
Research Paper
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 10, No. 1, 2022, pp. 44-60
DOI:10.22034/cmde.2020.39203.1720

An interval version of the Kuntzmann-Butcher method for solving the initial value problem

Andrzej Marciniak1,2, Barbara Szyszka3,∗, and Tomasz Hoffmann4

1Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland.

2Department of Computer Science, Higher Vocational State School in Kalisz Poznanska 201-205, 62-800 Kalisz, Poland.

3Institute of Mathematics, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland.

4Poznan Supercomputing and Networking Center, Jana Paw la II 10, 61-139 Poznan, Poland.

Abstract

..

The Kutzmann-Butcher method is the unique implicit four-stage Runge-Kutta method of order 8. In many
problems in ordinary differential equations this method realized in floating-point arithmetic gives quite good

approximations to the exact solutions, but the results obtained do not contain any information on rounding
errors, representation errors and the error of the method. Thus, we describe an interval version of this method,
which realized in floating-point interval arithmetic gives approximations (enclosures in the form of an interval)
containing all these errors. The described method can also include data uncertainties in the intervals obtained.

Keywords. Initial value problem, Runge-Kutta methods, Kuntzmann-Butcher method, Interval Runge-Kutta methods, Floating-point interval

arithmetic.

2010 Mathematics Subject Classification. 65G30, 65G40, 65L05, 65L06, 65Y04.

1. Introduction

It is well-known that there are two kinds of errors caused by floating-point arithmetic: representation errors and
rounding errors. While solving ordinary differential equations on a computer (in the form of an initial value problem),
we usually apply approximate methods, which in turn introduce the third kind of errors – the errors of methods,
usually called truncation errors. To take into consideration these errors we can use interval arithmetic (see, e.g.,
[1, 15, 31, 32, 37]). Applying interval methods for solving the initial value problem in floating-point interval arithmetic
(see, e.g., [14]), we can obtain enclosures of the solutions in the form of intervals which contain all possible numerical
errors. These intervals may also include data uncertainties.

There are a number of interval methods for approximating the initial value problem. The first one was described
by R. E. Moore in 1965 [30, 31]. There are also known interval methods based on high-order Taylor series (see, e.g.,
[2–4, 7, 16, 21, 34–36]), explicit Runge-Kutta methods [20, 25, 37], implicit ones [10, 11, 22, 25, 29], and explicit and
implicit multistep methods [17–19, 23–25, 28, 37]. In recent years many studies have been conducted especially on a
variety of the interval method based on high-order Taylor series.

In this paper we propose an interval version of the Kuntzmann-Butcher method, which is implicit and of high order.
The main purpose to consider this method separately is the fact that this is the only one fourth-stage and eight-order
method between other fourth-stage methods of Runge-Kutta type (interval versions of which we developed in our
previous papers). Our numerical experiments show also that this method is at least comparable with the methods
based on the high-order Taylor series, giving even better enclosures of the exact solutions.

The paper is divided into six sections. In section 2 we recall the well-known conventional implicit Runge-Kutta
methods. The Kutzmann-Butcher method of order 8 is recalled in section 3. Section 4 is the main section of this

Received: 15 April 2020 ; Accepted: 12 December 2020.
∗ Corresponding author. Email: Barbara.Szyszka@put.poznan.pl.

44

CMDE Vol. 10, No. 1, 2022, pp. 44-60 45

paper, in which we describe an interval version of the Kutzmann-Butcher method. In this section we also point to some
important theorems proved in our previous papers. In section 5 we present six numerical examples, which confirm the
usefulness of the proposed method. We compare our results with those obtained by the VNODE-LP package based
on high-order Taylor series [33, 34]. In the last section, some conclusions are given.

