[1]
|
B. Xue, Particle Swarm Optimisation for Feature Selection in Classification, ph.D. Thesis, Victoria University, Wellington, 2014.
|
[2]
|
R. Kohavi and D. Sommerfield, “Feature subset selection using the wrapper method: overfitting and dynamic search space topology,“ KDD-95 Proceedings, pp. 192-197, 1995.
|
[3]
|
M. Dash and H. Liu, “Feature selection for classification,“ Intelligent Data Analysis, vol. 1, no. 3, pp. 131-156, 1997.
|
[4]
|
G. Chandrashekar and F. Sahin, “A survey on feature selection methods,“ Computers and Electrical Engineering, vol. 40, no. 1, pp. 16-28, 2014.
|
[5]
|
C. S. Yang, L. Y. Chuang, C. H. Ke and C. H. Yang, “Boolean binary particle swarm optimization for feature selection,“ 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2093-2098, 2008.
|
[6]
|
J. Kennedy and R. Eberhart, “Particle swarm optimization,“ Neural Networks, 1995. Proceedings., IEEE International Conference on, vol. 4, pp. 1942-1948, 1995.
|
[7]
|
Y. Shi and R. Eberhart, “A modified particle swarm optimizer,“ Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, pp. 69-73, 1998.
|
[8]
|
X. Wang, J. Yang, X. Teng, W. Xia and R. Jensen, “Feature selection based on rough sets and particle swarm optimization,“ Pattern Recognition Letters, vol. 28, no. 4, pp. 459-471, 2007.
|
[9]
|
C. L. Huang and J. F. Dun, “A distributed PSO–SVM hybrid system with feature selection and parameter optimization,“ Applied Soft Computing, vol. 8, no. 4, pp. 1381-1391, 2008.
|
[10]
|
L. Y. Chuang, H. W. Chang, C. J. Tu and C. H. Yang, “Improved binary PSO for feature selection using gene expression data,“ Computational Biology and Chemistry, vol. 32, no. 1, pp. 29-38, 2008.
|
[11]
|
M. A. Esseghir, G. Goncalves and Y. Slimani, “Adaptive particle swarm optimizer for feature selection,“ Intelligent Data Engineering and Automated Learning-IDEAL 2010, pp. 226-233, 2010.
|
[12]
|
L. Y. Chuang, S. W. Tsai and C. H. Yang, “Improved binary particle swarm optimization using catfish effect for feature selection,“ Expert Systems with Applications, vol. 38, no. 10, pp. 12699-12707, 2011.
|
[13]
|
A. Unler, A. Murat and R. B. Chinnam, “mr2PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification,“ Information Sciences, vol. 181, no. 20, pp. 4625-4641, 2011.
|
[14]
|
S. M. Vieira, L. F. Mendonça, G. J. Farinha and J. M. Sousa, “Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients,“ Applied Soft Computing, vol. 13, no. 8, pp. 3494-3504, 2013.
|
[15]
|
P. Ghamisi and J. A. Benediktsson, “Feature selection based on hybridization of genetic algorithm and particle swarm optimization,“ IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 2, pp. 309-313, 2015.
|
[16]
|
S. Gunasundari and S. Janakiraman, “A hybrid PSO-SFS-SBS algorithm in feature selection for liver cancer data,“ Power Electronics and Renewable Energy Systems, pp. 1369-1376, 2015.
|
[17]
|
B. Xue, M. Zhang and W. N. Browne, “Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms,“ Applied Soft Computing, vol. 18, pp. 261-276, 2014.
|
[18]
|
M. Lichman, UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Sciences, 2013.
|
[19]
|
A. Statnikov, C. F. Aliferis and I. Tsamardinos, GEMS: Gene Expression Model Selector [http://www.gems-system.org], 2005.
|
|