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Abstract

..

The current study utilizes the extended sinh-Gordon equation expansion and ( G′

G2 )-expansion function meth-

ods in constructing various optical soliton and other solutions to the (2+1)-dimensional hyperbolic nonlinear
Schrödinger’s equation which describes the elevation of water wave surface for slowly modulated wave trains in

deep water in hydrodynamics. We secure different kinds of solutions like optical dark, bright, singular, combo
solitons as well as hyperbolic and trigonometric functions solutions. Moreover, singular periodic wave solutions
are recovered and the constraint conditions which provide the guarantee to the soliton solutions are also reported.
In order to shed more light on these novel solutions, graphical features 3D, 2D and contour with some suitable

choice of parameter values have been depicted. We also discuss the stability analysis of the studied nonlinear
model with aid of modulation instability analysis.

Keywords. NLSE, Optical soliton, Extended sinh-Gordon equation expansion method, ( G′
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1. Introduction

The non-linear partial differential equations (NLPDEs) have remarkable importance because of its broad range
usages and applications. Non-linear phenomena have become one of the great impressive field for the researchers in
this modern era of science. NLPDEs are largely used in diverse scientific fields such as biology, physics, geochemistry,
ocean engineering, fluid mechanics, solid state physics, geophysics, optical fibers, plasma physics and many other
fields to describe the physical mechanisms of natural phenomena and dynamical processes. NLPDEs are often used
to explain the behaviour of waves in diverse fields [1–4, 17, 18, 28].

In order to understand these intricate phenomena, it is key to construct more exact solutions of NLPDEs. By
using the obtained exact solutions one can understand the complex structure of physical phenomena. It is notable
that many NLPDEs in diverse fields like biology, physics and chemistry consist of unknown functions and parameters
and the study of exact solutions provides the guidance to the researchers to maintain and design the experiments, by
producing the suitable natural environment, to obtain the these unknown function and parameters. The betterment
of mathematical approaches for finding out a general and compact class of exact traveling wave solutions is one of the
most basic task to observe the whole dynamical process modeling by complicated NLPDEs from the recent few years.
Finding the exact solutions of NLPDEs has the importance to discuss the stability of numerical solutions and also
development of a broad range of new scholar to simplify the routine calculation. Exact solutions to NLPDEs play an
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important role in nonlinear science, since they can provide much physical information and more insight of the physical
aspects of the problem and thus lead to further applications. Wave phenomena in dispersion, dissipation, diffusion,
reaction and convection are very much important.

Therefore, the foremost concern for the researchers is to find the exact solutions of NLPDEs. For this sake dif-
ferent powerful techniques such that Backlund transformation, Kudryashov method and its extended form, improved
fractional sub-equation method, the unified method and its generalized scheme, the Darboux transformation method,
expansion function method, the simple equation method, trial equation method, first integral method, the expo-
nential function method, the inverse scattering method, mapping method, F-expansion method, modified extended
tanh-function method, first integral method improved Bernoulli sub-ODE method, new auxiliary equation, newly
extended direct algebraic method, Fan extended sub equation method and several others have been developed for find-
ing the analytic solutions of NLPDEs by using various symbolic computation like Mathematica, Matlab and Maple
[5–12, 19–22, 25, 26, 32–35, 41, 42].

Futhermore, the theory of optical solitons draw the attention of the researchers and scientific community, because it
is an active area of research in the fields of telecommunication engineering and mathematical physics. Optical solitons
are type of solitary waves which have the capability of propagation of waves without scattering over long distance i.e.,
they maintain their shape over long distance. They are significant in optical fibre communication due to this feature.
The nonlinear wave phenomena can be examined in various scientific fields such as, fluid dynamics, plasma physics,
solitary waves, optical fibres etc [23, 30, 36–40].

