Ao1 73 A% (AW,,)? + 2b%agr As2y21 (131 + Y32) A2 (AW, )?
+ 02031931 AAWL) + (Ast + As2)“a24%,

(3) 2
A? - N? & (31 + y32) b2 A%,

(3) 7 i
A- N3 ~ (731 + ’}/32)3b3A(AWn)3 + 3(732721 + 731721732)b3b01A(AWn)4
+ 3ab? (’}/31 + ’)/32)2 (/\31 + /\32)A37

. (3) . . .
AWn - N o~ (731 + 732)b(AWn)2 + ()\31 + Agg)aAAWn + 3bb01’721’}/32AAWn
+ bagi As2y21 A(AW,)? + biopaysa A(AW,,)? + abor Aarya2 A(AW,,)?

+ 252b027§1732ﬂ2 + a10p2X32 A2AW,, + aagi As2 A1 A2AW,,

+ ;b2a02)\327221A2AWn + 3bby1 21732 AZAW,, + 3abboa a1 721732 AZAW,

+ %b3b037§1732A2AWn + bayipoAs2ya A® + %b3a03)\327§1A3

+ abaga A1 32721 A% + abyy oo 32 A3 + %(bQO - ibéobm)ﬂ%wﬂg

+ 302502)\31’)’32&)’ + g(bu + 5530504)52/127%173243 + gab2b03)\217§1’73243,
AAW, - N (’:3)(’731 + 732)bA(AWn)2 + (As1 + )\32)G'A2AWn

+ 3bbo1 21732 A2ZAW,, + bag As2ya1 A + biopeyse A®

3
+ abo1 Aa1732 A% + 56250275173249’,

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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AW, - N2 D (g1 + As2) 202 A2AW,, + (431 + 32) D3 AW, )?
+2ab(As1 + As2) (731 + ¥32) A(AW,)? + 2b%bo1 721731732 (AW,,)*
+ 2b%b01721722 (AW;,)? + 2bb1opiays1 732 A(AW,,)? + 2bbio a3y A(AW,)?
+ 2abboi A1 731732 A (AW, )3 + 2abbor (As1 + As2) V21732 A(AW, )3
+ 2abbo1 A2175, A(AW,)® + 2a016% As2721 (131 + 732) A(AW,)?
+ b2b317§17§2(AWn)5 + 2ag1abA31 A\32y21 AQ(AWn)Q
+ 2b1gapz (As1 + Aa2) 132 A% (AW,)? + 2abagi Ayya1 A*(AW,,)?
+ 2bg1a® Aot (A31 + A32) V32 A% (AW,)? + 2a10bAs2 (131 + 732) A2 (AW,,)?
+ 2a01bo16* A3275 A(AW,,)* + 2a01abAas As2 (V31 + 732) A (AW,)?
+ a02b® A3273; (V31 + 32) A(AW,)* + 261167 221731732 A(AW,,)*
+ 2b02ab* A21721731 732 A (AW, ) + bosb* 45, 131732 A2 (AW, )2
+ 2011 6% 11912173 A(AW, ) + 2bgaab® Aa1 72175 A(AW,,)*
+ bo3b* s, 120 A2 (AW,,)? + 2b10bo1 bpugYa1 72 A(AW,)*
+ 2051 abAa172173 A (AW, ) + bo2b® 51731782 (AW,)°
+ boab® 31 V3 (AW,)°, (3.19)

. (3) . R
AN, - N? = (31 + 732) 202 A(AW,,)? + 26%b01 721731 (AT, )

+ 2b2b01’)/21’}/31"}/32A(AWn)4 + 2b2b01")/21’}/§2A(AWn)4

+ 2ab(As1 + Asa2) (Va1 + ys2) A% (AW,)?, (3.20)

PRINASA (Va1 + v32)bA?, (3.21)

