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Analysis of non-hyperbolic equilibria for Caputo fractional system
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Abstract
In this manuscript, a center manifold reduction of the flow of a non-hyperbolic equilibrium point on a planar
dynamical system with the Caputo derivative is proposed. The stability of the non-hyperbolic equilibrium point
is shown to be locally asymptotically stable, under suitable conditions, by using the fractional Lyapunov direct
method.
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1. Introduction

Dynamical systems are an effective method for modeling the evolution of processes. In fact, they are wildly used
in, and have formed, the foundation of Mathematical Biology. They have proven to be effective in determining the
qualitative behavior of disease models or ecological models. Traditionally, a wide array of problems in mathematical
biology are modeled using a first order dynamical system, where the classical (first derivative) is employed. In recent
years the Caputo fractional derivative, a derivative of fractional order, has gained popularity in the application of
Mathematical Biology see [1, 2, 15, 16]. The Caputo fractional order derivative is considered to be more effective, as
opposed the classical order, in modeling an evolution process. Indeed, the classical derivative is local, that is to say,
it tells you information of the change of the process in a neighborhood of a point in time, as opposed to the Caputo
fractional order derivative which captures the change in its entire domain. This is considered to be a ”memory effect”
of the Caputo derivative.

Though, the Caputo dynamical systems (dynamical systems employing the Caputo derivative) are much more
difficult to analyze, and determining the qualitative behavior is not as straightforward as the classical derivative.
Considerable amount of work has been done in the analysis of the Caputo derivative operator, see for example [3–5, 9–
11, 13, 14, 18]. Furthermore, in [6] the authors provided a linearization theorem that shows that the solutions in a
neighborhood of a hyperbolic equilibrium point, translated to the origin, are topologically equivalent to the behavior
of the solutions of the linear system at the origin. However, if the equilibrium point if non-hyperbolic, then there is
no method, currently, in the literature to determine the qualitative behavior of the non-linear system near it.

In this manuscript we only consider the fractional order α ∈ (0, 1). We propose a method to determine the qualitative
behavior of a planar Caputo fractional system in a neighborhood of a non-hyperbolic equilibrium point, with one-zero
eigenvalue and the other eigenvalue being negative. The results in [17] show that a center manifold does exist for a
Caputo fractional system, and that the flow can be reduced accordingly, see Lemma 3.5. We show that the flow of
the planar system can be determined, in a neighborhood of the non-hyperbolic equilibrium point, by the following
expression
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cDα
0 x(t) = amxm + ...,

where cDα
0 , is the Caputo derivative operator, α ∈ (0, 1), and x ∈ R. It is shown using the results in [7] that, if

m ≥ 2, and am < 0, then the non-hyperbolic equilibrium point is locally asymptotically stable, see Theorems 4.1 and
4.3. These results are new, and it is, to the authors best knowledge, they are the only results that provide a method
of dealing with the qualitative behaviour of a planar Caputo system with a non-hyperbolic equilibrium point.

2. Preliminaries

Definition 2.1. Let α ≥ 0. The operator Jα
a , defined on L1[a, b] by

Jα
a f(t) =

1

Γ (α)

∫ t

a

(t− x)α−1f(x)dx (2.1)

for a ≤ t ≤ b, is called the Riemann-Liouville fractional integral operator of order α. Here and in what follows Γ (·) is
the Gamma function.

Remark 2.2. For α = 0, we set J0
a := I, the identity operator.

Definition 2.3. Let 0 < α < 1. Then, we define the Caputo fractional differential operator cDα
a as

cDα
a f(t) := J1−α

a f ′(t) (2.2)
whenever f, f ′ ∈ L1[a, b].

Definition 2.4. Let 0 < α < 1. Then, we define the Riemann-Liouville fractional differential operator Dα
a as

Dα
a f(t) :=

(
J1−α
a f(t)

)′

(2.3)

whenever f ∈ L1[a, b].

Definition 2.5. Let α > 0. The function Eα, defined by

Eα(z) =

∞∑
j=0

zj

Γ (αj + β)
, (2.4)

whenever the series converges is called the Mittag-Leffler function.

