تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,106 |
تعداد دریافت فایل اصل مقاله | 15,624,790 |
تخمین هدایت الکتریکی (EC) خاک شور-سدیمی طی فرآیند آبشویی با استفاده از برنامه HYDRUS-1D | ||
دانش آب و خاک | ||
مقاله 5، دوره 31، شماره 4، دی 1400، صفحه 55-68 اصل مقاله (602.11 K) | ||
شناسه دیجیتال (DOI): 10.22034/ws.2021.12252 | ||
نویسندگان | ||
ساره شفیعی فر1؛ احمد فرخیان فیروزی* 2؛ عطااله خادم الرسول3 | ||
1کارشناسی ارشد علوم خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز | ||
2گروه علوم خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز | ||
3Ahvaz-Shahid Chamran University ofAhvaz | ||
چکیده | ||
تخریب خاک در نتیجه شور و سدیمی شدن یکی از مهمترین مشکلات مناطق خشک و نیمه خشک است. برای حل این مشکل، آبشویی نمکهای تجمع یافته در این خاکها ضروری است. در این پژوهش، کارایی مدل HYDRUS-1D در پیشبینی روند شوریزدایی در خاک شور و سدیمی واقع در شمال اهواز بررسی شد. آبشویی به روش منقطع شامل تیمار دارای ماده اصلاح کننده (اسید سولفوریک) و تیمار بدون ماده اصلاح کننده و چهار تیمار عمق آب آبشویی شامل 25، 50 ، 75 و 100 سانتیمتر آب در چهار تکرار در کرتهای 1 1 متر مربع صورت پذیرفت. منحنیهای شوری خاک پس از هر مرحله آبشویی رسم گردید. ویژگیهای هیدرولیکی خاک براساس خصوصیات زودیافت اندازهگیری شده با استفاده از برنامه Rosseta برآورد شد. پارامترهای هیدرولیکی و همچنین مقدار شوری اندازهگیری شده نیمرخ خاک به عنوان ورودی برنامه HYDRUS-1D استفاده شدند و تغییرات شوری نیمرخ خاک طی دورههای مختلف آبشویی به روش حل معکوس برآورد شد. نتایج نشان داد خاکهای تیمار شده با ماده اصلاح کننده EC متفاوتی نسبت به شاهد داشتند اما این تفاوت چشمگیری نبود زیرا گچ و آهک موجود در خاکهای مورد مطالعه کلسیم مورد نیاز برای اصلاح را تامین کرده بودند. بهترین برآورد انتقال املاح مربوط به اعماق کمتر از 100 سانتی متری خاک و دورهای اول و دوم آبشویی بود. بطور کلی نتایج حاصل از شبیهسازی انتقال نشان داد مدل HYDRUS-1D برآورد مناسبی از شوری خاک دارد. بنابراین میتوان مدل HYDRUS-1D را به عنوان ابزاری مناسب برای پیشبینی انتقال املاح در خاکهای شور و سدیمی معرفی کرد. | ||
کلیدواژهها | ||
مدل؛ آبشویی؛ شوری؛ خوزستان؛ HYDRUS-1D | ||
مراجع | ||
Anonymous, 2006. Guide to the application of experimental and theoretical models of leaching of saline and sodic soils. Planning and Budget Organization, Tehran, Iran. (In Persian).
Anonymous, 2007. Report of field experiments and leaching studies and land remediation of irrigation and drainage networks in Shavor plain of Khuzestan province. Green Tak Consultant Engineers, Tehran, Iran. (In Persian).
Barzegar AR, 2000. Salt-affected Soils: Diagnosis and Productivity. Shahid Chamran University Press, Ahvaz, Iran. (In Persian).
Droogers P, Salemi HR and Mamanpoush A, 2000. Exploring Basin Scale Salinity Problems Using Handbook no. 60. US Government Printing Office, Washington D.C.
Gee GW and Bauder JW, 1986. Particle-size Analysis. Pp. 383-411. In: Page AL, (ed.), Methods of Soil Analysis, Part1, Physical and Mineralogical Methods. Second Edition, Agronomy Monograph 9, American Society of Agronomy, Madison, WI.