However, the goal of this article is to seek optical and other wave solutions in the forms of single (bright, dark)
and combo as well as periodic solutions. These different types of solutions will be beneficial in the area where
(2+1)-dimensional hyperbolic nonlinear Schrödinger’s equation is modeled for discussing the wave phenomena. We

utilize the extended sinh-Gordon equation expansion method (ShGEEM)[29, 31] and (G
′

G2 )-expansion function[13, 14]
method in this work for extracting optical solitons and other solutions to the (2+1)-dimensional hyperbolic NLSE [15].
The basic feature of proposed techniques is to observe some elementary relationships between NLPDEs and others
simple NLODEs. It has been examined that with the aid of simple solutions and solvable ODEs, different kind of
traveling wave solutions of some complicated NLPDEs can be easily constructed. The primary benefit of applying
these techniques is that we have succeeded in a single move, to gather various types of new solutions. An important
aspect of mentioned techniques is to provide us a guideline that how to organize these solutions. Such type of solutions
have great significant role in the formation of deep water waves as these are created by modulation instability, they
appear from nowhere. .
The (2+1)-dimensional hyperbolic NLSE is given by [15]

iΘy +
1

2

(
Θxx −Θtt

)
+ |Θ|2Θ = 0, i =

√
−1. (1.1)

Eq. (1.1) expresses of the elevation of water wave surface for slowly modulated wave trains in deep water in hydro-
dynamics, and also governs the propagation of electromagnetic fields in self-focusing and normally dispersive planar
wave guides in optics [15]. In Eq. (1.1), Θ(x, y, t) is a complex-valued function, x, y, t represent the transverse (in-
plane) coordinate, the propagation coordinate and time, respectively. They are normlized with beam width x0, the

differection lenght LD = kx0, and the time t0 = (k′′L)
1
2 , where k represents the guided-mode propagation constant

while k′′ = ∂k
∂ω2 > 0 represents the GVD coefficient. The amplitude Θ is linked to the slowly varying envelope of

the electromagnetic field E by Θ = (γLD)
1
2E, where γ = 2πn2

λLeff
, where λ represents the wavelength, n2 denotes the

positive Kerr coefficient, and Leff is the effective core thickness [16].
This piece of article is discussed as sequence: In section 2, application of methods to extract the soliton solutions. In

section 3, MI analysis. In section 4, graphical description of solutions and finally paper comes to end with conclusion
in section 5.

2. Applications

2.1. Extended ShGEEM. In this section, we study the application of extended ShGEEM. We first discuss the
mathematical analysis of the (2+1)-dimensional hyperbolic NLSE. For solving the Eq. (1.1), we start with wave
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transformation as:

Θ(x, y, t) = Φ(π)eiψ, π = τ(x+ by − ωt), ψ = a(x+ y)− χt+ k, (2.1)

where Φ(π) is an unknown function, ψ denotes the function of phase shift, a is wave number, χ is the frequency and
k is the phase constant. By putting Eq. (2.1) into Eq. (1.1), we decompose Eq. (1.1) into the following real and
imaginary parts:

(a(2 + a)− χ2)Φ− 2Φ3 + τ2(ω2 − 1)Φ
′′
= 0, (2.2)

and

2τ(a+ b− ωχ)Φ
′
= 0, (2.3)

respectively. From Eq. (2.3), we get the constraint condition as:

ω =
a+ b

χ
. (2.4)

Consider the following trial solutions generated from the well-known sinh-Gordon equation by Xian-Lin and Jia-Shi
[31]:

Φ(w) =
n∑
j=1

(
bj sinh(w) + aj cosh(w)

)j
+ a0, (2.5)

Θ(π) =
n∑
j=1

(
± bj i sech(π)± aj tanh(π)

)j
+ a0, (2.6)

Θ(π) =
n∑
j=1

(
± bj csch(π)± aj coth(π)

)j
+ a0, (2.7)

Θ(π) =
n∑
j=1

(
± bj sec+aj tan(π)

)j
+ a0, (2.8)

and

Θ(π) =
n∑
j=1

(
± bj csc(π)− aj cot(π)

)j
+ a0, (2.9)

where i =
√
−1, and w

′
= sinh(w) or w

′
= cosh(w). For details, see [31]. By making balance between the linear

term Φ′′ and the non-linear term Φ3 to determine the value of n in Eq. (2.2), yields n = 1. With n = 1, Eqs.
(2.5)-(2.9) change to

Φ(w) = b1 sinh(w) + a1 cosh(w) + a0, (2.10)