3. Local Stability Theory of Planar Fractional System

In this section we present some background theory, without loss of generality we can take the equilibrium point to
be the origin (0, 0), where an equilibrium point is considered to be a constant solution. Consider the Caputo planar
system below{

cDα
0 x(t) = f(x, y),

cDα
0 y(t) = g(x, y)

(3.1)

subject to the initial condition:

(x(0), y(0)) = (x0, y0)

where α ∈ (0, 1), f, g ∈ C1(R2), and x, y are assumed to be absolutely continuous.
Since, f, g ∈ C1(R2), it is well known that for any (x0, y0) ∈ R2 the initial value problem (3.1) has a unique solution,

see [12].
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We denote by A(x, y) the Jacobian matrix of f and g at (x, y), that is,

A(x, y) =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(3.2)

and by |A(x, y)| and tr(A(x, y)) the determinant and trace of A(x, y), respectively.

Definition 3.1. A point (x∗, y∗) ∈ R2 is called an equilibrium point of (3.1) if f(x∗, y∗) = g(x∗, y∗) = 0.

Below we define the linearized system of (3.1) about the equilibrium point (x∗, y∗).

Definition 3.2. Let A be the matrix defined in (3.2) is evaluated at the equilibrium point (x∗, y∗). Then,
cDα

0X = A∗X, (3.3)
where X = (x, y)T , is the linearization of system (3.1) at the equilibrium point (x∗, y∗).

Below we give the definition of the Mittag-Leffler stability, which a special case of the definition found in [7].

Definition 3.3. The solution of (3.1) is said to be Mittag-Leffler stable if

|x(t)| ≤
(
mEα(−λtα)

) 1
a

,

where α ∈ (0, 1), λ > 0, m(0) = 0, m ≥ 0.

Lemma 3.4. Let x = 0 be an equilibrium point of (3.1) and D ⊂ R be a domain containing the origin. Let
V : [0,∞)× D → R

be a continuously differentiable functions and locally Lipschitz with respect to x such that

α1∥x∥a ≤ V (t, x(t)) ≤ α2∥x∥ab, (3.4)

cDα
0 V (t, x(t)) ≤ −α3∥x∥ab, (3.5)

where t ≥ 0, x ∈ D, α ∈ (0, 1), α1, α2, α3, a, and b are arbitrary positive constants. Then, x = 0 is Mittag-leffler
stable with x satisfying

|x(t)| ≤
[
mEα

(
− α3

α2
tα
)] 1

a

,

where m = V (0,x(0))
α1

≥ 0, and m(0) = 0 if and only if x0 = 0, .

The following Lemma, and a proof can be found in [17].

Lemma 3.5. Let f, g ∈ Cr(E) where E is an open subset of R containing the origin and r = 1, 2, 3, ..., . Suppose that
f(0) = 0 and that Df(0) has 1 eigenvalue with zero real parts and 1 eigenvalue with negative real parts. The system
(3.1) can be written in the diagonal form{

cDα
0 x(t) = F (x, y),

cDα
0 y(t) = −y +G(x, y),

(3.6)

where α ∈ (0, 1), (x, y) ∈ R2, and F (0) = G(0) = 0, DF (0) = DG(0) = 0; furthermore, there exists a δ > 0 and a
function h ∈ Cr

α(Nδ(0)) that defines the local center manifold

W c
loc := {(x, y) ∈ Rc × Rs : y = h(x) for |x| < δ},

and satisfies
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cDα
0 h(x)F (x, h(x)) + h(x)−G(x, h(x)) = 0,

for |x| < δ; and the flow on the center manifold W c(0) is defined by the system of differential equations

cDα
0 x(t) = F (x, h(x)),

for all x ∈ Rc with |x| < δ.

4. Stability of Non-Hyperbolic Equilibria

In this section our main results are stated. Similairly, as in section 3, the equilibrium point is assumed to be at
the origin. The Lyapunov direct method is used to determine the stability of the non-hyperbolic equilibrium point.
Where the extension of the Lyapunov direct method to fractional derivatives of the Caputo type can be found in [7].

