تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,857 |
تعداد دریافت فایل اصل مقاله | 15,217,415 |
تخمین قابلیت اطمینان فروریزش سازه با استفاده از روش سطح پاسخ و هیبرید شبکههای عصبی- فازی با الگوریتمهای فراابتکاری | ||
نشریه مهندسی عمران و محیط زیست دانشگاه تبریز | ||
مقاله 3، دوره 52.2، شماره 107، شهریور 1401، صفحه 27-45 اصل مقاله (2.41 M) | ||
نوع مقاله: مقاله کامل پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jcee.2021.38342.1909 | ||
نویسندگان | ||
محمدامین بیاری1؛ ناصر شابختی2؛ اسماعیل ایزدی زمان آبادی* 1 | ||
1دانشکده مهندسی عمران، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران | ||
2دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران | ||
چکیده | ||
به دلیل اهمیت اثرات فروریزش، تمرکز اصلی این تحقیق بر تخمین قابلیت اطمینان فروریزش در سازه های پیچیده است که فرم صریح تابع شرایط حدی برای آنها وجود ندارد، در این تحقیق، پارامترهای مربوط به منحنی ممان- چرخش اصلاحشده ایبارا (Ibarra)، مدینا (Medina) و کراوینکلر (Krawinkler) مربوط به مفاصل پلاستیک متمرکز در تیرها و ستون ها در سازه های قاب خمشی به عنوان عدم قطعیت های شناختی در نظر گرفته شده است. با توجه به عدم وجود تابع حالت حدی صریح در تعیین قابلیت اطمینان فروریزش سازه، ابتدا با استفاده از روش های شبیه سازی، 105 نمونه بر مبنای مشخصات آماری و توزیع احتمالاتی عدم قطعیت ها با در نظرگرفتن همبستگی بین آنها، تولید می شود و با لحاظ کردن 44 شتابنگاشت و استفاده از تحلیل های دینامیکی افزایشی (IDA) پاسخ فروریزش سازه برای نمونه های تولیدی به دست می آید و تابع حالت حدی ضمنی برای سازه ایجاد می شود. برای تولید تابع حالت حدی صریح از روش سطح پاسخ استفاده شده و سپس با به کارگیری روش های مرتبه اول، مرتبه دوم قابلیت اطمینان و روش مونت کارلو (Monte Carlo)، قابلیت اطمینان فروریزش سازه تخمین زده می شود. در مرحله بعد با استفاده از تابع حالت حدی ضمنی تولید شده، با بهکارگیری شبکه های عصبی- فازی هیبرید شده با الگوریتم های فراابتکاری در ترکیب با روش مونت کارلو قابلیت اطمینان فروریزش سازه تخمین زده می شود. نتایج نشان می دهند که با استفاده از روش سطح پاسخ و هیبرید شبکه های عصبی- فازی با الگوریتم های فراابتکاری میتوان قابلیت اطمینان فروریزش سازه را با خطای ناچیز و دقت قابلقبول تخمین زد. | ||
کلیدواژهها | ||
قابلیت اعتماد فروریزش؛ تابع شرایط حدی ضمنی؛ تابع شرایط حدی صریح؛ روش سطح پاسخ؛ شبکه عصبی فازی | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Achintya H, “Recent developments in reliability-based civil engineering”, World Scientific, 2006. Andonie R, “Extreme data mining: Inference from small datasets”, International Journal of Computers Communications and Control, 2010, 5 (3), 280-291. Bayari MA, Shabakhty N, Izadi Zaman Abadi E, “Collapse fragility curves development with considering of modeling uncertainties using LHS simulation and artificial neural network”, Journal of Structural and Construction Engineering, 2020. Bayari MA, Shabakhty N, Izadi Zaman Abadi E, “Estimating structural collapse responses considering modeling uncertainties using artificial neural networks and response surface method”, Amirkabir Journal of Civil Engineering, 2020. Beheshti-Aval SB, Khojastehfar E, Noori M, Zolfaghari M, “A comprehensive collapse fragility assessment of moment resisting steel frames considering various sources of uncertainties”, Canadian Journal of Civil Engineering, 2015, 43 (2), 118-131. Bucher C, Most T, “A comparison of approximate response functions in structural reliability analysis”, Probabilistic Engineering Mechanics, 2008, 23 (2-3), 154-163. Cantú-Paz E, and Kamath C, “An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems”, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2005, 35 (5), 915-927. Cardoso JB, de Almeida JR, Dias JM, Coelho PG, “Structural reliability analysis using Monte Carlo simulation and neural networks”, Advances in Engineering Software, 2008, 39 (6), 505-513. DAshti R, Sattari Mt, Nourani V, “Performance evaluation of differential evolution algorithm in optimum operating of Eleviyan single-reservoir dam system”, Journal of Protection of water and soil resources, 2017, 6 (3), 61-76. Deng J, Gu D, Li X, Yue ZQ, “Structural reliability analysis for implicit performance functions using artificial neural network”, Structural Safety, 2005, 27 (1), 24-48. Der Kiureghian A, Ditlevsen O, “Aleatory or epistemic? Does it matter?”, Structural Safety, 2009, 31 (2), 105-112. Eberhart R, Kennedy J, “A new optimizer using particle swarm theory”, Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1995. FEMA 350, “Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings”, Federal Emergency Management Agency, Washington, DC, 2000. FEMA-P695, “Quantification of Building Seismic Performance Factors”, Federal Emergency Management Agency, Washington, DC, 2009. Fiessler B, Rackwitz