- [1] D. Ahmadian, O. Farkhondeh Rouz, and L. V. Ballestra, Stability analysis of split-step θ-Milstein method for a class of n-dimensional stochastic differential equations, Appl. Math. Comput., 348(4) (2019), 413–424.
- [2] D. Ahmadian and O. Farkhondeh Rouz, Exponential mean-square stability of numerical solutions for stochastic delay integro-differential equations with Poisson jump, J. Inequal. Appl., 186(1) (2020), 1–33.
- [3] L. Arnold, Stochastic differential equations, Applications of Mathematics (New York), Springer-Verlag, Wiley, New York, 1974.
- [4] K. Burrage and P. M. Burrage, Order conditions of stochastic Runge–Kutta methods by B-series, SIAM J. Numer. Anal., 38(5) (2000), 1626–1646.
- [5] K. Burrage and P. M. Burrage, High strong order explicit Runge–Kutta methods for stochastic ordinary differential equations, Appl. Numer. Math., 22(1) (1996), 81–101.
- [6] P. M. Burrage, Runge–Kutta methods for stochastic differential equations, Ph.D. Thesis. The university of queens- land, 1999.
- [7] J. C. Butcher, The numerical analysis of ordinary differential equations, Runge–Kutta and General Linear Meth- ods, Wiley. Chichester., 1987.
- [8] E. Buckwar and C. Kelly, Towards a systematic linear stability analysis of numerical methods for systems of stochastic differential equations, SIAM J. Numer. Anal., 48(1) (2010), 297–307.
- [9] C. D. Charalambous, R. J. C. Bultitude, X. Li, and J. Zhan, The estimation of parameters for stochastic differ- ential equations using neural networks, IEEE Trans. Wireless Commun., 15(6) (2008), 434–439.
- [10] N. T. Dung, Fractional stochastic differential equations with applications to finance, J. Math. Anal. Appl., 397(1) (2013), 334–348.
- [11] O. Farkhondeh Rouz and D. Ahmadian, Stability analysis of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type, Comput. Methods Differ. Equ., 5(3) (2017), 201–213.
- [12] O. Farkhondeh Rouz, Preserving asymptotic mean-square stability of stochastic theta scheme for systems of sto- chastic delay differential equations, Comput. Methods Differ. Equ., 8(3) (2020), 468–479.
- [13] Q. Guo, M. Qiu, and T. Mitsui, Asymptotic mean-square stability of explicit Runge–Kutta Maruyama methods for stochastic delay differential equations, J. Comput. Appl. Math., 296(5) (2015), 1–26.
- [14] A. Haghighi, S. M. Hosseini, and A. R¨o ler, Diagonally drift-implicit Runge–Kutta methods of strong order one for stiff stochastic differential systems, J. Comput. Appl. Math., 293(2) (2016), 82–93.
- [15] D. B. Hernandez and R. Spigler, Convergence and stability of implicit Runge–Kutta methods for systems with multiplicative noise, J. Comput. Appl. Math., 33 (1993), 654–669.
- [16] D. J. Higham and R. Spigler, Mean-square and asymptotic stability of the stochastic theta method, SIAM J. Numer. Anal., 38(3) (2000), 753–769.
- [17] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics (New York), Springer-Verlag, Berlin, 1992.
- [18] J. R. Klauder and W. P. Petersen, Numerical integration of multiplicative-noise stochastic differential equations, SIAM J. Numer. Anal., 22(6) (1985), 1153–1166.
- [19] X. Mao, Stochastic Differential Equations and Their Applications, Applications of Mathematics (New York), Springer-Verlag, Horwood. Chichester, 1997.
- [20] A. Rathinasamy and P. Nair, Asymptotic mean-square stability of weak second-order balanced stochastic Runge– Kutta methods for multi-dimensional Itoˆ stochastic differential systems, Appl. Math. Comput., 332(C) (2018), 276–303.
- [21] A. R¨o ler, Runge–Kutta methods for Itoˆ stochastic differential equations with scalar noise, BIT., 46(3) (2006), 97–110.
- [22] A. R¨o ler, Runge–Kutta methods for the strong approximation of solutions of stochastic differential equations, SIAM J. Numer. Anal., 3(1) (2010), 922–952.
- [23] Y. Saito and T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal., 33(6) (1996), 2254–2267.
- [24] M.J. Senosiain and A. Tocino, Two-step strong order 1.5 schemes for stochastic differential equations, Numer. Algor., DOI:10.1007/s11075-016-0227-3. (2016).
- [25] A. Tocino, Mean-square stability of second-order Runge–Kutta methods for stochastic differential equations, J. Comput. Appl. Math., 175(3) (2005), 355–367.
- [26] A. Tocino and R. Ardanuy, Truncated ITOˆ-Taylor expansions, Stochastic Anal. Appl., 20(4) (2002), 427–443.
- [27] A. Tocino and R. Ardanuy, Runge–Kutta methods for numerical solution of stochastic differential equations, J. Comput. Appl. Math., 138(2) (2002), 219–241.
- [28] A. Tocino and J. Vigo-Aguiar, Weak second order conditions for stochastic Runge–Kutta methods, SIAM J. Sci. Comput., 24(2) (2002), 507–523.
- [29] A. Tocino and M. J. Senosiain, Two-step Milstein schemes for stochastic differential equations, Numer. Algor., 69(5) (2014), 643–665.
- [30] T.H. Tian and K. Burrage, Two-stage stochastic Runge–Kutta methods for stochastic differential equations, BIT., 42(7) (2002), 625–643.
- [31] P. Wang and Y. Li, Split-step forward methods for stochastic differential equations, J. Comput. Appl. Math., 233(10) (2010), 2641–2651.
- [32] P. Wilmott, Derivatives: The Theory and Practice of Financial Engineering, Applications of Mathematics (New York), Springer-Verlag, John Wiley & Sons. New York, 1998.
|