Theorem 4.1. Let f, g ∈ Cr(E) where E is an open subset of R containing the origin, and r ∈ N. Suppose that
f(0, 0), and g(0, 0) = 0, and that f, g are non-linear in x and y. Let the origin (0, 0) be a non-hyperbolic equilibrium
point of (3.1) with only one eigenvalue of (3.3) having a zero real part, and the other eigenvalue being negative. Then,
the flow on the center manifold W c can be given by

cDα
0 x(t) = amxm + ..., (4.1)

where m ≥ 2, and am ̸= 0.

Proof. Since, the origin is a non-hyperbolic equilibrium point of (3.1), with one eigenvalue of (3.3) having a zero real
part, and the other being negative, then by Lemma 3.5 and (3.6), we have{

cDα
0 x(t) = F (x, y),

cDα
0 y(t) = −y +G(x, y),

(4.2)

where (x, y) ∈ R2 and F and G are both nonlinear in x and y. Thus, F (0, 0) = G(0, 0) = 0, and by Theorem 3.5,
we have that for each r = 1, 2, 3, ..., there exists a δ > 0 and a function h ∈ Cr

α(Nδ(0)) that defines the local center
manifold

W c
loc := {(x, y) ∈ Rc × Rs : y = h(x) for |x| < δ},

and satisfies

cDα
0 h(x)F (x, h(x)) + h(x)−G(x, h(x)) = 0,

for |x| < δ. Then, if we take r to be sufficiently large, we can approximate the function h by

h(x) = a2x
2 + a3x

3 +O(x4),

in a neighbourhood of the origin, where O(x4) are polynomial terms with degree 4 or higher. It will become self
evident, from (4.3) below, why a0 = a1 = 0 are taken. Since h(x) = a2x

2 + a3x
3 +O(x4), then

cDα
0 h(x) = a2cD

α
0 x

2 + a3cD
α
0 x

3 + cDα
0O(x4)

= a2J
α
0 (x

2)′ + a3J
α
0 (x

3)′ + Jα
0 O((x4)′)

= 2a2J
α
0 x+ 3a3J

α
0 x

2 + 4a4J
α
0 x

3 + ...

= 2a2
Γ(2)

Γ(3)
x2 + 3a3

Γ(3)

Γ(4)
x3 + 4a4

Γ(4)

Γ(5)
x4 + ....

Hence we obtain,



302 MARVIN HOTI

(
2a2

Γ(2)

Γ(3)
x2 + 3a3

Γ(3)

Γ(4)
x3 + 4a4

Γ(4)

Γ(5)
x4 + ...

)
F (x, h(x)) + h(x)−G(x, h(x)) = 0. (4.3)

Note that, h is approximated as a power series expansion near the origin, with polynomial terms of degree at least
2. Then, equation (4.3) can be solved by setting the coefficients of the polynomial terms with like powers to zero.
Thus, from (4.3) it follows that setting the last two terms in the algebraic expression to zero is sufficient. Namely,

h(x)−G(x, h(x)) = 0. (4.4)

Therefore, we obtain that h(x) = G(x, h(x)). Since, G(x, h(x)) contains polynomial terms of order 2 or greater,
then the coefficients a0 = a1 = 0, and there exists i = 2, 3, ..., such that ai ̸= 0, and

h(x) = aix
i +O(xi+1). (4.5)

Lastly, from Lemma 3.5, the flow on the center manifold is given by

cDα
0 x(t) = F (x, h(x)) = F (x, aix

i +O(xi+1)).

Then, from above it is easy to verify that

cDα
0 x(t) = amxm + ...,

where m is the smallest power of the polynomial terms. The result follows. □

Remark 4.2. Theorem 4.1 is new. It shows that the flow in a neighbourhood of the non-hyperbolic equilibrium (0, 0)
can be studied by reducing system (3.1) to the form of

cDα
0 x(t) = amxm + ...,

where x ∈ R. Then, instead of determining the stability of the non-linear system (3.1), it is sufficient to determine
the stability of the flow on the Center manifold W c(0), given by the above expression. Furthermore, if an equilibrium
point of (3.1) is not on the origin, then it can simply be translated to the origin.