AW, - N D (31 + 732) B3 (AW)* + 30b? (Ag1 + Aao) (vgl +3) " A(ATF, )
+3a%b(Az1 + )\32) (v31 + 132) A2 (AW,)2 + 3b%bropa (v V32 + Vaa) A(
+ 3ab®bo1 Ao1 (’732,1’)’32 + 732)A(AWn) + 3b%ag1721 (731 + 732)A(AW )
+36°bo1721 (7:?1’732 + 7§2) (AWn)5 + 3b3b(2)17§1’7317§2(AWn)6
+ 36°b5,751752 (AW, . (3.22)
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Now substituting (3.12)-(3.22) into (3.10), (3.11) and using the obtained expression together with (3.7) and (3.8) we
have that the scheme (3.4) shall be 3-equivalent to:

Xn+1 :Xn + (ﬂl + /62 + ﬂg)bAWw + (011 + (6%} + Oég)aA
+ aorb(azyar + as(ys1 +v32)) AAW, + bioBapz AAW, + aboi Aa1 B AAW,,

+ gb02b2’722152AAWn + biops B3 AAW,, + abor (As1 + As2) B3 AAW,

+ 362, by21732 83 AAW,, + 21)021)2 (731 + 732)253AAWn

+ bo1b (72182 + (31 + 732)83) (AW,)? + a1o (zpiz + azps) A

+ aagy (221 + az(Ag1 + As2)) A% + %bogb%g’lﬂgﬁ + gbolbong’ygl’)@,QﬂgAQ

1
+ 3bo1bo2b V2173173283 A% + 3bo1bo2b” Y2175, 83 A% + §bo3b3 (V31 + 732)3ﬂ3A2

+ %%252 (0427§1 + as(ys1 + ’732)2)A(AWTL)2 + a01b01ba3721732A(AWn)2

+ b11bpiay21 B2 A(AW,)? + abboz A21721 B2 A(AW,)? + ag1bo1bAs2v21 83 A(AW,,)?

+ borbiop2 V3283 A(AW,)? + abdy Aa1 32 B3 A(AW,)? + bbi1 s (V31 + 7s2) B3 A(AW,,)?
+ abboz (v31 + 732) (Aa1 + As2) B3 A(AW,)? + bad; asAzayer A2AW,

+ ao1biopayz2as A2AW,, + bayy (azpioye1 + asps(ys1 + v32)) A2AW,

+ aagab(@zXa1721 + az(As1 + Aa2) (V31 + 32) ) A2AW,, + aao1bor Aarys2c3 A2AW,

+ %a03b3 (aoys) + az(ys +732)®) A2AW,, + ga01b02b2'y§1732a3A2AWn

+ 3ao2bo1b?v21 (131732 + 715) ez AAW,, + %(bgo — %b30b04)u§52A2AWn

+ aby1 pa a1 B A2AW,, + %a2b02)\§152A2AWn + g(b12 + ib30b04)b2u27§15242AWn
+ ;abeos)\QWSﬁQAQAWn + borarop2 A28 A2AW,, + aagibor Aai As2 83 AZAW,,

+ ga02b01b2)\327§15342AWn + 3abbo1 by Ao1 72173283 A AW,

+ %b3b01b03’7317323342AWn + %(bzo - %b30b04)u§ﬁ3A2AWn

+ abi1 (As1 + As2) paBz A2AW, + %a2502 (As1 + )\32)2/8342AWn

3 . .
+ §b25315027§17§2ﬁ3A2AWn + 3bbroboziia (V31732 + V32 ) B3 A AW,
+ 3abbo1 boz (As1 + >\32)721’7325342Awn + 3abbo1boz A21 (V31732 + 732) B3 A2 AW,

3 1 o 3 .
t3 (br2 + 1530504)52%(731 + 732)? B3 A AW, + §b3501bo3721 (731 + V32) B3 A AW,

3 . 1
+ §ab2503 (As1 + As2) (131 + 732) B3 A2 AW, + 3
1 1
+ 5 (a12 =+ §a04b(2)0)b2 (O‘2ﬂ27§1 + azps (v + 732)2)43

1
(azo — §b30a04) (cop3 + azpu3) A3

1
+ aayr (azpodor + asps (A1 + As2)) A% + §a2a02 (a2)3) + ag(Ag1 + Ag2)?) A3

1
+ §<lao3b2 (221731 + a3 (A1 + Ag2) (731 + 732)%) A® 200
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1

