- [1] AM. Abylayeva, R. Oinarov, and LE. Persson, Boundedness and compactness of a class of Hardy type operators, Luleå University of Technology, Graphic Production, 2016.
- [2] E. Alòs, O. Mazet, and D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann Probab, 29 (2001), 766-801.
- [3] E. Alòs and D. Nualart, Stochastic calculus with respect to fractional Brownian motion, Stochastics and Stochastic Reports, 75(3), 129-152.
- [4] F. Biagini, Y. Hu, B. Øksendal, and T. Zhang, Stochastic Calculus for fBm and Applications, Probability and Its Application, Springer, Berlin, 2008.
- [5] P. Embrechts and M. Maejima, Self-Similar Processes, Wiley, NewYork, Princeton University Press, 2002.
- [6] T. Caraballo, M.J. Garrido-Atienza and T. Taniguchi,The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Analysis, 74 (2011), 3671– 3684.
- [7] S. Chunmei, Y. Xiao, and C. Zhang, The convergence and MS stability of Exponential Euler method for semilinear stochastic differential equations, Abstract and Applied Analysis, ID (2012), 350-407.
- [8] M. Gradinaru, I. Nourdin, F. Russo, and P. Vallois, m-order integrals and generalized Itô’s formula; the case of a fBm with any Hurst index, Ann. Inst. Henri Poincare ́ Probab. Stat, 41 (2005), 781-806.
- [9] Y. Hu, Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Amer. Math. Soc., 175 (825), (2005).
- [10] M. Kamrani and N. Jamshidi, Implicit Euler approximation of stochastic evolution equations with fractional Brownian motion, Communications in Nonlinear Science and Numerical Simulation, 44 (2017), 1-10.
- [11] YS. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lect. Notes Math., Vol. 1929, Berlin, Heidelberg, Springer, 2008.
- [12] D. Nualart, Malliavin Calculus and Related Topics, 2nd ed., Springer, New York, 2006.
- [13] V. Pipiras and MS. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Relat. Fields, 118 (2000), 251-291.
- [14] G. Samorodnitsky, Long Range Dependence, Heavy Tails and Rare Events, Lecture Notes, MaPhySto, Centre for Mathematical Physics and Stochastics, Aarhus, 2002.
- [15] G. Samorodnitsky and MS. Taqqu, Stable Non-Gaussian Random Variables, Chapmanand Hall, London, 1994.
- [16] O. Sheluhin, S. Smolskiy, and A. Osin, Self-Similar Processes in Telecommunications, John Wiley Sons, Inc, New York, 2007.
- [17] GJ. Shen, XW. Yin, and LT. Yan, Least squares estimation for Ornstein-Uhlenbeck processes driven by the weighted fractional Brownian motion, Acta Math. Sci., 36 (2016), 394-408.
- [18] MS. Taqqu, A bibliographical guide to selfsimilar processes and long-range dependence, in Dependence in Probability and Statistics,(eds E. Eberlein and M.S. Taqqu), Birkhauser, Boston, (1986), 137-162.
- [19] W. Willinger, MS. Taqqu, and V. Teverovsky, Stock market prices and long-range dependence, Finance Stoch., 3(1) (1999), 1-13.
|