Below we give a result to determine the behaviour of the flow on the Center manifold, W c(0), and ultimately
stability of the non-hyperbolic equilibrium point (0, 0).

Theorem 4.3. Let the conditions in Theorem 4.1 hold. If m is odd, am < 0, and x0 ̸= 0, where am is given in
(4.1), then the origin (0, 0) is locally asymptotically stable; If m is even, am < 0 and x0 > 0, then the origin is locally
asymptotically stable.

Proof. We prove the case when m is odd, as the case when m is even followed in the exact same manner. We proceed
to prove the result for the case when m is odd. By Theorem (4.1), we have that the flow of the non-hyperbolic
equilibrium point can be described by

cDα
0 x(t) = amxm + ...,

where the first term amxm dominates the behaviour of the flow since we are in a neighborhood of the origin (0, 0).
Thus, we study the behaviour of

cDα
0 x(t) = amxm, (4.6)

near the origin (0, 0). Let V (x(t)) = x(t)m+1 be the Lyapunov candidate function. Then, V̇ (x(t)) = (m +
1)xm(t)ẋ(t). Let ϵ0 > 0 be a positive constant. Then,
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∫ t+ϵ0

t

V̇ (x(τ))dτ =

∫ t+ϵ0

t

(m+ 1)xm(τ)ẋ(τ)dτ (4.7)

= xm+1(t+ ϵ0)− xm+1(t).

Applying, the Riemann-Liouville derivative to (4.6), yields

ẋ(t) = −D1−α
t xm(t)

= − 1

Γ(α)

(∫ t

0

(t− τ)α−1xm(τ)dτ

)′

= − 1

Γ(α)

(
xm(0)

(t− τ)1−α

)
t=τ

+
1− α

Γ(α)

∫ t

0

(t− τ)α−2xm(τ)dτ.

It then follows from x0 ̸= 0, and x = 0 being the equilibrium point that x0x(t) > 0 for all t ∈ (0,∞). Furthermore,
since am < 0, then x(t) ≤ x0 for all t ∈ [0,∞). Thus, x0x(t) ≤ x2

0 for all t ∈ [0,∞), where the equality holds for t = 0.
Then,

x0ẋ(t) ≤ −xm+1(0)tα−1

Γ(α)
< 0.

Indeed,

x0ẋ(t) = − 1

Γ(α)

(
xm+1(0)

(t− τ)1−α

)
t=τ

+
1− α

Γ(α)

∫ t

0

(t− τ)α−2x0x(τ)x
m−1(τ)dτ

≤ − 1

Γ(α)

(
xm+1(0)

(t− τ)1−α

)
t=τ

+
(1− α)x2+i

0

Γ(α)

∫ t

0

(t− τ)α−2xm−1−i(τ)dτ,

where 0 ≤ i ≤ m − 1. Note that, the second line in the above can be repeated, by bringing in an x0 term into the
integral term, until xm−1−i(τ) = 1 or m− 1− i = 0, thus

x0ẋ(t) ≤ − 1

Γ(α)

(
xm+1(0)

(t− τ)1−α

)
t=τ

+
(1− α)x

2+(m−1)
0

Γ(α)

∫ t

0

(t− τ)α−2dτ

= − 1

Γ(α)

(
xm+1(0)

(t− τ)1−α

)
t=τ

+
(1− α)xm+1

0

Γ(α)

∫ t

0

(t− τ)α−2dτ

= −xm+1(0)tα−1

Γ(α)
.

Then, from (4.7), we have

∫ t+ϵ0

t

V̇ (x(τ))dτ =

∫ t+ϵ0

t

(m+ 1)xm(τ)ẋ(τ)dτ

= xm+1(t+ ϵ0)− xm+1(t) < 0.