Gharaibeh MA, Eltaif NI and Shra’a SH, 2012. Desalination and desodification curves of highly saline-sodic soil amended with phosphoric acid and by-Product gypsum. International Journal of Environmental Science and Development 3(1): 39-42.
Herrero J and Pérez-Coveta O, 2005. Soil salinity changes over 24 years in a Mediterraniean irrigated
district. Gerderma, 125: 287-308
Lavkulich LM, 1981. Methods Manual, Pedology Laboratory. Department of Soil Science, University of British Columbia, Vancouver, British Columbia, Canada.
Mitchell JP, Shennan C, Singer MJ, Peters DW, Miller RO, Prichard T, Grattan SR, Rhoades JD, May DM and Munk DS, 2000. Impacts of gypsum and winter cover crops on soil physical properties and crop productivity when irrigated with saline water. Agricultural Water Management 45: 55-71.
Mohammadi E and Delbari M, 2015. Simulation of water and salt transport in soil using the HYDRUS-1D software. Soil and Water Science. 25(1): 67-78. (In Persian with English abstract).
Oustan SH, 2004. Soil Chemistry with Environmental Perception. First edition. Tabriz University Press. (In Persian).
Parsaei N, Sayyad Gh and Landi A, 2011. Simulation of chloride transport in soil with silty clay loam texture in northern Khuzestan. 3rd Irrigation and Drainage Network Management National Conference, Ahvaz, Iran.
Qadir M and Schubert S, 2002. Degradation processes and nutrient constraints in sodic soils. Land Degradation and Development 13: 275-294.
Ramos TB, Goncalves MC, Prazeres A and Martins JC, 2008. Multicomponent solute transport in two multifactorial experiments. The Second HYDRUS Workshop. 28 March, Czech University of Life Sciences, Prague, Czech.
Rhoados JD, 1982. Cation exchange capacity. Pp. 149-158. In: Page AL, Miller RH and Keeney DR (eds.), Methods of Soil Analysis. Part 2. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Schaap MG, Leij FJ and van Genuchten MTh, 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251: 163–176.
Shang FZ, Ren SM, Zou T, Yang PL and Sun N, 2016. Modeling the risk of the salt for polluting groundwater irrigation with recycled water and ground water using HYDRUS-1 D. Water Air Soil Pollution 227(189): 2-22.
Simunek J, Jacques D, Van Genuchten MTh and Mallants D, 2006. Multicomponent geochemical transport modeling using HYDRUS-1D and HP1. Journal of the American Water Resources Association 12: 1537-1547
Simunek J, Van Genuchten MTh, Gribb MM and Hopmans JW, 1998. Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil Tillage Research 47:1-2.
Simunek J, Sejna M, Saito H, Sakai M and van Genuchten MTh, 2008. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 4.0x, Hydrus Series 3. Department of Environmental Sciences, University of California Riverside, CA, USA.
Tao X, Liu X and Tao S, 2010. The effect of groundwater table and flood irrigation strategies on soil water and salt dynamic and reed water use in the Yellow River Delta, China. Journal of Ecological Modeling 4: 1-12.
Van Genuchten MTh, 1980. A closed-form equation for predicting the hydraulic conductivity of soils. Soil Science Society of America Journal 44: 892–898.
Van Genuchten MTh, 1985. Convection-dispersion transport of solutes involved in sequential first-order decay reactions. Geoscience 11(2): 129-147.
Wong VNL, Dalal RC and Greene RSB, 2009. Carbon dynamics of sodic and saline soils following gypsum and organic material additions: A laboratory incubation. Applied Soil Ecology 41: 29-40.
Yazdanpanah N, Pazira E, Neshat A, Mahmoodabadi M and H Naghavi, 2013. Redistribution of exchange cations in soil by application of soil reclamation materials. Iranian Journal of Soil Research. 27(2): 179-193. (In Persian with English abstract).
| ||
آمار تعداد مشاهده مقاله: 620 تعداد دریافت فایل اصل مقاله: 371 |