+ §a01@02520¢3/\32’721 (’721 +2(y31 + ’732))A3 + ag1a1003pi2A32 A + aad; s Ao1 Ag2 A®
3

+ agabiobaz iz (V31732 + V32) A + §a0252b31a37§1V§2A3 + aaoabbor s A1 (V31732 + V39) A®

§ by b> 2 3,)A3 bb, A3
+ 2(103 016”321 (131732 + 32) A” + aaozbboraz(As1 + Az2)y21732

1 1 1 .
+ ab(by2 + Zbgobm)uz)\zlvmﬂzﬂg + 50251703/\%172152A3 + §a0353b01)\32’¥§153ﬂs
1 1

+ abagabo1 A21 Az2v21 B3 A% + 3 (bao — 5%0%4)#3’7325343 + abi1pa 2173283 A%

1 3
+ §a2b02A§173253A3 + iab2b03)\21’7§173253ﬂ?’ + ag1bbi1 3 A\32721 33 A3

3

+ abo1b11 3 Na1 73283 A% + §b2bo2buﬂ37§1’7325343 + aag1bboaA31 3272133 A%

+ aag1bboa N3oy21 83 A% + abrobozpia A3173283 A% + a®bo1bo2 A1 Az173283 A
+ ab1obo2 23273283 A% + a*bo1boaAa1 Az2y32 83 A®

1 3
+3(b12 + 1580504)bgb01/$372173153A3 + ibembogﬂﬂgﬂsszﬁgA?’
3 3
+ iabzbmbog)\zﬂsﬂgzﬁsﬂg + §bzb1obosu27§zﬁsﬂ3

3
+ §ab2b01b03)\217§2,6’3A3 + R,

(3.23)

N 1 A 1 1 1 1 A
R = bagy (AZn—§AAWn) +Eb2a02A2+6 (alob(n+bb10b02+abb01b02+5b2b(2)1b02+§b3b%2+b3b01b03) A2AWn (324)

Schemes (2.10) and (3.23) coincide if the constants satisfy the following system:

1

ar+as+as=1, azpa (131732 +32) = 6
azpiz + apis = 5. 321 (V31732 + V32) = 6

1 1
a1 + as(Ag1 + Az2) = 2’ Q231 + aspis (Va1 + 732)° = 3’

1 1
21 + az(y31 + Y32) = 92’ 21751 + a3(As1 + As2) (a1 +732)° = 3’

1 4

Qofid + azps = 3 3asy21y32(731 + 32) = 3
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273y + as(y31 + 732)% =
@A3; + az(A31 + A32)? =

Qofiodor + azpiz(As1 + Az2) =

1
3
1
Qapizy21 + aspz (Y31 + v32) = 3’
+

aaXo1¥21 + a3(As1 + Az2) (Y31

1

O3fiaA32 = 5

03A21A32 =

)

332721 =

)

D~

Bl+62+ﬁ3:17
1

Y32721 33 = 5’

1
Yaap233 = 5’

V322183 = 5
/\32’72153 = 75

—_

1
1
27
1
A32A20183 = 12’
1
Agopiz B3 = 13’

1
A32A21721 03 = 5’

p2y21 B2 + 3 (31 + v32)f3 =

)

praA21B2 + p3(Az1 + A32)f3 =

SIS

Y21 22182 + (731 + ¥32) (A31 + A32) B3 =

a; +as +ag =1,

Qofia + gz =

agpiy + azp =

Wl N

1
O3liaA32 = 5’

)

1
’732) = ga

1

3’

3

2 2
2o —
) 3721732

4

37

332721 (Y21 +

; 1

275y + a3(ys1 + 732)% = 3’
1

— 2 —
2043’Y21’732 6’

Q3721732 = 3,

Q32732 = 3,
1
37

1
Y2182 + (31 + 732) 03 = 3

Wl = Wl

32132 =

P22 + p3fs = %7
A212 + (A31 + A32) B3 = %7
V3182 + (31 + 732)% B3 = %,
W36+ 1365 = 5.
A3182 4 (As1 + As2)Bs = %,