2. Implicit Runge-Kutta methods

Let us consider the initial value problem

y′ = f(t, y(t)), y(0) = y0, (2.1)

where t ∈ [0, a], y ∈ R and f : [0, a] × R → R. The implicit m-stage Runge-Kutta methods for solving the problem
(2.1) are given by the formula [5, 6, 12, 13]

yk+1 = yk + h

m∑
i=1

wiκik, k = 0, 1, . . . ,

where

κik = f(tk + cih, yk + h
m∑
j=1

aijκjk), i = 1, 2, . . . ,m, (2.2)

and

ci =

m∑
j=1

aij ,

where h = tk+1 − tk is a step-size, and the coefficients wi, ci and aij are some parameters. It is convenient to present
these coefficients in a form of an array, called the Butcher table [6]:

c1 a11 a12 · · · a1m

c2 a21 a22 · · · a2m

...
...

... · · ·
...

cm am1 am2 · · · amm

w1 w2 · · · wm

The local truncation error of step k + 1 for any Runge-Kutta method of order p can be written in the form

rk+1 (h) = y(tk + h)−

(
y (tk) + h

m∑
i=1

wiκik(h)

)
= ψ(tk, y(tk))h

p+1 +O(hp+2)

= r
(p+1)
k+1 (0)

hp+1

(p+ 1)!
+ r

(p+2)
k+1 (θh)

hp+2

(p+ 2)!
, 0 < θ < 1,

where y(tk + h) and y(tk) denote the exact solutions at tk + h and tk, respectively, and κik(h) ≡ κik is given by (2.2)

for the exact value y(tk). From the conditions r
(l)
k+1 = 0 (for l = 1, 2, ..., p) follow the equations for determining the

coefficients wi, ci and aij . There are fewer equations than the number of unknowns and usually we consider some
special cases. For each m there exists a method with maximum order p = 2m.

46 A. MARCINIAK, B. SZYSZKA, AND T. HOFFMANN

3. The Kuntzmann-Butcher method of order 8

The Kuntzmann-Butcher method is the implicit four-stage Runge-Kutta method with p = 8. This method can be
written in the form (compare the formulas (4.2) and (4.3) in Sec.4)

yk+1 = yk + h(w1κ1k + w2κ2k + w3κ3k + w4κ4k),

κik = f(tk + cih, yk + h(ai1κ1k + ai2κ2k + ai3κ3k + ai4κ4k)),

ci = ai1 + ai2 + ai3 + ai4, i = 1, 2, 3, 4,

(3.1)

where the coefficients are as follows [12]:

1
2 − ω2 ω1 ω′

1 − ω3 + ω′
4 ω′

1 − ω3 − ω′
4 ω1 − ω5

1
2 − ω′

2 ω1 − ω′
3 + ω4 ω′

1 ω′
1 − ω′

5 ω1 − ω′
3 − ω4

1
2 + ω′

2 ω1 + ω′
3 + ω4 ω′

1 + ω′
5 ω′

1 ω1 + ω′
3 − ω4

1
2 + ω2 ω1 + ω5 ω′

1 + ω3 + ω′
4 ω′

1 + ω3 − ω′
4 ω1

2ω1 2ω′
1 2ω′

1 2ω1

and where

ω1 = 1
8

(
1−

√
30

18

)
, ω′

1 = 1
8

(
1 +

√
30

18

)
,

ω2 = 1
2

√
15+2

√
30

35 , ω′
2 = 1

2

√
15−2

√
30

35 ,

ω3 = ω2

6

(
1 +

√
30
4

)
, ω′

3 =
ω′

2

6

(
1−

√
30
4

)
,

ω4 = ω2

21

(
1 + 5

√
30

8

)
, ω′

4 =
ω′

2

21

(
1− 5

√
30

8

)
,

ω5 = ω2 − 2ω3, ω′
5 = ω′

2 − 2ω′
3.

The local truncation error is

rk+1(h) = ψ(tk, y(tk))h
9 +O(h10). (3.2)

The form of ψ(t, y) is very complicated and cannot be written in a general form for an arbitrary p. Since this form is
very important from the point of view of the interval method developed in the next section, below we present some
useful formulas for p = 8 (in general, m can be equal not only to 4, as in our case, but also to 5, 6, 7 or 8).

To simplify further notation, we denote

f = f(t, y), f
(l)
tpyq =

∂lf

∂tp∂yq
,

where l = p+ q, and

y(l) = y(l)(t), κ
(l)
i = κ

(l)
i (0), λ

(l)
i =

m∑
j=1

aijκ
(l)
j ,

where

κi ≡ κi(h) = f

t+ cih, y(t) + h

m∑
j=1

aijκj(h)

 .

