تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,490,123 |
تعداد دریافت فایل اصل مقاله | 15,217,578 |
برآورد فرسایش- رسوب حوضه آبریز سراب سیکان با استفاده از مدل RUSLE | ||
هیدروژئومورفولوژی | ||
دوره 9، شماره 32، آبان 1401، صفحه 23-1 اصل مقاله (1.91 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2021.40330.1555 | ||
نویسندگان | ||
محمد حسین رضایی مقدم* 1؛ اسدالله حجازی2؛ مهدی مزبانی3 | ||
1استاد گروه ژئومورفولوژی، دانشکدهی برنامهریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران | ||
2گروه ژئومورفولوژی دانشکده برنامه ریزی و علوم محیطی دانشگاه تبریز | ||
3دانشجوی دکتری ژئومورفولوژی، دانشکدهی برنامهریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
امروزه فرسایش خاک به عنوان یکی از مباحث مهم مدیریت حوضه های آبریز در سطح ملی و جهانی مطرح میباشد. در این پژوهش به منظور شناسایی توزیع مکانی فرسایش خاک و تولید رسوب در حوضهی آبریز سراب سیکان از معادلهی جهانی اصلاح شده هدر رفت خاک استفاده شده است. با استفاده از داده های بارندگی 17 ساله (1397-1380)، اطلاعات خاکشناسی و مدل رقومی ارتفاعی با تفکیک 10 متری هر یک از فاکتورهای فرسایندگی (R)، فرسایش پذیری (K)، شیب و طول شیب (LS) و حفاظت خاک (P) در محیط ArcGIS تهیه شدند. از سنجنده ی ماهواره سنتینل 2 نیز جهت استخراج و تهیه فاکتور پوشش گیاهی حوضه (C) در محیط نرم افزارENVI 5.3 استفاده شد. در نهایت با ترکیب این فاکتورها در محیط نرمافزار ArcGIS مقدار فرسایش حوضه محاسبه گردید سپس با روش های مختلف نسبت تحویل رسوب (SDR) میزان رسوب تولید شده در حوضه به دست آمد. نتایج نشان داد که مقدار فرسایش در سطح حوضه از 003/0 تا 4/248 تن در هکتار در سال در سطح پیکسل متغیر بوده و میانگین هدر رفت خاک در حوضه 3/22 تن در هکتار در سال میباشد. در بین فاکتورهای مدل، فاکتور LS با ضریب همبستگی 92/0=R2 بیشترین تأثیرگذاری در فرسایش خاک را نشان داد. همچنین مقدار نسبت SDR با روش های مختلف بین 12/0 تا 36/0 محاسبه گردید که پس از تلفیق با نقشه فرسایش، بار رسوب حوضه محاسبه شد. میانگین بار رسوب با روش بویس 8/2 تن در هکتار در سال میباشد که نسبت به روش های دیگر به مقدار رسوب ایستگاه (65/1 تن در هکتار در سال) نزدیکتر میباشد. | ||
کلیدواژهها | ||
فرسایش پذیری؛ سنتینل2؛ نسبت تحویل رسوب؛ هدر رفت خاک؛ سراب سیکان؛ دره شهر | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Absaran Consulting Engineers. (2010). Sikan reservoir dam studies, second stage. pp, 437. Alizadeh, A. (2010). Principles of Applied Hydrology. Imam Reza University Press, 30, pp. 912. Arekhi, S; & Niazi, Y. (2010). Investigating Application of GIS and RS to Estimate Soil Erosion and Sediment Yield Using RUSLE (Case Study: Upper Part of Ilam Dam Watershed, Iran). Journal of Water and Soil Conservation, 17(2), 1-27. Armin, M; Valinejad, H; GHorbannia.kheybari, V. (2020). Estimation of Soil Erosion in the Tang-e-Sorkh Dam Watershed Using the Revised Universal Soil Loss Equation (RUSLE) and Remote Sensing (RS) and Geographic Information System (GIS) Capabilities. Hydrogeomorphology, 6, No, 23, 159-183. Babaei, M., Hoseini, S.Z.A., Nazari Samani, A.A., & Almodaresi, S.A. (2015). Soil Erosion Zoning Using RUSLE 3D Model, Case study: Can basin. Watershed Engineering and Management, 8(2), 165-181. Bayat, R; Moradi, SH. (2014). Review of Research Conducted on the Sediment Delivery Ratio. Extension and Development of Watershed Management, 2 (5), 27-36. Drzewiecki, W; Wężyk, P; Pierzchalski, M; & Szafrańska, B. (2014). Quantitative and qualitative assessment of soil erosion risk in Małopolska (Poland), supported by an object-based analysis of high-resolution satellite images. Pure and Applied Geophysics, 171, 867-895. Ganasri, B.P & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS: A case study of Nethravathi Basin. Geoscience Frontiers, 7 (6), 953-961. Gaubi I, Chaabani A, Mammou AB, Hamza M. (2017). A GIS-based soil erosion prediction using RUSLE model (Lebna watershed, Cap Bon, Tunisia). Natural Hazards, 86 (1), 219-239. Habashi, Kh; Mohammadi, Sh; Karimzadeh, H.R; Pourmanafi, S. (2018). Assessment soil erosion risk in Kohpayeh- segzi plain using Revised Universal Soil Loss Equation (RSLE). Journal of Natural Environmental Hazards, 7, (15):161-178. Karaburun, A. (2010). Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean Journal of Applied Sciences, 3 (1), 77-85. Karimi, H; Fathizad, H; Tavakoli, M; Bazgir, M; Graee, P. (2013). Evaluation the Efficiency of MUSLE Model in Sediment Load Estimation Resulting from Individual Rain Events in Doviraj River Sub-Basins, Ilam Province. Environmental Erosion Researches, No, 11, 39-54. Kinnell, P.I.A. (2000). AGNPS-UM: applying the USLE-ithin the agricultural non-point source pollution model. Environmental Modelling and Software, 15(3), 331-341. Meghraoui M, Habi M, Morsli B, Regagba M, Seladji A. (2017). Mapping of soil erodibility and assessment of soil losses using the RUSLE model in the Sebaa Chioukh Mountains (northwest of Algeria). Journal of Water and Land Development, 34 (1), 205-213. Miguel P.A., Samuel-Rosa R., Simao Diniz Dalmolin F., ArajoPedron J., & MouraBueno A. (2011). The USLE model for estimating soil erosion in complex topography areas. Annals XV Brazilian Symposium on Remote Sensing, (SBSR), Brasil, 9227-9230. Mohammadi, M; Falah, M; Kavian, A. A; GHolami, L; Omidvar, E. (2017). The Application of RUSLE Model in Spatial Distribution Determination of Soil loss Hazard. Iranian Journal of Ecohydrology, 3 (4), 645-658. Mohammadi, SH; Karimzadeh, H.R; Alizadeh, M. (2018). Spatial estimation of soil erosion in Iran using RUSLE model. Iranian Journal of Ecohydrology, 5 (2), 551-569. Mohammadi, SH; Karimzadeh, H.R; Pourmanafi, S; Soltani, S. (2018). Spatial and Temporal Evaluation of Soil Erosion using RUSLE model Landsat satellite image time series (Case Study: Menderjan, Isfahan). Journal of Range and Watershed Management, 71(3), 759-774. Mokhtari, L.G., Shafiei, N., & Rahmani, A. (2018). Estimation of soil erosion using RUSLE model, a case study of Noorabad Mamasani basin. Hydrogeomorphology, 17, 1-21. Panagos, P; Borrelli, P; Poesen, J; Ballabio, C; Lugato, E; Meusburgerb, K; Montanarellaa, L & Alewell, CH. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438- 447. Renard K, Foster G, Weesies G, McCool D, & Yoder D. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation RUSLE). US Department of Agriculture (Ed.). Agricultural Handbook. US Department of Agriculture, Washington, 703, 1–251. Renard, K.G. & Freidmund, J.R. (1994). Using monthly precipitation data to estimate the R-factor in the RUSLE, Journal of Hydrology. 157, 287-306. Rezaei, PY; faridi, P; Ghobani, M; Kazemi, M. (2014). Estimation of Soil Erosion Using RUSLE Model and Identification of the Most Effective Factor in the Erosion of the Gabrik Basin, Quantitative Geomorphological Research, 3 (1), 97-113. Sanaienejad, S. Shah Tahmasbi, A. Sadr Abadi Haghighi, R. Kelarestani, K. (2008), A Study of Spectral Reflection on Wheat Fields in Mashhad Using MODIS Data. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science, 12 (45), 11-19. Shahrivar, A; Noor, H; Khazaei, M. (2017). Environmental issues of soil erosion. Arshadan publisher, 1,pp 164. Teng H, Rossel RA, Shi Z, Behrens T, Chappell A, & Bui E. (2016). Assimilating satellite imagery and visible–near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environmental Modelling & Software, 77,156-167. Vrieling, A., G. Sterk., & N. Beaulieu. (2002). Erosion risk mapping: a methodological case study in the Colombian Eastern Plains. Soil and Water Conserve. 57(3), 158-163. Wischmeier, W.H; & Smith, D.D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook. US Department of Agriculture. Washington DC, 537, 13-27. | ||
آمار تعداد مشاهده مقاله: 835 تعداد دریافت فایل اصل مقاله: 359 |