تعداد نشریات | 44 |
تعداد شمارهها | 1,312 |
تعداد مقالات | 16,121 |
تعداد مشاهده مقاله | 52,720,680 |
تعداد دریافت فایل اصل مقاله | 15,388,202 |
بررسی کارایی مدل SWAT در برآورد دبیهای روزانه حوضههای فاقد آمار با رویکرد منطقه بندی در مناطق خشک | ||
هیدروژئومورفولوژی | ||
دوره 7، شماره 25، اسفند 1399، صفحه 182-161 اصل مقاله (1.85 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2021.43934.1568 | ||
نویسندگان | ||
دانیال صیاد1؛ رضا قضاوی* 2؛ ابراهیم امیدوار3 | ||
1دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکدهای منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان، ایران | ||
2عضوء هیئت علمی گروه مرتع و آبخیزداری دانشکده منابع طبیعی و علوم زمین دانشگاه کاشان | ||
3دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان | ||
چکیده | ||
رواناب یکی از مهمترین اجزای چرخه هیدرولوژی است. در هر حوضه ی آبریز برآورد رواناب برای برنامه ریزی دقیق مدیریت منابع آب ضروری است. هدف از انجام این مطالعه بررسی کارایی مدل هیدرولوژیکی و نیمه توزیعی SWAT جهت برآورد دبی روزانه ی حوضه های فاقد آمار در مناطق خشک از طریق انتقال پارامترهای واسنجی شده از حوضه ی دارای آمار به حوضه ی فاقد آمار با رویکرد منطقه بندی مبتنی بر خصوصیات فیزیکی است. جهت انجام این مطالعه، ابتدا مدل SWAT در حوضه ی آبریز دارای آمار (خـنچه) واسنجی و صحت سنـجی شد. سپس پارامـترهای واسنجی شـده برای شـبیه سازی و تحلیل جریان در بسته نرم افزاری Hydro office-FDC بـه حوضه ی فاقد آمار سـوک چم انتتقال داده شد. بـر اساس نتایج حاصل از تحلیل حساسیت، از بین پارامترهای حساس در شبیه سازی جریان، پارامترهای HRU-SLP, SLSOIL, SOL-AWC, CANMX, CH-S1 به عنوان حساسترین پارامترها در منطقهی مورد مطالعه شناخته شدند. معیارهای ارزیابی عملکرد مدل PBIAS, R2, NSE به ترتیب برای دوره واسنجی 6/0، 65/0 و 7/10 و برای دورهی صحتسنجی برابر 47/0، 63/0 و 88/11- به دست آمد که نشاندهندهی دقت قابلقبول شبیهسازی دبی روزانه در حوضه ی خشک در مقیاس روزانه است. همچنین نتایج حاصل از اندازهگیری شاخصهای منحنی تداوم سیلابی (Q5)، مرطوب(Q20-Q10)، متوسط (Q60-Q50-Q40-Q30)، کمآبی (Q95-Q90-Q80-Q70) نشان داد که در 5 درصد از ایام سال (18روز) دبی سیلابی معادل 28/0 مترمکعب برثانیه یا بیشتر از آن است. محدوده ی شاخص های مرطوب، متوسط و کم آبی به ترتیب (12/0–16/0)، (11/0- 08/0) و (024/0– 058/0) مترمکعب برثانیه به دست آمد. استخراج این نتایج میتواند به درک و شناخت بهتر از رفتار هیدرولوژیکی حوضه های فاقد آمار کمک کند. | ||
کلیدواژهها | ||
مدل ارزیابی آب و خاک؛ حوضههای فاقد آمار؛ شبیهسازی روزانه؛ رویکرد منطقهبندی؛ منحنی تداوم جریان؛ حوضههایی آبریز؛ خنچه و سوک چم؛ استان اصفهان | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Abbaspour, K. C. (2013). SWAT-CUP 2012. SWAT Calibrationand Uncertainty Program-a user Manual.
Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752.