We have

ψ(t, y) =
1

9!

(
y(9) − 9

m∑
i=1

wiκ
(8)
i

)
, (3.3)

CMDE Vol. 10, No. 1, 2022, pp. 44-60 47

where

κ
(1)
i =ci

(
f

(1)
t + f (1)

y f
)
,

κ
(2)
i =c2i

(
f

(2)
t2 + 2f

(2)
ty f + f

(2)
y2 f

2
)
+ 2f (1)

y λ
(1)
i ,

κ
(3)
i =c3i

(
f

(3)
t3 + 3f

(3)
t2yf + 3f

(3)
ty2f

2 + f
(3)
y3 f

3
)
+ 6ci

(
f

(2)
ty + f

(2)
y2 f

)
λ

(1)
i + 3f (1)

y λ
(2)
i ,

κ
(4)
i =c4i

(
f

(4)
t4 + 4f

(4)
t3yf + 6f

(4)
t2y2f

2 + 4f
(4)
ty3f

3 + f
(4)
y4 f

4
)

+ 12c2i

(
f

(3)
t2y + 2f

(3)
ty2f + f

(3)
y3 f

2
)
λ

(1)
i + 12ci

(
f

(2)
ty + f

(2)
y2 f

)
λ

(2)
i

+ 12f
(2)
y2

(
λ

(1)
i

)2

+ 4f (1)
y λ

(3)
i ,

κ
(5)
i =c5i

(
f

(5)
t5 + 5f

(5)
t4yf + 10f

(5)
t3y2f

2 + 10f
(5)
t2y3f

3 +5f
(5)
ty4f

4 + f
(5)
y5 f

5
)

+ 20c3i

(
f

(4)
t3y + 3f

(4)
t2y2f + 3f

(4)
ty3f

2 + f
(4)
y4 f

3
)
λ

(1)
i

+ 30c2i

(
f

(3)
t2y + 2f

(3)
ty2f + f

(3)
y3 f

2
)
λ

(2)
i

+ 60ci

(
f

(3)
ty2 + f

(3)
y3 f

)(
λ

(1)
i

)2

+ 20ci

(
f

(2)
ty + f

(2)
y2 f

)
λ

(3)
i + 60f

(2)
y2 λ

(1)
i λ

(2)
i + 5f (1)

y λ
(4)
i ,

κ
(6)
i =c6i

(
f

(6)
t6 + 6f

(6)
t5yf + 15f

(6)
t4y2f

2 + 20f
(6)
t3y3f

3 + 15f
(6)
t2y4f

4 + 6f
(6)
ty5f

5 + f
(6)
y6 f

6
)

+ 30c4i

(
f

(5)
t4y + 4f

(5)
t3y2f + 6f

(5)
t2y3f

2 + 4f
(5)
ty4f

3 + f
(5)
y5 f

4
)
λ

(1)
i

+ 60c3i

(
f

(4)
t3y + 3f

(4)
t2y2f + 3f

(4)
ty3f

2 + f
(4)
y4 f

3
)
λ

(2)
i

+ 180c2i

(
f

(4)
t2y2 + 2f

(4)
ty3f + f

(4)
y4 f

2
)(

λ
(1)
i

)2

+ 60c2i

(
f

(3)
t2y + 2f

(3)
ty2f + f

(3)
y3 f

2
)
λ

(3)
i

+ 360ci

(
f

(3)
ty2 + f

(3)
y3 f

)
λ

(1)
i λ

(2)
i

+ 120f
(3)
y3

(
λ

(1)
i

)3

+ 30ci

(
f

(2)
ty + f

(2)
y2 f

)
λ

(4)
i

+ 30f
(2)
y2

(
4λ

(1)
i λ

(3)
i + 3

(
λ

(2)
i

)2
)
+ 6f (1)

y λ
(5)
i ,

κ
(7)
i =c7i

(
f

(7)
t7 + 7f

(7)
t6yf + 21f

(7)
t5y2f

2 + 35f
(7)
t4y3f

3 + 35f
(7)
t3y4f

4 + 21f
(7)
t2y5f

5 + 7f
(7)
ty6f

6 + f
(7)
y7 f

7
)