R, Neumann H, “Quadratic limit states in structural reliability”, Journal of the Engineering Mechanics division, 1979, 105 (4), 661-676. Gholizadeh S, Aligholizadeh V, “Reliability‐based optimum seismic design of RC frames by a metamodel and metaheuristics”, The Structural Design of Tall and Special Buildings, 2020, 28 (1), e1552. Goldberg DE, Korb B, Deb K, “Messy genetic algorithms: Motivation”, analysis, and first results. Complex systems,1989, 3 (5), 493-530. Haselton CB, Liel, AB, Lange ST, Deierlein GG, “Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings,” Report No. PEER 2007/03, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 2008. Hasofer, AM, Lind NC, “Exact and invariant second-moment code format”, Journal of the Engineering Mechanics division, 1974, 100 (1), 111-121. Huang J, Griffiths D, “Observations on FORM in a simple geomechanics example”, Structural Safety, 2011, 33 (1), 115-119. Ibarra LF, Krawinkler H, “Global collapse of frame structures under seismic excitations”, Report No.152, Pacific Earthquake Engineering Research Center Berkeley, CA, 2005. Jang JS, “ANFIS: adaptive-network-based fuzzy inference system”, IEEE transactions on systems, man, and cybernetics, 1993, 23 (3), 665-685. Jaramillo JH, Bhadury J, Batta R, “On the use of genetic algorithms to solve location problems”, Computers and Operations Research, 2002, 29 (6), 761-779. Khojastehfar E, Beheshti-Aval SB, Zolfaghari MR, Nasrollahzade K, “Collapse fragility curve development using Monte Carlo simulation and artificial neural network”, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2014, 228 (3), 301-312. Li Q, Ellingwood BR, “Damage inspection and vulnerability analysis of existing buildings with steel moment-resisting frames”, Engineering Structures, 2008, 30 (2), 338-351. Liel AB, Haselton CB, Deierlein GG, Baker JW, “Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings”, Structural Safety, 2009 31 (2), 197-211. Melchers RE, “Structural Reliability Analysis and Prediction”, John Wiley & Sons, 1999. Metropolis N, Ulam S, “The monte carlo method”, Journal of the American statistical association, 1949, 44 (247), 335-341. Mitchell M, “An introduction to genetic algorithms”, MIT press, 1998. Naess A, Leira B, Batsevych O, “Reliability analysis of large structural systems”, Probabilistic Engineering Mechanics, 2012, 28, 164-168. Nowak A, Collins K, “Reliability of Structures”, McGraw-Hill, New York, 2000. Nowak AS, Collins, KR, “Reliability of structures”, CRC Press, 2012. Panagiotakos TB, Fardis MN, “Deformations of reinforced concrete members at yielding and ultimate”, Structural Journal, 2001, 98 (2), 135-148. Park J, Towashiraporn P, “seismic damage assessment of railway bridges using the response-surface statistical model”, Structural Safety, 2014, 47, 1-12. Pourreza F, Mousazadeh M and Basim MC, “An efficient method for incorporating modeling uncertainties into collapse fragility of steel structures”, Structural Safety, 2020. Rackwitz R, Flessler B, “Structural reliability under combined random load sequences”, Computers and Structures, 1978, 9 (5), 494-489. Rajeev P, Tesfamariam S, “Seismic fragilities for reinforced concrete buildings with consideration of irregularities”, Structural Safety, 2012, 39, 1-13. Rani P, Mahapatra G, “A neuro-particle swarm optimization logistic model fitting algorithm for software reliability analysis”, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability”, 2019, 233 (6), 958-971. Rezaei F, Gerami M, Naderpour H, “Evaluation of seismic reliability of steel moment resisting frames rehabilitated by concentric braces with probabilistic models”, Journal of Structural and Construction Engineering, 2017, 4 (2), 5-18. Shi Y, Eberhart RC, “Parameter selection in particle swarm optimization”, The International Conference On Evolutionary Programming, 591-600, 1998. Socha K, Dorigo M, “Ant colony optimization for continuous domains”, European Journal of Operational Research, 2008, 185 (3), 1155-1173. Stewart JP, Chiou, SJ, Bray, JD, Graves RW, Somerville PG, Abrahamson NA, “Ground motion evaluation procedures for performance-based design”, Soil Dynamics and Earthquake Engineering, 2002, 22 (9-12), 765-772. Storn R, Price K, “Differrential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces”, Technical Report. Retrieved from,1995. Sugeno M, Yasukawa T, “A fuzzy-logic-based approach to qualitative modeling”, IEEE Transactions on fuzzy systems, 1993, 1 (1), 7. Tung YK, Yen BC, “Hydrosystems engineering uncertainty analysis”, McGraw-Hill New York, 2005. | ||
آمار تعداد مشاهده مقاله: 761 تعداد دریافت فایل اصل مقاله: 376 |