تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,561 |
تعداد دریافت فایل اصل مقاله | 15,213,661 |
تحلیل اثر هندسه جاذب گرمایی با بکارگیری مبردهای نانوسیال و مواد تغییر فاز دهنده میکروکپسوله بر عملکردهای پنل های فتوولتایی-گرمایی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 46، دوره 51، شماره 4 - شماره پیاپی 97، بهمن 1400، صفحه 413-422 اصل مقاله (782.21 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2022.12264 | ||
نویسندگان | ||
مهبد معین جهرمی1؛ سعید رحمانیان* 1؛ صالح برزگرلو کوهی2 | ||
1استادیار، گروه مهندسی مکانیک، دانشگاه جهرم، جهرم، ایران | ||
2دانش آموخته کارشناسی، گروه مهندسی مکانیک، دانشگاه جهرم، جهرم، ایران | ||
چکیده | ||
در این مقاله به منظور بهبود عملکرد پنل فتوولتایی-گرمایی از طریق مدیریت گرما، اثر چهار هندسه مختلف برای لولههای خنککن شامل لوله دایروی مستقیم، لوله دایروی موج سینوسی، مجرای مستطیلی زیکزاکی، مجرای مستطیلی پلهای، و همچنین اثر نوع مبرد، و میزان دبی مبرد بر توزیع دمای پنل و راندمان الکتریکی و گرمایی آن از طریق مدلسازی عددی بررسی شده است. نتایج نشان میدهد که مجرای پلهای بهترین عملکرد را دارد، به طوریکه راندمان گرمایی و الکتریکیش به ترتیب 2/15% و 2/2% نسبت به لوله دایروی مستقیم افزایش یافته است. البته میزان افت هد نیز در مجرای پلهای 6/2 برابر نسبت به لوله دایروی مستقیم افزایش داشته است. نتایج همچنین حاکی از آن است که استفاده از سیال با مواد تغییرفاز دهندهی میکرو کپسوله شده سبب افزایش راندمان گرمایی تا حدود 40% نسبت به آب میشود در حالیکه استفاده از نانوسیال نقره حدود 28% راندمان گرمایی را بهبود میبخشد. افزایش دبی مبرد نیز سبب بهبود ضریب انتقال گرما شده که منجر به کاهش میانگین دمای سطح پنل حدود oC4/6 و oC5/7 به ترتیب در لوله دایروی مستقیم و مجرای پلهای میشود. | ||
کلیدواژهها | ||
جاذب گرمایی؛ پنلهای فتوولتایی-گرمایی؛ مواد تغییرفاز دهندهی میکرو کپسوله شده؛ نانوسیال؛ راندمان | ||
مراجع | ||
[1] Zervos A., Rnewables 2019 Global Report. Paris; 2019 [accessed 2020 Sep 20]. Available from: www.ren21.net. [2] Alobaid M., Hughes B., O’Connor D., Calautit J., and Heyes A., Improving Thermal And Electrical Efficiency In Photovoltaic Thermal Systems For Sustainable Cooling System Integration. Journal of Sustainable Development of Energy, Water and Environment Systems, Vol. 6, No.2, pp. 305–22, 2018. [3] Ibrahim A., Jin GL., Daghigh R., Salleh MHM., Othman MY., Ruslan MH., Mat S., and Sopian K., Hybrid Photovoltaic Thermal (PV/T) Air And Water Based Solar Collectors Suitable For Building Integrated Applications. American Journal of Environmental Sciences, Vol. 5, No.5, pp. 618–24, 2009. [4] Hosseinzadeh M., Salari A., Sardarabadi M., and Passandideh-Fard M., Optimization And Parametric Analysis Of A Nanofluid Based Photovoltaic Thermal System: 3D Numerical Model With Experimental Validation. Energy Conversion and Management, Vol. 160, No.1, pp. 93–108, 2018. [5] Rejeb O., Gaillard L., Giroux-Julien S., Ghenai C., Jemni A., Bettayeb M., and Menezo C., Novel Solar PV/Thermal Collector Design For The Enhancement Of Thermal And Electrical Performances. Renewable Energy, Vol. 146, No.1, pp. 610–27, 2020. [6] Ibrahim A., Othman MY., Ruslan MH., Mat S., and Sopian K., Recent Advances In Flat Plate Photovoltaic/Thermal (PV/T) Solar Collectors. Renewable and Sustainable Energy Reviews, Vol. 15, No.1, pp. 352–365, 2011. [7] Kim JH., and Kim JT., The Experimental Performance Of An Unglazed PVT Collector With Two Different Absorber Types. International Journal of Photoenergy, Vol. 2012, No.1, pp. 1–6, 2012. [8] Sardouei MM., Mortezapour H., and Jafari