+ 42c5i

(
f

(6)
t5y + 5f

(6)
t4y2f + 10f

(6)
t3y3f

2 + 10f
(6)
t2y4f

3 + 5f
(6)
ty5f

4 + f
(6)
y6 f

5
)
λ

(1)
i

+ 105c4i

(
f

(5)
t4y + 4f

(5)
t3y2f + 6f

(5)
t2y3f

2 + 4f
(5)
ty4f

3 + f
(5)
y5 f

4
)
λ

(2)
i

+ 420c3i

(
f

(5)
t3y2 + 3f

(5)
t2y3f + 3f

(5)
ty4f

2 + f
(5)
y5 f

3
)(

λ
(1)
i

)2

+ 140c3i

(
f

(4)
t3y + 3f

(4)
t2y2f + 3f

(4)
ty3f

2 + f
(4)
y4 f

3
)
λ

(3)
i

+ 1260c2i

(
f

(4)
t2y2 + 2f

(4)
ty3f + f

(4)
y4 f

2
)
λ

(1)
i λ

(2)
i

48 A. MARCINIAK, B. SZYSZKA, AND T. HOFFMANN

+ 840ci

(
f

(4)
ty3 + f

(4)
y4 f

)(
λ

(1)
i

)3

+ 105c2i

(
f

(3)
t2y + 2f

(3)
ty2f + f

(3)
y3 f

2
)
λ

(4)
i

+ 210ci

(
f

(3)
ty2 + f

(3)
y3 f

)(
4λ

(1)
i λ

(3)
i + 3

(
λ

(2)
i

)2
)

+ 1260f
(3)
y3

(
λ

(1)
i

)2

λ
(2)
i

+ 42ci

(
f

(2)
ty + f

(2)
y2 f

)
λ

(5)
i

+ 210f
(2)
y2

(
λ

(1)
i λ

(4)
i + 2λ

(2)
i λ

(3)
i

)
+ 7f (1)

y λ
(6)
i ,

κ
(8)
i =c8i

(
f

(8)
t8 + 8f

(8)
t7yf + 28f

(8)
t6y2f

2 + 56f
(8)
t5y3f

3 + 70f
(8)
t4y4f

4 + 56f
(8)
t3y5f

5 + 28f
(8)
t2y6f

6 + 8f
(8)
ty7f

7 + f
(8)
y8 f

8
)

+ 56c6i

(
f

(7)
t6y + 6f

(7)
t5y2f + 15f

(7)
t4y3f

2 + 20f
(7)
t3y4f

3 + 15f
(7)
t2y5f

4 + 6f
(7)
ty6f

5 + f
(7)
y7 f

6
)
λ

(1)
i

+ 168c5i

(
f

(6)
t5y + 5f

(6)
t4y2f + 10f

(6)
t3y3f

2 + 10f
(6)
t2y4f

3 + 5f
(6)
ty5f

4 + f
(6)
y6 f

5
)
λ

(2)
i

+ 840c4i

(
f

(6)
t4y2 + 4f

(6)
t3y3f + 6f

(6)
t2y4f

2 + 4f
(6)
ty5f

3 + f
(6)
y6 f

4
)(

λ
(1)
i

)2

+ 280c4i

(
f

(5)
t4y + 4f

(5)
t3y2f + 6f

(5)
t2y3f

2 + 4f
(5)
ty4f

3 + f
(5)
y5 f

4
)
λ

(3)
i

+ 3360c3i

(
f

(5)
t3y2 + 3f

(5)
t2y3f + 3f

(5)
ty4f

2 + f
(5)
y5 f

3
)
λ

(1)
i λ

(2)
i

+ 3360c2i

(
f

(5)
t2y3 + 2f

(5)
ty4f + f

(5)
y5 f

2
)(

λ
(1)
i

)3

+ 280c3i

(
f

(4)
t3y + 3f

(4)
t2y2f + 3f

(4)
ty3f

2 + f
(4)
y4 f

3
)
λ

(4)
i

+ 840c2i

(
f

(4)
t2y2 + 2f

(4)
ty3f + f

(4)
y4 f

2
)(

4λ
(1)
i λ

(3)
i + 3

(
λ

(2)
i

)2
)