Θ(π) = ±b1 i sech(π)± a1 tanh(π) + a0, (2.11)

Θ(π) = ±b1 csch(π)± a1 coth(π) + a0, (2.12)

Θ(π) = ±b1 sec+a1 tan(π) + a0, (2.13)

and

Θ(π) = ±b1 csc(π)− a1 cot(π) + a0. (2.14)
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Substituting Eq. (2.10) and it is second derivative along with w
′
= sinh(w) and/or w

′
= cosh(w) into Eq. (2.2), yields

a hyperbolic polynomial functions. On collecting the same power coefficients of the hyperbolic function and equating
to zero, we have a set of algebraic expression. The obtained algebraic polynomial produce the values of the coefficients
involved. Putting the values of the coefficients into Eqs. (2.11)-(2.14), provides the solutions to Eq. (1.1).
Case-1: When

a0 = 0, a1 = −
√
a(2 + a)− χ2

2
, b1 = 0, τ = −

√
χ2 − a(2 + a)

2(1− ω2)
.

The dark optical soliton solution

Θ1.1(x, y, t) = −
√
a(2 + a)− χ2

2
tanh

(
τ(x+ by − ωt)

)
ei(a(x+y)−χt+k). (2.15)

The singular soliton solution

Θ1.2(x, y, t) = −
√
a(2 + a)− χ2

2
coth

(
τ(x+ by − ωt)

)
ei(a(x+y)−χt+k), (2.16)

where a(2 + a)− χ2 > 0 and (1− ω2)(χ2 − a(2 + a)) > 0 for valid solutions.
Case-2: When

a0 = 0, a1 = 0, b1 = −
√
χ2 − a(2 + a), τ = −

√
χ2 − a(2 + a)

ω2 − 1
,

the bright optical soliton solution is

Θ2.1(x, y, t) = −
√
a(2 + a)− χ2 sech

(
τ(x+ by − ωt)

)
ei(a(x+y)−χt+k), (2.17)

and the singular soliton solution is

Θ2.2(x, y, t) = −
√
χ2 − a(2 + a) csch

(
τ(x+ by − ωt)

)
ei(a(x+y)−χt+k), (2.18)

where (ω2 − 1)(χ2 − a(2 + a)) > 0 for valid solutions.
Case-3: When

a0 = 0, a1 = −
√
a(2 + a)− χ2

2
, b1 = −

√
a(2 + a)− χ2

2
, τ =

√
2a(2 + a)− 2χ2

ω2 − 1
,

the mixed dark-bright optical soliton solution is

Θ3.1(x, y, t) = −
√
a(2 + a)− χ2

2
×(

i sech

(
τ(x+ by − ωt)

)
+ tanh

(
τ(x+ by − ωt)

))
ei(a(x+y)−χt+k), (2.19)

and the mixed singular soliton solution is

Θ3.2(x, y, t) = −
√
a(2 + a)− χ2

2
×(

i csch

(
τ(x+ by − ωt)

)
+ coth

(
τ(x+ by − ωt)

))
ei(a(x+y)−χt+k), (2.20)

where a(2 + a)− χ2 > 0 and (ω2 − 1)(a(2 + a)− χ2) > 0 for valid solutions.
Case-4: when

a0 = 0, a1 = −
√
χ2 − a(2 + a)

2
, b1 =

√
χ2 − a(2 + a)

2
, τ =

√
2χ2 − 2a(2 + a)

ω2 − 1
,
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the singular periodic wave solutions are

Θ4.1(x, y, t) =

√
χ2 − a(2 + a)

2
×(

sec

(
τ(x+ by − ωt)

)
− tan

(
τ(x+ by − ωt)

))
ei(a(x+y)−χt+k), (2.21)

and

Θ4.2(x, y, t) =

√
χ2 − a(2 + a)

2
×(

cot

(
τ(x+ by − ωt)

)
+ csc

(
τ(x+ by − ωt)

))
ei(a(x+y)−χt+k), (2.22)

where (ω2 − 1)(χ2 − a(2 + a)) > 0 for valid solutions.