1
731 Ba + (Y31 + 732)% B = 3

b

DN =

N1 B2 + (A31 + A32)3B3 =
2 2 1
Ya1i2B2 + (31 + Y32) 3Pz = 3

1
33242033 (V31 + V32) = vk

1
As2721088 (Y21 + 2(731 + 732)) = 1

The whole equations of relation (3.25) can be simplified as follows:

1
2(y31 + 732)) = 2

(3.25)

(3.26)

(3.27)
(3.28)
(3.29)

(3.30)

(&)
ENE
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afinyay + asps(v31 + ys2)? = é’ (3.31)
3azy21732(731 +732) = g, (3.32)
a3As2y21 (V21 + 2(731 + 732)) = %, (3.33)
agya; + az(ys1 +7s2)° = %7 (3.34)
po = A21 = V21, (3.35)
w3 = A1 + Az2 = Y31 + Y32 (3.36)

Now by using equations (3.30),(3.35), and (3.36), equations (3.33) and (3.34) can be rewritten as follows:

1
Qapiy + i = 3,

It’s easy to see that none of the solutions of the one-parameter families (one of the families corresponds to the case

w3 =0, g = %, the other one to the case ps = ug = %) can be a solution of (3.37) . On the other hand, since we have
in the two-parameter family that:

lﬂ3 _1

a2:ua NJ2#/IJ37 /1'27&07
p2(pz — p2)

11

11 2
az— 32K 0, Z 3.38

3 13 (s — 12) ps # po # 3 ( )
By imposing on a solution of this family to verify (3.37), we get:

63 — 17u2 + 15u3 —4 =0, (3.39)

%, and pug = If us =1, then us = pu3 and, as we have said, these so-

lutions do not verify (3.37). Each of the other roots leads to a solution of system (3.39). If u3 = %, we have the solution:

the roots of this equation are uz =1, uz = %.

Family A:
S VT SRR SR SR
M2 = 4, Y21 = 4, 731_167 ’732_167 1_127 2_36, 3_97
13 3 1 1 4
=2 = — = — = — = — = -
A1 =2, Az 3 A32 3 B 5 B2 13’ B3 3’
and if pg = %, we have:
Family B:
T R S SRNPT |
/-1’2_37 721_3a Y31 = 37 V32 = O, Q] = 87 Qg = 1, a3_8a
1 8 3 3 1
A = — A = —— A = 4 = — = — = —.
20 =73, sl 3 Am=4 b1 16’ B2 7 B3 16
Now to find third family by using equations (3.32) and (3.33), we can obtain:
1
p2 — —p3 =0, (3.40)

4
(=)=
E)NE
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if us = 1, we have the solution:

Family C:
_1 _1 __19 _A _ 1 _8 _5
ll2—4> 721—4, Y31 = 5 732—5, a1 = 6’ 0¢2—9, 043—18,
1 14 24 1 7 5
/\21—1’ A1 10’ /\32_E’ 51—57 2 =g 53—%-

All the coefficients in the families A-C are satisfying in the whole equations of relations (3.26). Moreover the equations

of relation (3.26) are reduced as follows:

61+ﬁ2+/83:17

1

Y32p233 = 5’

A B3 = L
321203 = 12

1
p2B2 + 3Bz = 3

1
Mgﬂz + M%ﬂs = 3

1
V31 B2 + (Y31 + 732)°Bs = 3

1
3324233 (V31 + V32) = T

1
As2721 B3 (v21 + 2(731 + 732)) = 1

By using equations (3.35), (3.36), and (3.43) equations (3.46) and (3.48) can be rewritten as follows:

1
Bopiy + Bapiy = =

27
p2 + 2p3 = 3.
Therefore we have in the two-parameter family that:
11
3~ 3H3
62:A7 M2#M37 ,U27'50>
p2(pz — p2)
11
= 7#2 2
g = S p3 # 0, p2 # .
p3(ps — p2) 3

Also to find fourth family by using equation (3.40), if u3 = %, we have the solution:
Family D:

_ 1 _ 1 35 24 12 16 13
/-1’2_87 721_8’ Y31 = 267 732_13a oy = 97 Qg = 97 ag = 97
1 11 12 19 1 13
A = — A = —— )\ = — = — = —— = —.
20 =73 s 56 2= I3 B 36 B2 7 B3 13

