تعداد نشریات | 44 |
تعداد شمارهها | 1,304 |
تعداد مقالات | 15,960 |
تعداد مشاهده مقاله | 52,306,829 |
تعداد دریافت فایل اصل مقاله | 15,067,805 |
یک قدم روبهجلو در طراحی مدارات مقیاس نانو بهوسیله هوش ماشین | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 14، دوره 50، شماره 4 - شماره پیاپی 94، اسفند 1399، صفحه 1593-1601 اصل مقاله (760.81 K) | ||
نوع مقاله: علمی-پژوهشی | ||
نویسندگان | ||
جلال رستمی منفرد؛ سید عبدالمجید موسوی* | ||
دانشکده فنی و مهندسی - دانشگاه لرستان | ||
چکیده | ||
یکی از ایدههای امیدبخش برای جایگزینی CMOS در مقیاس نانو ایده اتوماتای سلولی کوانتومی (QCA) است. بر این اساس، انواع مختلفی از مدارات الکترونیکی و منطقی طراحی و ارائه شده است که اساس طراحی آنها گیتهای اکثریت و اینورتر میباشد. در همین راستا، در کار پیشرو یک روش بهینهسازی مؤثر برای کاهش تعداد گیتهای اکثریت و اینورتر در مدارات QCA چند ورودی-چند خروجی ارائه خواهد شد. روش پیشنهادی مبتنیبر برنامهنویسی ژنتیک کارتزین (Cartesian Genetic Programming) بوده که در آن مدار QCA بهصورت دنبالهای از اعداد صحیح بهعنوان ژنوتیپ (genotype) کد خواهد شد تا با اجرای برنامه، فنوتیپ (phenotype) بهینه با تعداد گیتها، نوع گیتها و اتصالات بهینه در خروجی حاصل شود. در ادامه و برای راستیآزمایی، روش پیشنهادی روی 27 تابع منطقی پیادهسازی شده و نتایج گزارش خواهد شد. نتایج آزمونها حاکی از آن است که روش پیشنهادی در مقایسه با روشهای طراحی رقیب در یافتن جواب با کمترین تعداد گیت عملکرد بهتری دارد. بر این اساس، انتظار میرود با استفاده از این روش علاوهبر تعداد گیت کمتر، مدارهای QCA با سطح اشغالی و تأخیر کمتر طراحی شوند. | ||
کلیدواژهها | ||
اتوماتای سلولی کوانتومی؛ برنامهنویسی ژنتیک کارتزین؛ بهینهسازی؛ مدارات کوانتومی؛ گیت اکثریت و اینورتر | ||
مراجع | ||
[1] C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, “Quantum cellular automata,” Nanotechnology, vol. 4, pp. 49–57, 1993. [2] C. S. Lent and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proc. IEEE, vol. 85, no. 4, pp. 541-557, April 1997. [3] W. Liu, S. Srivastava, L. Lu, M. O'Neill and E. E. Swartzlander, “Are QCA cryptographic circuits resistant to power analysis attack?,” IEEE Transactions on Nanotechnology, vol. 11, no. 6, pp. 1239-1251, November 2012. [4] P. Singh and R. Chandel, “Design and performance analysis of digital circuits using carbon nanotube transistors,” In Inventive Communication and Computational Technologies (ICICCT), 2017 International Conference on, pp. 166-171. IEEE, 2017. [5] A. Karimi and A. Rezai, “Improved device performance in CNTFET using genetic algorithm,” ECS Journal of Solid State Science and Technology, 6(1), pp.M9-M12, 2017. [6] A. Karimi and A. Rezai, “A design methodology to optimize the device performance in CNTFET,” ECS Journal of Solid State Science and Technology, 6(8), pp.M97-M102, 2017. [7] حامد نجفعلی زاده و علی اصغر اروجی، «طراحی ساختاری از ترانزیستور ماسفت دو گیتی با به کارگیری دو ماده اکسید هافنیم (HfO2) و سیلیسیم-ژرمانیوم (SiGe) در کانالی از جنس سیلیسیم (DM-DG)»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحات 299-304، 1396. [8] مهسا مهراد و میثم زارعی، «ارائه ساختاری جدید از ترانزیستورهای اثر میدان در مقیاس نانو به منظور بالا بردن قابلیت اطمینان»، مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 3، پاییز 1397. [9] W. Liu, L. Lu, M. O’Neill and E. E. Swartzlander, “A first step toward cost functions for quantum-dot cellular automata designs,” IEEE Transactions on Nanotechnology, vol. 13, no. 3, pp.476-487, May 2014. [10] R. Zhang, K. Walus, W. Wang and G. A. Jullien, “A method of majority logic reduction for quantum cellular automata,” IEEE Transactions on Nanotechnology, vol. 3, no. 4, pp. 443-450, December 2004. [11] Z. Huo, Q. Zhang, S. Haruehanroengra