2.2. G′

G2 -expansion function method. We study the application of G′

G2 -expansion function method in this section
as follow: Balancing the highest power of nonlinear term and the highest derivative in Eq. (2.2) yields, n = 1. So the
solution of Eq. (2.2) can be expressed as:

Φ(π) = α0 + α1

(
G′

G2

)
+ β1

(
G′

G2

)−1

, (2.23)

where α0, α1 and β1 are considered as constants and to be determined later. By following the steps of the proposed
method and with the aid of Mathematica, we get the following set of solutions:
Set-1

α0 = 0, α1 = −
√
φ (χ2 − a(a+ 2))√

2ζ
, β1 = 0, τ = −

√
χ2 − a(a+ 2)√
2ζφ (ω2 − 1)

.

Set-2

α0 = 0, α1 = 0, β1 = −
√
ζ (χ2 − a(a+ 2))√

2φ
, τ =

√
χ2 − a(a+ 2)√
2ζφ (ω2 − 1)

.

Set-3

α0 = 0, α1 = −
√
φ (χ2 − a(a+ 2))

2
√
2ζ

, β1 =

√
ζ
√
φ (χ2 − a(a+ 2))

2
√
2φ

, τ = −
√
χ2 − a(a+ 2)

2
√
2ζφ (ω2 − 1)

.

Set-4

α0 = 0, α1 =

√
φ (χ2 − a(a+ 2))

2
√
2ζ

, β1 = −
√
ζ
√
φ (χ2 − a(a+ 2))

2
√
2φ

, τ =

√
χ2 − a(a+ 2)

2
√
2ζφ (ω2 − 1)

.

For Set-1, we have the following solutions as:
Case-1: When ζφ > 0, the trigonometric solution can be shown as:

Θ1,1(x, y, t) = −
√
φ (χ2 − a(a+ 2))√

2ζ
×
(√

ζ

φ

(
Ecos(

√
ζφ π) + F sin(

√
ζφ π)

F cos(
√
ζφπ)− Esin(

√
ζφ π)

))
× ei(a(x+y)−χt+k). (2.24)

Case-2: When ζφ < 0, the hyperbolic solution can be expressed:

Θ1,2(x, y, t) =

√
φ (χ2 − a(a+ 2))√

2ζ
×
(√

|ζφ|
φ

(
Esinh(2

√
|ζφ| π) + Ecosh(2

√
|ζφ| π) + F

Esinh(2
√

|ζφ| π) + Ecosh(2
√

|ζφ| π)− F

))
× ei(a(x+y)−χt+k). (2.25)

For soliton solution, take E = F , we get singular soliton solution as:

Θ1,2(x, y, t) =

√
χ2 − a(a+ 2)

2
coth

(√
|ζφ| π

)
× ei(a(x+y)−χt+k). (2.26)
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For Set-2, we have the following solutions as:
Case-1: When ζφ > 0, the trigonometric solution can be written as:

Θ2,1(x, y, t) = −
√
ζ (χ2 − a(a+ 2))√

2φ
×
(√

ζ

φ

(
Ecos(

√
ζφ π) + F sin(

√
ζφ π)

F cos(
√
ζφ π)− Esin(

√
ζφ π)

))−1

× ei(a(x+y)−χt+k). (2.27)

Case-2: When ζφ < 0, the hyperbolic solution can be written as:

Θ2,2(x, y, t) =

√
ζ (χ2 − a(a+ 2))√

2φ
×
(√

|ζφ|
φ

(
Esinh(2

√
|ζφ| π + Ecosh(2

√
|ζφ| π) + F

Esinh(2
√

|ζφ| π) + Ecosh(2
√

|ζφ| π)− F

))−1

× ei(a(x+y)−χt+k). (2.28)

For soliton solution, take E = F , we get dark soliton solution as:

Θ2,2(x, y, t) =

√
χ2 − a(a+ 2)

2
tanh(

√
|ζφ| π)× ei(a(x+y)−χt+k). (2.29)

For Set-3, we have the following solutions as:
Case-1: When ζφ > 0, the trigonometric solution can be shown as:

Θ3,1(x, y, t) = −
√
φ (χ2 − a(a+ 2))

2
√
2ζ

×
(√

ζ

φ

(
Ecos(

√
ζφ π) + F sin(

√
ζφ π)