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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Also the coefficients of family D are satisfying in the whole equations of relations (3.25). Each solution defines a
scheme 3-equivalent to the simplified order 3 Taylor scheme. The family A is given by:

_ _ 1 _ 1 _ N
Xpy1 =X, + ﬁa(t"’ X)) A+ %a(tn + 24, X, + 2aA + 20AW,,) A

+Sa<t + = AX + aA+332 (tn+2A,)_(n+2aA+2bAWn)A

—bAW + 1361;(1&” +2A, X, +2aA + 2bAVT/n)AWn)A
+ %b(tn, X)) AW, + iSb(tn + 24, X, + 2aA + 20AW,) AW,
a(tn + 24, X, + 2aA + 26AW,,) A

4 1. - 3
fb(tn SAX, A
+50(tn t 5 + a + 5

+ %bAWn + 1—36b(tn +2A, X, + 2aA + QbAWn)AWn) AW, + R, (3.51)

the family B is written as follows:

X1 =X, — éa(tm)_(n)A +alt, + %A,Xn + %aA + %bAWn)A
+ éa(tn + gA,Xn - gaA +4a(t, + %A,Xn + %aA + %bAWn)A

- ?bAWn +8b(t, + %A, X, + %aA + %bAWn)AWn>A
+ ib(tn, Xn)AWn + §b(tn + 1A,)_(n + Lo + leWn)AVT/n

16 1 3 37773
42 ~<b(tn+ A Ko~ Sad v da(ty + 24, %, + taat Loaw,)a

16 3 3 37713
— EbAWn +8b(t, + éA, X, + %QA n %bAWn)AWn)AWn +R, (3.52)

the family C is written as follows:

_ 1 _ 8 1, - 1 1, .
Xpp1 =X, — 6a(thn)A + fa(tn + fA,Xn + ZaA + ZbAW")A

5 1o 1o 1 1
+ = 18 a(tn + 4, X, aA+ Ga(tn + 4K+ Jad + 0AW,) A
o S B
— AW, + = SA X, + ~ad + ~bAW,) AW, ) A
5b W, + 5b(tn—|—4 X+ 70A+ bAW,) AW, )
1 o T I R
+ ﬁb(tn, X)) AW, + —b(tn + —A,Xn + ZaA + szWn)AWn
5 i 1. 1 1
A X, A SA X, + SaA+ SbAW,) A
+36b(t + 6a + 3¢ (1&,,+4 X+ Jad+ b W)
Y P BN
- EbAWn + S h(t+ ZA, X+ Jad + ZOAWL) AW, ) AW, + R, (3.53)
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and the family D is written as follows:

_ _ 12 = 16 1 — 1 1 A

13 - 11 12 1 - 1 1 A
— A X, — —alA+ — -A X —aA + =bA A

+96‘(t"+ Xn = ggad + galtn + g4 X+ gad + 2bAWS)
35 A 24 1 — 1 1 A .

— —bAW,, + —b(t, + = A, X,, + —alA + —bAW,) AW, | A
26 T 33bltn g TRIATS ) )

D XA, — So(t + 24, X+ Lad+ LoaW,) AW
36\t An n 4\t g n 8a 3 n n
5 = 11 12 1 — 1 1 N

35 A 24 1 = 1 1 A R .
— 22 BAW, + b(t, 4+ =D, X + —ad + =bAW,) A n)A " +R.
5% W+13(+8 + 504+ 2 W,) AW, |AW,, + R
The Butcher arrays for families A-D are illustrated as follows:

TABLE 1. Butcher arrays for family A.

2| 2 2

101 3 5 3

2 32 32 16 16
11 s |11 o4

R 12 36 9 2 18 9

TABLE 2. Butcher arrays for family B.

171 1

3 3 3

41 _8 _20

3 5 4 5 8
_1 1 3 3 L

R s 1 3 6 4 16

TABLE 3. Butcher arrays for family C.

1 1 1
1 1 4
1] 14 24 19 24
10 10 5 5
_1 8 5 1 7 5
R 6 9 18 12 9 36

631

(3.54)
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TABLE 4. Butcher arrays for family D.