Akbari, M. H., Bahremand, A., Najafinejad, A., & Sheikh, V. (2013). Daily flow Simulation of Chehelchai River-Golestan Province Using SWAT Model. (In Persian)
Ang, R., & Oeurng, C. (2018). Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model. Water Science, 32(1), 89-101.
Arnold, J. G., Allen, P. M., & Bernhardt, G. (1993). A comprehensive surface-groundwater flow model. Journal of Hydrology, 142(1-4), 47-69.
Arnold, J., Engel, B., & Srinivasan, R. (1993). A continuous time, grid cell watershed model. Application of Advanced Information Technologies for Management of Natural Resources, 17-19.
Bao, Z., Zhang, J., Liu, J., Fu, G., Wang, G., He, R., Liu, H. (2012). Comparison of regionalization approaches based on regression and similarity for predictions in ungauged catchments under multiple hydro-climatic conditions. Journal of Hydrology, 466, 37-46.
Bezabih, A. W. (2021). Evaluation of small hydropower plant at Ribb irrigation dam in Amhara regional state, Ethiopia. Environmental Systems Research, 10(1), 1-9.
Beck, H. E., van Dijk, A. I., De Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., & Bruijnzeel, L. A. (2016). Global‐scale regionalization of hydrologic model parameters. Water Resources Research, 52(5), 3599-3622.
Blainski, É., Porras, E. A. A., Garbossa, L. H. P., & Pinheiro, A. (2017). Simulation of land use scenarios in the Camboriú River Basin using the SWAT model. RBRH, 22.
Cerro, I., Antigüedad, I., Srinavasan, R., Sauvage, S., Volk, M., & Sanchez‐Perez, J. M. (2014). Simulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquifer. Journal of Environmental Quality, 43(1), 67-74.
Cislaghi, A., Masseroni, D., Massari, C., Camici, S., & Brocca, L. (2020).Combining a rainfall–runoff model and a regionalization approach for flood and water resource assessment in the western Po Valley, Italy. Hydrological Sciences Journal, 65(3), 348-370.
Dessu, S. B., & Melesse, A. M. (2013). Impact and uncertainties of climate change on the hydrology of the Mara River basin, Kenya/Tanzania. Hydrological Processes, 27(20), 2973-2986.
Ercan, M. B., Goodall, J. L., Castronova, A. M., Humphrey, M., & Beekwilder, N. (2014). Calibration of SWAT models using the cloud. Environmental Modelling & Software, 62, 188-196.
Fohrer, N., Dietrich, A., Kolychalow, O., & Ulrich, U. (2014). Assessment of the environmental fate of the herbicides flufenacet and metazachlor with the SWAT model. Journal of Environmental Quality, 43(1), 75-85.
Fu, C., James, A. L., & Yao, H. (2014). SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments. Journal of Hydrology, 511, 719.735
Ghazavi, R., Nadimi, M., Omidvar, E., & Imani, R. (2018)The Study of the Effects of the Future Climate Change on Discharge Variation of the Herochay River using SWAT and LARS-WG. Hydrogeomorphology, 4(15), 54-79. (In Persian) (In Persian)
Glavan, M., White, S., & Holman, I. P. (2011). Evaluation of river water quality simulations at a daily time step–Experience with SWAT in the Axe Catchment, UK. CLEAN–Soil, Air, Water, 39(1), 43-54.
Gong, Y., Shen, Z., Liu, R., Hong, Q., & Wu, X. (2012). A comparison of single-and multi-gauge based calibrations for hydrological modeling of the Upper Daning River Watershed in China's Three Gorges Reservoir Region. Hydrology Research, 43(6), 822-832.
Jakada, H., & Chen, Z. (2020). An approach to runoff modelling in small karst watersheds using the SWAT model. Arabian Journal of Geosciences, 13).8
Jimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., & Pulido-Velazquez, D. (2018). A Comparison of SWAT and ANN models for daily runoff simulation in different climatic zones of Peninsular Spain. Water, 10(2), 192.