F cos(
√
ζφ π)− Esin(

√
ζφ π)

))

+

√
ζ
√
φ (χ2 − a(a+ 2))

2
√
2φ

×
(√

ζ

φ

(
Ecos(

√
ζφ π) + F sin(

√
ζφ π)

F cos(
√
ζφ π)− Esin(

√
ζφ π)

))−1

×ei(a(x+y)−χt+k). (2.30)

By choosing, E = F , we have periodic travelling wave solution as:

Θ3,1(x, y, t) = −
√
χ2 − a(a+ 2)

2
tan(2

√
ζφ π)× ei(a(x+y)−χt+k). (2.31)

Case-2:
When ζφ < 0, the hyperbolic solution can be expressed:

Θ3,2(x, y, t) =

(√
φ (χ2 − a(a+ 2))

2
√
2ζ

×
(√

|ζφ|
φ

(
Esinh(2

√
|ζφ| π) + Ecosh(2

√
|ζφ| π) + F

Esinh(2
√
|ζφ| π) + Ecosh(2

√
|ζφ| π)− F

))
−

√
ζ
√
φ (χ2 − a(a+ 2))

2
√
2φ

×
(√

|ζφ|
φ

(
Esinh(2

√
|ζφ| π) + Ecosh(2

√
|ζφ| π) + F

Esinh(2
√

|ζφ| π) + Ecosh(2
√
|ζφ| π)− F

))−1

× ei(a(x+y)−χt+k). (2.32)

For soliton solution, take E = F , we get combo dark-singular soliton solution as:

Θ3,2(x, y, t) =

√
(χ2 − a(a+ 2))

2
√
2

(
coth(

√
|ζφ| π)− tanh(

√
|ζφ| π)

)
× ei(a(x+y)−χt+k). (2.33)

For Set-4, we have the following solutions as:
Case-1: When ζφ > 0, the trigonometric solution can be described as:

Θ4,1(x, y, t) =

√
φ (χ2 − a(a+ 2))

2
√
2ζ

×
(√

ζ

φ

(
Ecos(

√
ζφ π) + F sin(

√
ζφ π)

F cos(
√
ζφ π)− Esin(

√
ζφ π)

))

−
√
ζ
√
φ (χ2 − a(a+ 2))

2
√
2φ

×
(√

ζ

φ

(
Ecos(

√
ζφ π) + F sin(

√
ζφ π)

F cos(
√
ζφ π)− Esin(

√
ζφ π)

))−1

× ei(a(x+y)−χt+k). (2.34)

By choosing, E = F , we have periodic traveling wave solution as:

Θ4,1(x, y, t) =

√
χ2 − a(a+ 2)

2
tan(2

√
ζφ π)× ei(a(x+y)−χt+k). (2.35)
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Case-2: When ζφ < 0, the hyperbolic solution can be expressed:

Θ4,2(x, y, t) =

(√
φ (χ2 − a(a+ 2))

2
√
2ζ

×
(√

|ζφ|
φ

(
Esinh(2

√
|ζφ| π) + Ecosh(2

√
|ζφ| π) + F

Esinh(2
√
|ζφ| π) + Ecosh(2

√
|ζφ| π)− F

)
−

√
ζ
√
φ (χ2 − a(a+ 2))

2
√
2φ

×
(√

|ζφ|
φ

(
Esinh(2

√
|ζφ| π) + Ecosh(2

√
|ζφ| π) + F

Esinh(2
√

|ζφ| π) + Ecosh(2
√
|ζφ| π)− F

))−1)
× ei(a(x+y)−χt+k). (2.36)

For soliton solution, take E = F , we get combo dark-singular soliton solution as:

Θ4,2(x, y, t) =

√
(χ2 − a(a+ 2))

2
√
2

(
tanh(

√
|ζφ| π)− coth(

√
|ζφ| π)

)
× ei(a(x+y)−χt+k), (2.37)

where π = τ(x+ by − ωt).