1] 1 1

8 8 8

1| _1 12 _35 24

2 26 13 26 13

Rl 12 _16 13 v _1 13
9 9 9 36 4 18

4. MS-STABILITY ANALYSIS OF SRK3 SCHEMES
In this section, we consider the following scalar linear test equation of Ito type:

dX; = AXpdt + p X dW (t), to<t<T, MpeR, (4.1)
with nonrandom initial condition X;, = xp € R, and 2 # 0. To study stochastic stability, this test equation has been
widely used (see [15, 16, 23]). The exact solution of equation (4.1) is given by [17]:

1

X; = xgexp (()\ - iuz)t + ,uW(t)). (4.2)
Definition 4.1. The zero solution of SDE (4.1) is said to be:

(i) MS-stable, if for every € > 0, there exists a § > 0 such that:

sup E(1X¢?) <€, for E(|zo?) <6 (4.3)
to<t<T

(ii) Asymptotically MS-stable, if it is stable in mean square and, when E(|x0|2) <4
E(|X[*) =0, as t— oo. (4.4)
According to Definition 4.1 one can conclude that the exact solution X; of equation (4.1) is asymptotically MS-stable

if (see [16]):

: 1
tgx&lE(\XtF) =0, & RN+ §|u|2 < 0. (4.5)

Applying SRK3 scheme (3.51)-(3.54) to the linear test equation (4.1) yields the unit relation as follows:
1 . 1 .
Xop1 =X, (1 +AA + §A2A2 + %/\MAAWn + 6/\3A3 + %A%A%Wu

. o1 . 1 R
+ %AMQA(AW,L)Q + pAW,, + g,ﬂ(AWn)2 + 6MS(AW,LV’) + R. (4.6)

For numerical solution, we apply a one-step numerical scheme to the linear test equation (4.1) and represent a
recurrence formula of the form:

Xog1=R(A N\ 1) X, (4.7)
Saito and Mitsui [23] introduce the following definition of MS-stability for a numerical scheme.

Definition 4.2. A numerical scheme is said to be MS-stable for A, A, u, if:
R(A A1) =E(IR(AAp)]?) < 1. (4.8)

E(A, A, M) is called the MS-stability function of the numerical scheme.

(=)=
E)NE
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By Definition 4.2, SRK3 scheme (4.6) is MS-stable if:

E(.1+/\A+1)\2A2+§)\uAAWn+1/\3A3+lAQMAQAWnJrl/\/fA(AWn)QerAWn+1u2(AWn)2+1u3(AWn)3‘2) <1
2 6 6 12 12 3 6
(4.9)
Then, we reach the following relation:
5 4 7
L (2A+ on2) A+ (2024 it + Sa?) A%
+ (204 g07) A+ (2024 gt + )
4 121 5 7 7 5
7)\3 7)\2 2 2 4 v 6 A3 7)\4 7)\2 4 7)\3 2 A4
(0 g N 2t ) A0 (A et X
a2, Lis\ a5 1646
— A A°+ —=AA 1 4.1
+(144)\M+6)\) gt A <L (4.10)
where we have used the following properties in relation (4.10):
E(AW,) =0, E((AW,)?) = 4, E((AW,)?) =0,
E((AW,)*Y) =342, E((AW,)®) =0, E((AW,,)5) = 1543, (4.11)

To compare the stability condition (4.8) of the numerical method with the stability condition (4.5) of the test problem,
we prefer to introduce stability region as follows:

pi=AA, q:= A, (4.12)
Therefore the MS-stability function of SRK3 schemes is obtained as follows:

_ 5 7 4, 4 121
Rsrrs(p,q) =1+2p+ §q2 +20° + -pg® + =¢* + -p* + —p*¢* + 2pq*

2 39 T3Pt 5
56 74 7724 532 7742 ]‘5 16

S S ° r 1oL 41
TRl TP TR P P dt G geb (4.13)

In this setting, MS-stability conditions for linear test problem and the proposed scheme are, respectively, equivalent
to:

1
p+ 5q2 <0, (4.14)
and
ESRK?) (p, q) < 1. (415)

The MS-stability regions of (4.1) and (4.6) can thus be, respectively, defined as:

SspE = {p,q €R; (4.14) holds},

SsrK3 = {p,q € R; (4.15) holds}.