+ 10080ci

(
f

(4)
ty3 + f

(4)
y4 f

)(
λ

(1)
i

)2

λ
(2)
i + 1680f

(4)
y4

(
λ

(1)
i

)4

+ 168c2i

(
f

(3)
t2y + 2f

(3)
ty2f + f

(3)
y3 f

2
)
λ

(5)
i

+ 1680
(
f

(3)
ty2 + f

(3)
y3 f

)(
λ

(1)
i λ

(4)
i + 2λ

(2)
i λ

(3)
i

)
+ 1680f

(3)
y3

(
2λ

(1)
i λ

(3)
i + 3

(
λ

(2)
i

)2
)
λ

(1)
i + 56ci

(
f

(2)
ty + f

(2)
y2 f

)
λ

(6)
i

+ 56f
(2)
y2

(
6λ

(1)
i λ

(5)
i + 15λ

(2)
i λ

(4)
i + 10

(
λ

(3)
i

)2
)
+ 8f (1)

y λ
(7)
i .

The analytical forms of derivatives of y with respect to t can be obtained with Mathematica, Matlab, Derive or

similar software. One can also try to obtain with such a software the analytical formulas for κ
(l)
i , presented above,

but in our opinion the application of symbols λ
(l)
i shorts these formulas significantly.

Although the analytical forms of the functions κ
(8)
i and y(9) are complicated, having such formulas the interval

extensions of them can be found immediately. Hence, the interval extension of ψ(t, y), necessary in our interval
method, developed in the next section, can be determined easily. It should be noted that the necessity of calculating

κ
(8)
i and y(9) follows directly from the definition of classical Runge-Kutta methods (see, e.g., [6]) and it causes that

our method is very expensive. Its effectiveness cannot be compared with very effective methods based on the Taylor
series (see, e.g., [2–4, 7, 16, 21, 34–36]), where automatic differentiation is used to compute y(l).

CMDE Vol. 10, No. 1, 2022, pp. 44-60 49

4. An interval version of Kuntzmann-Butcher method

Let us denote:

• ∆t and ∆y – bounded sets in which the function f (t, y), occurring in (2.1), is defined, i.e.,

∆t = {t ∈ R : 0 ≤ t ≤ a} , ∆y =
{
y ∈ R : b ≤ y ≤ b

}
,

• F (T, Y) – an interval extension of f (t, y), where an interval extension of the function

f : R× R ⊃ ∆t ×∆y → R

we call a function

F : IR× IR ⊃ I∆t × I∆y → IR

such that

(t, y) ∈ (T, Y) ⇒ f (t, y) ∈ F (T, Y) ,

and where IR denotes the space of real intervals,
• Ψ(T, Y) – an interval extension of ψ (t, y) (see (3.3)).

Let us assume that:

• the function F (T, Y) is defined and continuous for all T ⊂ ∆t and
Y ⊂ ∆y

1,
• the function F (T, Y) is monotonic with respect to inclusion, i.e.,

T1 ⊂ T2 ∧ Y1 ⊂ Y2 ⇒ F (T1, Y1) ⊂ F (T2, Y2) ,

• for each T ⊂ ∆t and for each Y ⊂ ∆y there exists a constant Λ > 0 such that

w (F (T, Y)) ≤ Λ (w (T) + w (Y)) , (4.1)

where w (A) denotes the width of the interval A,
• the function Ψ (T, Y) is defined for all T ⊂ ∆t and Y ⊂ ∆y,
• the function Ψ (T, Y) is monotonic with respect to inclusion.

Taking into account (3.1) and (3.2), for t0 = 0 and y0 ∈ Y0, where the interval Y0 is given, we propose the following
interval version of Kuntzmann-Butcher method:

Yk+1 = Yk + h (w1K1k + w2K2k + w3K3k + w4K4k)+

+ (Ψ (Tk, Yk) + [−α, α])h9, k = 0, 1, . . . , n− 1,
(4.2)

where

Kik =F (Tk + cih,

Yk + h (ai1K1k + ai2K2k + ai3K3k + ai4K4k)) ,

α =Mh0,

∣∣∣∣∣r
(10)
k+1 (θh)

10!