Jung, C. G., & Kim, S. J. (2018). Assessment of the water cycle impact by the Budyko curve on watershed hydrology using SWAT and CO2 concentrations derived from Terra MODIS GPP. Ecological Engineering, 118, 179-190.
Kalin, L., Isik, S., Schoonover, J. E., & Lockaby, B. G. (2010). Predicting water quality in unmonitored watersheds using artificial neural networks. Journal of Environmental Quality, 39(4), 1429-1440.
Karami, F., & Bayati Khatibi, M. (2019). The Modeling of Soil Erosion andPrioritizing Sediment Production in Sattarkhan Dam Basin Using MUSLE and SWAT Models. Hydrogeomorphology, 5(18), 115-137. (In Persian)
Karki, R., Srivastava, P., Bosch, D. D., Kalin, L., Lamba, J., & Strickland, T. C. (2020). Multi-Variable Sensitivity Analysis, Calibration, and Validation of a Field-Scale SWAT Model: Building Stakeholder Trust in Hydrologic and Water Quality Modeling. Transactions of the ASABE, 63(2), 523-539.
Kavian, A., Bahrami, M., & Rouhani, H. (2014). Performance Evaluation of SWAT Model to estimate surface runoff in Kachik Watershed, Golestan Province. Watershed Managment Research, 27(2-103), 22-32. (In Persian)
Kumar, N., Singh, S. K., Srivastava, P. K., & Narsimlu, B. (2017). SWAT Model calibration and uncertainty analysis for streamflow prediction of the Tons River Basin, India, using Sequential Uncertainty Fitting (SUFI-2) algorithm. Modeling Earth Systems and Environment, 3(1), 30.
Lee, S., Kim, J., & Hur, J. W. (2013). Assessment of ecological flow rate by flow duration and environmental management class in the Geum River, Korea. Environmental earth sciences, 68(4), 1107-1118.
Leye, I., Sambou, S., Sané, M. L., Ndiaye, I., Ndione, D. M., Kane, S., . . . Cissé, M. T. (2020). Hydrological Modeling of an Ungauged River Basin Using SWAT Model for Water Resource Management Case of Kayanga River Upstream Niandouba Dam. Journal of Water Resources and Ocean Science, 9(1), 29-41.
Ma, Q., Xiong, L., Li, Y., Li, S., & Xu, C.-Y. (2018). Partitioning multi-source uncertainties in simulating nitrogen loading in stream water using a coherent, stochastic framework: Application to a rice agricultural watershed in subtropical China. Science of the Total Environment, 618, 1298-1313.
Marin, M., Clinciu, I., Tudose, N. C., Ungurean, C., Adorjani, A., Mihalache, A. L., . . . Cacovean, H. (2020). Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review. Environmental Research, 109330.
Mengistu, A. G., van Rensburg, L. D., & Woyessa, Y. E. (2019). Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. Journal of Hydrology: Regional Studies, 25, 100621.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
Naderi, M., Ildoromi, A., Nouri, H., Aghabeigi Amin, S., & Zeinivand, H. (2018). The Impact of Land Use and Climate Change on Watershed Runoff Using SWAT Model (Case Study: Garin Watershed). Hydrogeomorphology, 4(16), 61-79.
Nathan, R., & McMahon, T. (1990). Identification of homogeneous regions for the purposes of regionalisation. Journal of Hydrology, 121(1-4), 217-238.
Noori, N., & Kalin, L. (2016). Coupling SWAT and ANN models for enhanced daily streamflow prediction. Journal of Hydrology, 533, 141-151.
Oliver, C., Radcliffe, D., Risse, L., Habteselassie, M., Mukundan, R., Jeong, J., & Hoghooghi, N. (2014). Quantifying the Contribution of On‐Site Wastewater Treatment Systems to Stream Discharge Using the SWAT Model. Journal of environmental quality, 43(2), 539-548.
Parajka, J., Merz, R., & Blöschl, G. (2005). A Comparison of Regionalisation Methods for Catchment Model Parameters.
