- [1] A. Babaei, H. Jafari, and S. Banihashemi, Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method, Journal of Computational and Applied Mathematics (2020), 112908.
- [2] A. Cardone, R. D’Ambrosio, and B. Patersone, A spectral method for stochastic fractional differential equa- tions, Applied Numerical Mathematics, 139(1) (2019), 115-119.
- [3] F. R. Chang, Stochastic Optimization in Continuous Time, Cambridge University Press, Cambridge, 2004.
- [4] G. H. Choe, Stochastic analysis for finance with simulations, Universitext, Springer, 2016.
- [5] S. I. Denisov, P. Hanggi, and H. Kantz, Parameters of the fractional Fokker-Planck equation, Europhys. Lett, 85(4) (2009), 40007.
- [6] M. Fallahpour, K. Maleknejad, and M. Khodabin, Approximation solution of two-dimensional linear stochastic fredholm integral equation by applying the haar wavelet, International Journal of Mathematical Modelling & Computations, 5(4) (2015), 361-372.
- [7] M. Girgoriu, Stochastic calculus: Applications in Science and Engineering, Springer, LLC, 2000.
- [8] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, Society for Industrial and Applied Mathematics, 43(3) (2001), 525-546.
- [9] L. Huang, X. F. Li, Y. Zhao, and X. Y. Duan, Approximate solution of fractional integro-differential equations by Taylor expansion method, Computers and Mathematics with Applications, 62(3) (2011), 1127-1134.
- [10] D. Jabari Sabegh, R. Ezzati, and K. Maleknejad, Approximate solution of fractional integro-differentail equa- tions by least squares method, International Journal of Analysis and Applications, 17(2) (2019), 303-310.
- [11] M. Kamrani, Numerical solution of stochastic fractional differential equations, Numerical Algorithms, 68(1) (2014), 81-93.
- [12] M. Khodabin, K. Maleknejad, and T. Damercheli, Approximate solution of stochastic Volterra integral equa- tions via expansion method, Int. J. Industeria Mathematics, 6(1) (2014), 41-48.
- [13] A. A Kilbas, H. M. Sirvastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, 204 of North-Holland Mathematics Studies. Elesiver, Amesterdam, 2006.
- [14] P.E. Kloden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Velarge Berlin Heidelbreg, New York, 1995.
- [15] P. K. Kythe and M. R. Schaferkotter, Handbook of computational methods for integration, Chapman and Hall/CRC Press, New York, (2005).
- [16] M. Li, C. Huang, P. Hu, and J. Wen, Mean-square stability and convergence of a split-step theta method for stochastic Volterra integral equations, Journal of Computational and Applied Mathematics, 382(1) (2021), 113077.
- [17] L. Li and J. G. Liu, A discretization of Caputo derivatives with application to time fractional SDEs and gradient flows, SIAM Journal on Numerical Analysis, 57(5) (2019), 2095-2120.
- [18] H. Liang, Z. Yang, and J. Gao, Strong superconvergence of the EulerMaruyama method for linear stochastic Volterra integral equations, Journal of Computational and Applied Mathematics, 317(1) (2017), 447-457.
- [19] X. Ma and Ch. Huang, Numerical solution of fractional integro differential equations by hybrid collocation method, Applied Mathematics and Computation, 219(12) (2013), 6750-6760.
- [20] K. Maleknejad, M. Khodabin, and M. Rostami, Numerical solution of stochastic Volterra integral equations by a stochastic operational matrix based on block pulse functions, Math. Comput. Model, 55(3-4) (2015), 791-800.
- [21] X. Mao, Stochastic Differential Equations and Applications, Second edition, Elsevier, New York, 2007.
- [22] F. Mirzaee and E. Hadadiyan, Numerical solution of Volterra-Fredholm integral equations via modification of hat functions, Applied Mathematics and Computations, 280(1) (2016), 110-123.
- [23] F. Mirzaee and N. Samadyar, Convergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations, Computational Methods for Differential Equations, 6(1) (2018), 80- 97.
- [24] B. P. Moghadam, A. Mendes Lopes, J. A. Tenreiro Machado, and Z. S. Mostaghim, Computational scheme for solving nonlinear fractional stochastic differential equations with delay, Stochastic Analysis and Applications, 37(6) (2019), 893-908.
- [25] F. Mohammadi, A Chebyshev wavelet operational method for solving stochastic Volterra-Fredholm integral equations, International Journal of Applied Mathematics Research, 4(2) (2015), 217-227.
- [26] S. Nemati and P. M. Lima, Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions, Applied Mathematics and Computation, 327(1) (2018), 79-92 .
- [27] M. Nouri, Solving Ito integral equations with time delay via basis functions, Computational Methods for Differential Equations, 8(2) (2020), 268-281.
- [28] B. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 5th edition, Springer Velarge, Berlin, 1998.
- [29] R. Panda and M. Dash, Fractional generalized splines and signal processing, Signal Process, 86(9) (2006), 2340-2350.
- [30] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
- [31] M. Saffarzadeh, G. B. Loghmani, and M. Heydari, An iterative technique for the numerical solution of non- linear Ito-stochastic integral equations, Journal of Computational and Applied Mathematics, 333(1) (2018), 74-86.
- [32] M. Senol and H. D. Kasmaei, On the numerical solution of nonlinear fractional integro-differential equations, New Trends in Mathematical Sciences, 5(3) (2017), 118-127.
- [33] Z. Taheri, S. Javadi, and E. Babolian, Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method, Journal of Computational and Applied Mathematics, 321(1) (2017), 336- 347.
- [34] Z. Yang, H. Yang, and Z. Yao, Strong convergence analysis for Volterra integro-differential equations with fractional Brownian motions, Journal of Computational and Applied Mathematics, 383(1) (2021), 113156.
|