∣∣∣∣∣ ≤M,

0 < θ < 1, 0 < h ≤ h0,

(4.3)

and where h0 denotes a given number (initial value of step size). Note that the constant M , and hence also α, is
calculated a priori at the start of the integration. Such an assumption occurs also in explicit interval Runge-Kutta
methods developed by Shokin [37]. One can consider an evaluation ofM at each step of integration, but our numerical
experiments show that the influence of α for enclosures is very small and it is not worth trying to do it (taking into
account that such an approach increases the number of calculations).

1The function F (T, Y) is continuous at(T0, Y0) if for every ϵ > 0 there is a positive number δ = δ(ϵ) such that d (F (T, Y) , F (T0, Y0)) < ϵ

whenever d(T, T0) < δ and d(Y, Y0) < δ. Here, d denotes the interval metric defined by d (X1, X2) = max
{
|X1 −X2| ,

∣∣X1 −X2

∣∣}, where

X1 =
[
X1, X1

]
and X2 =

[
X2, X2

]
are two intervals.

50 A. MARCINIAK, B. SZYSZKA, AND T. HOFFMANN

The step size h of the method (4.2)–(4.3), which fulfills the condition 0 < h ≤ h0, is

h =
η

n
,

where

η = min {η0, η1, η2, η3, η4} , (4.4)

and where for Y0 ⊂ ∆y and y0 ∈ Y0 the numbers ηi > 0 (i = 1, 2, 3, 4) are such that

Y0 + ηiciF (∆t,∆y) ⊂ ∆y, i = 1, 2, 3, 4,

and the number η0 > 0 fulfills the condition

Y0 + η0

4∑
i=1

wiF (∆t,∆y) + (Ψ (∆t,∆y) + [−α, α])h8
0 ⊂ ∆y.

In [25] we have described a procedure, which in interval floating-point arithmetic calculates the number η = tmax for
any interval Runge-Kutta method (explicit or implicit). Unfortunately, in many problems it appears that η is very
small (see examples in Sec. 5). Although one can try to use the method (4.2)–(4.3) over η, but the value of η given
by (4.4) is necessary in the proof of Theorem 4.1 (see the end of this section).

Finally, we divide the interval [0, η] into n parts by the points tk = kh (k = 0, 1, ..., n), whereas the intervals Tk,
which appear in the method (4.2)–(4.3), are selected in such a way that

tk = kh ∈ Tk ⊂ [0, η] .

Of course, the above formula does not define Tk. In practice, we usually take Tk = [kh, kh] or Tk = Tk−1 + [h, h]
with T0 = [0, 0], where x denotes the largest machine number less or equal to x, and x denotes the smallest machine
number greater or equal to x. We assume here a constant step size h, but one can consider a variable step size to
control the widths of enclosures for solution (this problem will be taken into account in our further research).

From (4.3) it follows that in each step k we have to solve a nonlinear equation of the form

X = G (T,X) ,

where

T ∈ I∆t ⊂ IR, X ∈ I∆y ⊂ IR, G : I∆t × I∆y → IR.

If we assume that G is a contraction (contractive) mapping2, then the well-known fixed-point theorem implies that
the iteration

X(l+1) = G(T,X(l)), l = 0, 1, . . . , (4.5)

is convergent to X∗, i.e., lim
l→∞

X(l) = X∗, for an arbitrary choice of X(0) ∈ I∆y. For equation (4.3), the process (4.5)

is of the form

K
(l+1)
ik = F

Tk + cih, Yk + h
4∑

j=1

aijK
(l)
jk

 ,

i = 1, 2, 3, 4 k = 0, 1, . . . , n− 1, l = 0, 1, . . . ,

(4.6)

where

K
(0)
ik = F (Tk + cih, Yk) .

2Let us recall that G is called a contraction mapping if

d(G(T,X(1)), G(T,X(2))) ≤ αd(X(1), X(2)),

where d is metric, α < 1 denotes a constant, and where X(1) and X(2) are two arbitrary intervals.