Naeimi K., Temperature Distribution And Efficiency Assessment Of Different PVT Water Collector Designs. Sadhana - Academy Proceedings in Engineering Sciences, Vol. 43, No.6, pp. 1–13, 2018. [9] Al-Shamani AN., Mat S., Ruslan MH., Abed AM., and Sopian K., Effect Of New Ellipse Design On The Performance Enhancement Of PV/T Collector: CDF Approach. International Journal of Environment and Sustainability, Vol. 5, No.2, pp. 54–60, 2016. [10] Sun L., Yang L., Shao LL., and Zhang CL., Overall Thermal Performance Oriented Numerical Comparison Between Elliptical And Circular Finned-Tube Condensers. International Journal of Thermal Sciences, Vol. 89, No.1, pp. 234–44, 2015. [11] Rosli MAM., Ping YJ., Misha S., Akop MZ., Sopian K., Mat S., Al-Shamani AN., and Saruni MA., Simulation Study Of Computational Fluid Dynamics On Photovoltaic Thermal Water Collector With Different Designs Of Absorber Tube. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 52, No.1, pp. 12–22, 2018. [12] Ibrahim A., Othman MY., Ruslan MH., Alghoul MA., Yahya M., Zaharim A., and Sopian K., Performance Of Photovoltaic Thermal Collector (PVT) With Different Absorbers Design. WSEAS Transactions on Environment and Development, Vol. 5, No.3, pp. 321–30, 2009. [13] Aste N., Del Pero C., and Leonforte F., Thermal-Electrical Optimization Of The Configuration A Liquid PVT Collector. Energy Procedia, Vol. 30, No.1, pp. 1–7, 2012. [14] Yu Y., Yang H., Peng J., and Long E., Performance Comparisons Of Two Flat-Plate Photovoltaic Thermal Collectors With Different Channel Configurations. Energy, Vol. 175, No.1, pp. 300–8, 2019. [15] Hamrouni N., Jraidi M., and Chérif A., Solar Radiation And Ambient Temperature Effects On The Performances Of A PV Pumping System. Revue des Energies Renouvelables, Vol. 11, No.1, pp. 95–106, 2008. [16] Maadi SR., Khatibi M., Ebrahimnia-Bajestan E., and Wood D., Coupled Thermal-Optical Numerical Modeling Of PV/T Module – Combining CFD Approach And Two-Band Radiation DO Model. Energy Conversion and Management, Vol. 198, 2019. [17] Eisapour M., Eisapour AH., Hosseini MJ., and Talebizadehsardari P., Exergy And Energy Analysis Of Wavy Tubes Photovoltaic-Thermal Systems Using Microencapsulated PCM Nano-Slurry Coolant Fluid. Applied Energy, Vol. 266, No.1, pp. 1–19, 2020. [18] Evans DL., Simplified Method For Predicting Photovoltaic Array Output. Solar Energy, Vol. 27, No.6, pp. 555–60, 1981. [19] Azmi WH., Sharma K V., Mamat R., Alias ABS., and Izwan Misnon I., Correlations For Thermal Conductivity And Viscosity Of Water Based Nanofluids. IOP Conference Series: Materials Science and Engineering, Vol. 36, No.1, pp. 1–6, 2012. [20] Ma F., Zhang P., and Shi XJ., Investigation Of Thermo-Fluidic Performance Of Phase Change Material Slurry And Energy Transport Characteristics. Applied Energy, Vol. 227, No.1, pp. 643–54, 2018. [21] Sardarabadi M., and Passandideh-Fard M., Experimental And Numerical Study Of Metal-Oxides/Water Nanofluids As Coolant In Photovoltaic Thermal Systems (PVT). Solar Energy Materials and Solar Cells, Vol. 157, No.1, pp. 533–42, 2016. [22] Yu Q., Romagnoli A., Yang R., Xie D., Liu C., Ding Y., and Li Y., Numerical Study On Energy And Exergy Performances Of A Microencapsulated Phase Change Material Slurry Based Photovoltaic/Thermal Module. Energy Conversion and Management, Vol. 183, No.1, pp. 708–20, 2019. | ||
آمار تعداد مشاهده مقاله: 452 تعداد دریافت فایل اصل مقاله: 328 |