Rafiei Emam, A., Kappas, M., Hoang Khanh Nguyen, L., & Renchin, T. (2016). Hydrological modeling in an ungauged basin of Central Vietnam using SWAT model. Hydrology and Earth System Sciences Discussions, 1-33.
Rojas‐Serna, C., Lebecherel, L., Perrin, C., Andréassian, V., & Oudin, L.(2016).How should a rainfall‐runoff model be parameterized in an almost ungauged catchment? A methodology tested on 609 catchments. Water Resources Research, 52(6), 4765-4784.
Rouhani, H., Willems, P., Wyseure, G., & Feyen, J. (2007). Parameter estimation in semi‐distributed hydrological catchment modelling using a multi‐criteria objective function. Hydrological Processes: An International Journal, 21(22), 2998-3008.
Saha, P. P., Zeleke, K., & Hafeez, M. (2014). Streamflow modeling in a fluctuant climate using SWAT: Yass River catchment in south eastern Australia. Environmental Earth Sciences, 71(12), 5241-5254.
Samuel, J., Coulibaly, P., & Metcalfe, R. A. (2011). Estimation of continuous streamflow in Ontario ungauged basins: comparison of regionalization methods. Journal of Hydrologic Engineering, 16(5), 447-459.
Senent-Aparicio, J., Pérez-Sánchez, J., Carrillo-García, J., & Soto, J. (2017). Using SWAT and Fuzzy TOPSIS to assess the impact of climate change in theheadwaters of the Segura River Basin (SE Spain). Water, 9(2), 149.
Srinivasan, R., Zhang, X., & Arnold, J. (2010). SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Transactions of the ASABE, 53(5), 1533-1546.
Swain, J. B., & Patra, K. C. (2017). Streamflow estimation in ungauged catchments using regionalization techniques. Journal of Hydrology, 554, 420-433.
Tegegne, G., & Kim, Y. O. (2018). Modelling ungauged catchments using the catchment runoff response similarity. Journal of Hydrology, 564, 452-466.
Teshome,F. T., Bayabil, H. K., Thakural, L., & Welidehanna, F. G. (2020). Modeling Stream Flow Using SWAT Model in the Bina River Basin, India. Journal of Water Resource and Protection, 12(03), 203.
Tolson, B. A., & Shoemaker, C. A. (2004). Watershed modeling of the Cannonsville basin using SWAT2000: model development, calibration and validation for the prediction of flow, sediment and phosphorus transport to the Cannonsville Reservoir. Rep. Prepared for Cornell Univ.
Wallace, C. W., Flanagan, D. C., & Engel, B. A. (2018). Evaluating the effects of watershed size on SWAT calibration. Water, 10(7), 898.
Warusavitharana, E. (2020). Semi-distributed parameter optimization and uncertainty assessment for an ungauged catchment of Deduru Oya Basin in Sri Lanka. International Journal of River Basin Management, 18(1), 95-105.
Yadav, M., Wagener, T., & Gupta, H. (2007). Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Advances in water resources, 30.1756-1774, 80.
Yang, X., Magnusson, J., &Xu, C.-Y. (2019). Transferability of regionalization methods under changing climate. Journal of Hydrology, 568, 67-81.
Yang, X., Magnusson, J., Huang, S., Beldring, S., & Xu, C.-Y. (2020). Dependence of regionalization methods on the complexity of hydrological models in multiple climatic regions. Journal of Hydrology, 582, 124357.
Yilmaz, M. U., & Onoz, B. (2020). A Comparative Study of Statistical Methods for Daily Streamflow Estimation at Ungauged Basins in Turkey. Water, 12(2), 459.
Zhang, X., Srinivasan, R., & Hao, F. (2007). Predicting hydrologic response to climate change in the Luohe River basin using the SWAT model. Transactions of the ASABE, 50(3), 901-910. | ||
آمار تعداد مشاهده مقاله: 1,542 تعداد دریافت فایل اصل مقاله: 545 |