and W. Wang, “Logic optimization for majority gate-based nanoelectronic circuits,” Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1307–1310, 2006. [12] P. Wang, M. Y. Niamat, S. R. Vemuru, M. Alam and T. Killian, “Synthesis of majority/minority logic networks,” IEEE Transactions on Nanotechnology, vol. 14, no. 3, pp.473-483, 2015. [13] M. R. Bonyadi, S. M. R. Azghadi, N. M. Rad, K. Navi and E. Afjei, “Logic optimization for majority gate-based nanoelectronic circuits based on genetic algorithm,” Proceedings of the IEEE International Conference on Electrical Engineering, pp. 1-5, April 2007. [14] M. Houshmand, S. H. Khayat and R. Rezaei, “Genetic algorithm based logic optimization for multi-output majority gate-based nano-electronic circuits,” Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems, pp. 584–588, November 2009. [15] R. Rezaee, M. Houshmand and M. Houshmand, “Multi-objective optimization of QCA circuits with multiple outputs using genetic programming,” Genet Program Evolvable Mach, pp. 95-118, 2013. [16] Z. Beiki, M. Soryani and S. Mirzakuchaki, “Cell number optimization for quantum cellular automata based on genetic algorithm", Proceedings of the 3rd International Conference on Electronic Computer Technology, pp. 370–373, April 2011. [17] M. A. Tehrani, K. Navi and A. Kia-kojoori, “Multi-output majority gate-based design optimization by using evolutionary algorithm,” Swarm and Evolutionary Computation, vol. 10, pp. 25-30, 2013. [18] M. H. Mahalat, M. Goswami, A. Mondal and B. Sen, “Synthesis and optimization of multi-objective multi-output QCA circuit using genetic algorithm,” arXiv preprint arXiv: 1705.04099, 2017. [19] G. Khademi, S. Soltani Fahraj, M. T. Moradgholi and M. Houshmand, “Logic optimization of QCA circuits using Ant colony optimization,” Proceedings of the 22rd Iranian Conference on Electrical Engineering, May 2014. [20] A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent and G. L. Snider, “Realization of a functional cell for quantum dot cellular automata,” Science, vol. 277, pp. 928-930, August 1997. [21] I. E. Arani and A. Rezai, “Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology,” Journal of Computational Electronics, vol. 17, no. 4, pp.1771-1779, 2018. [22] P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” Journal of Applied Physics, vol. 75, no. 3, pp. 1818–1825, 1994. [23] H. Rashidi, A. Rezai and S. Soltany, “High-performance multiplexer architecture for quantum-dot cellular automata,” Journal of Computational Electronics, vol. 15, no. 3, pp.968-981, 2016. [24] H. Cho and E. E. Swartzlander, “Adder and multiplier design in quantum-dot cellular automata,” IEEE Trans. Computers, vol. 58, No. 6, pp. 721–727, June 2009. [25] C. S. Lent, M. Liu and Y. Lu, “Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling,” Nanotechnology, vol. 17, pp. 4240-4251, 2006. [26] J. F. Miller, “An empirical study of the efficiency of learning Boolean functions using a Cartesian genetic programming approach,” Proc. Genetic and Evolutionary Computation Conference, pp. 1135–1142, 1999. [27] J. F. Miller and P. Thomson, “Cartesian genetic programming,” Proc. European Conference on Genetic Programming, vol. 1802, pp. 121–132, 2000. [28] J. F. Miller, Cartesian Genetic Programming, Springer, Berlin Heidelberg, 2011. [29] I. Rechenberg, Evolutionsstrategie-Optimierung technischer Systeme nach Prinzipien der Biologischen Evolution, Ph.D. Dissertation, Technical University of Berlin, Germany, 1971. | ||
آمار تعداد مشاهده مقاله: 383 تعداد دریافت فایل اصل مقاله: 352 |