Hence, V is a decreasing function.
Next, we show limt→∞ V (x(t)) = 0. Indeed, suppose that there exists a positive constant δ0 > 0 such that x0x(t) ≥

δ0 for all t ≥ 0, we have
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cDα
0 V = (m+ 1)J1−α

0 xmẋ ≤ (m+ 1)δm0
xm+1
0

J1−α
0 x0ẋ

≤ − (m+ 1)δm0
Γ(α)

J1−α
0 tα−1

= − (m+ 1)δm0
Γ(α)Γ(1− α)

∫ t

0

(t− x)−αxα−1dx

= − (m+ 1)δm0
Γ(α)Γ(1− α)

∫ 1

0

[t(1− u)]−α(tu)α−1tdu

= − (m+ 1)δm0
Γ(α)Γ(1− α)

∫ 1

0

uα−1(1− u)−α

= − (m+ 1)δm0
Γ(α)Γ(1− α)

Γ(α)Γ(1− α)

Γ(1)
= −(m+ 1)δm0

= − (m+ 1)δm0 xm+1
0

xm+1
0

≤ −α3x
m+1 = −α3V.

Where the substitution u := u(x) = x
t was used, and α3 =

(m+1)δm0
xm+1
0

> 0. It follows from Lemma 3.4 that
limt→∞ V (x(t)) = limt→∞ x(t)m+1 = 0, contradicting the assumption that x0x(t) ≥ δ0. Thus, the equilibrium point
x = 0 is locally asymptotically stable, and the result follows. □

Remark 4.4. The case for m being even follows in the same manner, though we need to restrict x0 > 0, to ensure that
(3.4) is satisfied. Indeed, if m ≥ 2 is even and x0 < 0, choosing the Lyapunov candidate function to be V (t, x) = xm+1,
as above Then, V (0, x0) = xm+1

0 < 0, and (3.4) is not satisfied.

Below we provide an example illustrating Theorem (4.1), and Theorem (4.3), and FDE12 solver is used to
generate the numerical simulation.

Example 4.1. Consider the following planar Caputo system

{
cDα

0 x(t) = −xy,

cDα
0 y(t) = −y + x2,

(4.8)

then the origin (0, 0) is locally asymptotically stable.

Proof. The linearized part of (4.8) is given by

A(x, y) =

(
−y −x
2x −1

)
. (4.9)

It is clear to see that for A(0, 0) that the determinant |A(0, 0)| = 0, and tr(A(0, 0)) = −1 < 0. Thus, we have that the
eigenvalues are 0 and −1. Furthermore, (4.8) is already in the form of (3.6). By (4.4) we have that the local center
manifold can be given by y(x) = h(x) = x2. and by Theorem 4.1, we have that the flow on the center manifold is
given by

cDα
0 x(t) = −x3,

where m = 3, and a3 = −1 < 0. Then, by Theorem 4.3, we have that the origin (0, 0) is locally asymptotically stable.
□
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Figure 1. Trajectories of (4.8) illustrating that the origin (0, 0) is locally asymptotically stable, with
(x0, y0) = (−0.15, 0.5) and (x0, y0) = (0.15, 0.5). Here α = 0.98.

5. Conclusion

In this manuscript a method of determining the qualitative behavior of a non-hyperbolic equilibrium point of a
non-linear planar system with the Caputo derivative is shown. Using Theorem 4.1, it is shown that, under suitable
conditions, the flow on the center manifold W c could be reduced to

cDα
0 x(t) = amxm + ..., (5.1)

where m ≥ 2, and am ̸= 0. Furthermore, by using the Lyapunov direct method, it is shown, in Theorem 4.3, that
(5.1) could be locally asymptotically stable. This type of result is new. Additionally, in this paper we require (3.3) to
have one eigenvalue with a negative real part. Future work could consider the case when (3.3) has an eigenvalue with
a zero real part, and no eigenvalues with a negative real part. The methods introduced in this paper would provide a
strong insight into how to proceed in this direction.
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