In Figure 1 the regions of MS-stability of both the approximate solution SRK3 and RK3-T schemes and the SDE
solution of (4.1) are illustrated.

5. NUMERICAL EXPERIMENTS

In this section, numerical results from the implementation of the SRK3 schemes proposed is compared to those
from the implementation of well-known schemes of the same order (see [27]).

The simplied order 3 weak Taylor scheme (2.10), denoted by Taylor3, the order 3 Runge-Kutta method proposed
by Tocino [27], denoted by RK3-T. Also the third-order SRK Schemes proposed in (3.51)-(3.54) will be denoted by

(&)
ENE
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FIGURE 1. MS-stability regions. SRK3 scheme (light gray), RK3-T scheme (dark gray) and SDE
(4.1) (dark).

SRK3. Denoting X7 and X (T') as the numerical and the exact solutions at time 7T in ith simulation, respectively. We
use mean of absolute errors, ” MeanError”, defined by:

1 2000
MeanError == —— > | X(T) - Xr |, (5.1)

2000 p

to measure accuracy of the proposed schemes. For each example we have used N = 2000 simulations for stepsizes
A=2"1272 . 275 to compute the approximated value of the known expectation. The mean of absolute errors for
each considered scheme are summarized in Tables 5-8.

Example 5.1. At first we consider the linear SDE (4.1). In order to analyze the numerical MS-stability, we consider
xo = 1 and different values for A\ and . We consider 7' = 1, and the proposed methods with various stepsizes A. The
results in Tables 5-6 confirm a better convergence properties of the SRK3 schemes in comparison with other methods.

Case (i): To test problem (4.1) we consider T'= 1, A = —4 and g = 0.2. The computed results are shown in Table
5. From these table we can see that the schemes Taylor3, RK3-T and SRK3 are MS-stable for all stepsizes A.

TABLE 5. Means of absolute errors for proposed schemes at T' = 1 for test problem (4.1) with A = —4,
w=0.2.

A Taylor3 RK3-T SRK3

271 497x1071  345x10°"  1.85x 107!

272 137x107%  8.87x107®  538x107*

273 8.30 x 1073 9.41 x 1074 1.76 x 10~*

274 659x107%  5.16x107*  550x 107°

277 2.14 x 1073 3.94 x 1074 3.04 x 107°

Case (ii): Eventually to test problem (4.1) we consider T'=1, A = =10 and p = 0.2. The computed results are
shown in Table 6. From these table we can see that the Taylor3 scheme is MS-stable for stepsizes A < 271, and the
RK3-T scheme is stable for stepsizes A < 273, where as, the SRK3 scheme is stable for stepsizes A < 272
an
BE
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TABLE 6. Means of absolute errors for proposed schemes at T = 1 for test problem (4.1) with A = —10,
pw=0.2.

A Taylor3 RK3-T SRK3

2-1 unstable unstable unstable

2-2 6.26 x 1076 unstable unstable

273 1.08 x 10~ unstable 1.09 x 1079

274 520x1077  5.86x 1077 1.07 x 107°

275 1.64x1077  9.01x107%  4.66 x 10710

Example 5.2. The second example is a linear SDE in Ito sense with two standard Brownian motions as below:

dX; = X, dt + ulXtdI/Vl (t) + MQXtdWQ(t)7 to<t<T, )\,/1,1,/1,2 € R, (52)
with nonrandom initial condition zy = 1. The exact solution of equation (5.2) is given by [17]:
1
Xt = xgexp <(>\ - 5(#% + #%))t + i Wa(t) + H2W2(t)> . (5.3)

In order to analyze the numerical MS-stability, we consider different values for A\ and p. We consider T'= 1, and the
proposed methods with various stepsizes A. The results in Tables 7,8 confirm a better convergence properties of the
SRK3 schemes in comparison with other methods.

Case (i): To test problem (5.2) we consider T'=1, A = —10, pu; = 0.2 and puy = 0.5. The computed results are
shown in Table 7. From these table we can see that the Taylor3 scheme is MS-stable for all stepsizes A, and the
RK3-T scheme is stable for stepsizes A < 271, where as, the SRK3 scheme is stable for stepsizes A < 272.

