- [1] M. Azizi, M. Amirfakhrian, and M. A. Fariborzi Araghi, A fuzzy system based active set algorithm for the numerical solution of the optimal control problem governed by partial differential equation, Eur. J. Control, 54 (2020), 99–110.
- [2] R. Becker, M. Braack, D. Meidner, R. Rannacher, and B. Vexler, Adaptive finite element methods for PDE- constrained optimal control problems, Reactive flows, diffusion and transport, Springer, 2007, 177–205.
- [3] R. Becker, H. Kapp, and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM J. Control Optim., 39(1) (2000), 113–132.
- [4] M. Bergounioux, K. Ito, and K .Kunisch, Primal-dual strategy for constrained optimal control problems, SIAM J. Control Optim., 37(4) (1999), 1176–1194.
- [5] M. Bergounioux and K. Kunisch, Augmented lagrangian techniques for elliptic state constrained optimal control problems, SIAM J. Control Optim., 35(5) (1997), 1524–1543.
- [6] X. Chen, L. Qi and D. Sun, Global and superlinear convergence of the smoothing newton method and its application to general box constrained variational inequalities, Math. Comp., 67(222) (1998), 519–540.
- [7] S. Effati and M. Pakdaman, Optimal control problem via neural networks, Neural Comput. & Applic., 23(7-8) (2013), 2093–2100.
- [8] F. Facchinei and J. -S. Pang, Finite-dimensional variational inequalities and complementarity problems, Springer Science & Business Media, 2007.
- [9] A. Fischer, Solution of monotone complementarity problems with locally lipschitzian functions, Math. Program- ming, 76(3) (1997), Ser. B, 513–532.
- [10] S. Ghasemi and S. Effati, An artificial neural network for solving distributed optimal control of the Poisson’s equation, Neural Process Lett., 49 (2018), 159–175.
- [11] C. Grossmann, H. -G. Roos, and M. Stynes, Numerical treatment of partial differential equations, vol. 154, Springer, 2007.
- [12] M. Gugat and M. Herty, The smoothed-penalty algorithm for state constrained optimal control problems for partial differential equations, Optim. Methods Softw., 25(4-6) (2010), 573–599.
- [13] M. Hintermüller and R. H. W. Hoppe, Goal-oriented adaptivity in control constrained optimal control of partial differential equations, SIAM J. Control Optim., 47(4) (2008), 1721–1743.
- [14] M. Khaksar-e Oshagh and M. Shamsi, Direct pseudo-spectral method for optimal control of obstacle problem–an optimal control problem governed by elliptic variational inequality, Math. Methods Appl. Sci., 40(13) (2017), 4993–5004.
- [15] M. Khaksar-e Oshagh and M. Shamsi, An adaptive wavelet collocation method for solving optimal control of elliptic variational inequalities of the obstacle type, Comput. Math. Appl., 75(2) (2018), 470–485.
- [16] M. Khaksar-e Oshagh, M. Shamsi, and M. Dehghan, A wavelet-based adaptive mesh refinement method for the obstacle problem, Engineering with Computers, 34(3) (2018), 577–589.
- [17] H. M. Kim and J. M. Mendel, Fuzzy basis functions: Comparisons with other basis functions, IEEE Trans. Fuzzy Syst., 3(2) (1995), 158–168.
- [18] A. Kröner, K. Kunisch, and B. Vexler, Semismooth newton methods for optimal control of the wave equation with control constraints, SIAM J. Control Optim., 49(2) (2011), 830–858.
- [19] R. Li, W. Liu, H. Ma, and T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41(5) (2002), 1321–1349.
- [20] W. Liu and N. Yan, A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math., 15(1-4) (2001), 285–309.
- [21] M. A. Mehrpouya and M. Khaksar-e Oshagh, An efficient numerical solution for time switching optimal control problems, Comput. Methods Differ. Equ., 9(1) (2021), 225–243.
- [22] M. Pakdaman and S. Effati, Approximating the solution of optimal control problems by fuzzy systems, Neural Process Lett., 43(3) (2016), 667–686.
- [23] J. W. Pearson, A radial basis function method for solving PDE-constrained optimization problems, Numer. Algor., 64(3) (2013), 481–506.
- [24] J. W. Pearson and A. J. Wathen, A new approximation of the Schur complement in preconditioners for PDE- constrained optimization, Numer. Linear Algebra Appl., 19(5) (2012), 816–829.
- [25] H. Pourbashash and M. Khaksar-e Oshagh, Local RBF-FD technique for solving the two-dimensional modified anomalous sub-diffusion equation, Appl. Math. Comput., 339 (2018), 144–152.
- [26] L. Qi and J. Sun, A nonsmooth version of newton’s method, Math. Programming, 58(1) (1993), 353–367.
- [27] F. Tröltzsch, Optimal control of partial differential equations: theory, methods, and applications, vol. 112, Amer- ican Mathematical Society, 2010.
- [28] M. Ulbrich, Semismooth newton methods for operator equations in function spaces, SIAM J. Optim., 13(3) (2002), 805–841.
- [29] L. X. Wang and J. M. Mendel, Back-propagation fuzzy system as nonlinear dynamic system identifiers, IEEE International Conference on Fuzzy Systems, 8 (1992), 1409–1418.
- [30] L. X. Wang and J. M. Mendel, Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Transactions on Neural Networks, 3(5) (1992), 807–814.
|