3. Modulation Instability Analysis

In this section, we discuss modulation instability (MI) of the (2+1)-dimensional hyperbolic NLSE by utilizing the
standard linear stability analysis [24, 27]. Suppose the following form of steady-state solutions

Θ(x, y, t) =
(√

q0 + U(x, y, t)
)
eiq0x, (3.1)

where q0 is the normalized optical power. Putting Eq. (3.1) into Eq. (1.1) and linearizing, gives

iUy +
1

2

(
Uxx − Utt

)
+ i q0Ux + (q0 + q20)(U + U∗) = 0, (3.2)

where ∗ indicates the conjugate of the unknown complex function U(x, y, t). Suppose the solution Eq. (3.2) can be
expressed in the following form

U(x, y, t) = δ1e
i(κ1x+κ2y−ϕt) + δ2e

−i(κ1x+κ2y−ϕt), (3.3)

where ϕ, κ1 and κ2 represent the frequency of perturbation, normalized wave number and nonzero constant, respec-
tively. Substituting Eq. (3.3) into Eq. (3.2), splitting the coefficients of ei(κ1x+κ2y−ϕt) and e−i(κ1x+κ2y−ϕt) yields, the
dispersion relation:

κ41
4

− κ22 −
κ21ϕ

2

2
+
ϕ4

4
− κ21q0 − 2κ1κ2q0 + ϕ2q0 − 2κ21q

2
0 − ϕ2q20 = 0. (3.4)

Describing the dispersion relation (3.4) for ϕ, we get

ϕ =

√
κ21 − 2q0 − 2q20 − 2

√
κ22 + 2κ1κ2q0 + q20 + κ21q

2
0 + 2q30 + q40 . (3.5)

In a situation whereby (ϕ)2 ≥ 0, the wave number ϕ is real for all κ1, κ2 and the steady state is stable against
small perturbations. While, in contradiction to the above statement, the steady-state solution turns to be unstable in
condition whereby κ21 − 2q0 − 2q20 < 2

√
κ22 + 2κ1κ2q0 + q20 + κ21q

2
0 + 2q30 + q40 , the wave number ϕ becomes imaginary,

and the perturbation grows exponentially. The growth rate of MI gain spectrum G(κ) can be written as:

G(κ) = 2Im(ϕ) = 2Im

(√
κ2
1 − 2q0 − 2q20 − 2

√
κ2
2 + 2κ1κ2q0 + q20 + κ2

1q
2
0 + 2q30 + q40

)
. (3.6)
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Figure 1. Gain spectrum of modulation instability for three distinct values of the parameters.

4. Graphical representation of solutions

The graphical description of derived solitons and other solutions have been expressed in the mentioned figures by
allotting the different values of the parameters. The graphs show that these solutions have different physical meanings.
For example, hyperbolic functions such as, the hyperbolic tangent appears in the calculation and rapidity of special
relativity while, the hyperbolic cotangent arises in the Langevin function for magnetic polarization. It is worthy to
note that the bright soliton describes the solitary waves whose peak intensity is larger than the background while dark
soliton describes the solitary waves with lower intensity than the background, and the singular soliton solutions is a
solitary wave with discontinuous derivatives; examples of such solitary waves include compactions, which have finite
(compact) support, and peakons, whose peaks have a discontinuous first derivative.
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Figure 2. The (A) 2D, 3D surfaces and (B) contour profile of Eq. (2.15).
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Figure 3. The (A) 2D, 3D surfaces and (B) contour profile of Eq. (2.17).
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Figure 4. The (A) 2D, 3D surfaces and (B) contour profile of Eq. (2.26).
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Figure 5. The (A) 2D, 3D surfaces and (B) contour profile of Eq. (2.33).
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5. Conclusions

In this piece of research, we investigated the (2+1)-dimensional hyperbolic NLSE with the help of extended sinh-

Gordon equation expansion and (G
′

G2 )-expansion function approaches. Various kinds of solutions like bright, dark,
singular, combo dark-singular, mixed dark-bright, mixed singular solitons as well as periodic wave solutions in singular
form are obtained. Moreover, the modulation instability analysis to the proposed model is also observed. The graphical
view of some solutions have been depicted by 3D,2D and contour profile, respectively. The results are new, interesting
and have a great impact in the field of nonlinear sciences where the (2+1)-dimensional hyperbolic NLSE will be used
for the dynamics of optical solitons and other solutions.
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