TABLE 7. Means of absolute errors for proposed schemes at T = 1 for test problem (5.2) with A = —10,
w1 = 0.2 and pe = 0.5.

A Taylor3 RK3-T SRK3
2T 3.01 x 1076 unstable unstable
272 2.78 x 1076 4.62 x 1077 unstable
273 986 x1077 943 x107%  7.10x107°
2 4

2 5

5.31 x 10~7 3.95 x 108 5.69 x 1079
4.10 x 1077 2.99 x 108 2.75 x 1079

Case (ii): Also, to test problem (5.2) we consider T'=1, A = —15, iy = 0.1 and ps = 0.3. The computed results
are shown in Table 8. From these table we can see that the Taylor3 scheme is MS-stable for all stepsizes A, where as
the RK3-T and the SRK3 schemes are stable for stepsizes A < 272,

Example 5.3. The third example is scalar nonlinear SDE in It6 sense as below:
dXy = —(A+p2Xy) (1= X7)dt + p(1 — X7)dW (t),  to<t<T, \peR, (5.4)
with nonrandom initial condition g = 0. The exact solution of equation (5.4) is given by [17]:
(1 + o) exp ( oM+ QMW(t)) Yo —1

(1 + xo) exp ( — 22Xt + 2ﬂW(t)) —x9+1

In order to analyze the numerical MS-stability, we consider different values for A and . We consider T'= 1, and the
proposed methods with various stepsizes A. The results in Tables 9,10 confirm a better convergence properties of the
SRK3 schemes in comparison with other methods.

(&)
ENE
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TABLE 8. Means of absolute errors for proposed schemes at T = 1 for test problem (5.2) with A = —15,
pu1 = 0.1 and po =0.3.

A Taylor3 RK3-T SRK3
2-1 6.45 x 10~ 7 unstable unstable
272 2.59 x 1077 unstable unstable
23 7.32 x 1078 4.91 x 107? 4.13 x 10712
2 4

2 5

4.96 x 10~8 3.53 x 10~12 5.18 x 10714
4.12 x 1078 7.13 x 10713 4.49 x 10714

Case (i): To test problem (5.4) we consider T'=1, A = —2 and g = 0.2. The computed results are shown in Table
9. From these table we can see that the schemes Taylor3, RK3-T and SRK3 are MS-stable for all stepsizes A.

TABLE 9. Means of absolute errors for proposed schemes at T' = 1 for test problem (5.4) with A = —2
and p = 0.2.

A Taylor3 RK3-T SRK3
21 021 x 107 T 824 x 10~ T 2.70 x 1071
22 7.33 x 1072 6.58 x 1073 6.50 x 104
2-3 5.02 x 1073 463 x 1073 3.07 x 1074
2 4

2 5

1.97 x 103 3.27 x 1073 2.25 x 10~4
1.25 x 1073 9.67 x 10~* 2.02 x 10~*

Case (ii): Also, to test problem (5.4) we consider ' =1, A = =5, and g = 0.1. The computed results are shown in
Table 10. From these table we can see that the Taylor3 scheme is MS-stable for all stepsizes A, where as the RK3-T
and the SRK3 schemes are stable for stepsizes A < 272.

TABLE 10. Means of absolute errors for proposed schemes at T' = 1 for test problem (5.4) with A = —5
and p = 0.1.

A Taylor3 RK3-T SRK3
2T 7.49 x 1072 unstable unstable
272 1.50 x 102 unstable unstable
273 834x107* 764x107%  1.11x 1073
2 4

2 5

3.94 x 1073 5.81 x 1073 4.46 x 1075
8.84 x 10~4 9.12 x 10~4 3.84 x 1076

6. CONCLUSION

Based on the papers which are introducing some families of third—order stochastic Runge-Kutta schemes by using
Ito-Taylor expansion, namely for constant diffusion part, we consider the SDEs with general diffusion term and
succeed to deal with the obtained equations and introduce more extra SRK3 families. Moreover, the stability region
is illustrated and numerical results are shown to reveal the accuracy of the proposed SRK3 families.
an
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