CMDE Vol. 10, No. 1, 2022, pp. 44-60 51

The process (4.6) may be modified to

K
(l+1)
ik = F

Tk + cih, Yk + h

i−1∑
j=1

aijK
(l+1)
jk +

4∑
j=i

aijK
(l)
jk

 ,

which should reduce the number of calculations. The above processes are stopped when∣∣∣K(l+1)
ik −K

(l)
ik

∣∣∣
K

(l+1)
ik

< ϵ and

∣∣∣K(l+1)

ik −K
(l)

ik

∣∣∣
K

(l+1)

ik

< ϵ,
∣∣∣K(l+1)

ik

∣∣∣ , ∣∣∣K(l+1)

ik

∣∣∣ ̸= 0,

for K
(p)
ik =

[
K

(p)
ik ,K

(p)

ik

]
(p = l, l + 1). Here, ϵ denotes a prescribed accuracy.

For method (4.2), we have

Theorem 4.1. For the exact solution y(t) of the initial value problem (2.1) we have y(tk) ∈ Yk (k = 0, 1, ..., n), where
Yk are obtained from (4.2).

The proof of this theorem for the four-stage implicit interval Runge-Kutta method (4.2)–(4.3) can be found in [11, 25].
Similar theorems for other implicit and explicit interval Runge-Kutta methods are presented in [11, 22, 25, 29, 37]. It
should be noted that Theorem 4.1 gives only a theoretical aspect of the method (the rounding-errors and the iteration

to compute K
(l+1)
ik to an accuracy ϵ, occurring into practice, are not taken into account).

In [11, 25] we have also proved theorems regarding estimations of w(Yk) for explicit and implicit interval Runge-
Kutta methods. In these theorems for implicit methods, the initial step size h0 must fulfill some additional conditions
connected with the coefficients aij . Since for our four-stage method the values of these coefficients are known, we can
formulate the theorem as follows:

Theorem 4.2. If Yk (k = 1, 2, ..., n) are obtained on the basis of the method (4.2)− (4.3), then for h0 such that

h0 < min

{
1,

1

0.502Λ + 0.025Λ2 + 0.010Λ3 + 0.001Λ4

}
,

where Λ is a constant occurring in (4.1), we have

w (Yk) ≤ Qh8 +Rw (Y0) + S max
l=1,2,...,n

w (Tl) ,

where Q,R and S denote some nonnegative constants.

Theorem 4.2 gives a theoretical estimation of the width of Yk. In practice, this width can be calculated easily for
each Yk found, as we do in all examples presented in the next section.

5. Numerical examples

The coefficients wi, ci and aij in (3.1) are real numbers, and they are not exactly represented in floating-point
arithmetic. In the method (4.2) – (4.3) they are represented in the form of the intervals:

c1 = 0.0694318442029737[1, 2], c2 = 0.3300094782075718[6, 7],

c3 = 0.6699905217924281[3, 4], c4 = 0.9305681557970262[8, 9],

w1 =w4 = 0.1739274225687269[2, 3],

w2 =w3 = 0.3260725774312730[7, 8],

a11 =a44 = 0.0869637112843634[6, 7],

a12 = −0.026604180084998[80, 79], a21 = 0.1881181174998680[7, 8],

a13 = 0.0126274626894047[2, 3], a14 = −0.0035551496857956[9, 8],

a22 =a33 = 0.1630362887156365[3, 4],

52 A. MARCINIAK, B. SZYSZKA, AND T. HOFFMANN

Table 1. The interval solution of the problem (5.1)

t = kh ∈ Tk Yk Width

0.2 [8.1873075307798185E−0001,

8.1873075307798187E−0001]3
≈ 1.08 · 10−17

0.6 [5.4881163609402641E−0001,

5.4881163609402645E−0001]

≈ 3.54 · 10−17

1.0 [3.6787944117144228E−0001,

3.6787944117144236E−0001]

≈ 6.54 · 10−17

a23 = −0.027880428602470[90, 89], a24 = 0.0067355005945381[5, 6],

a31 = 0.1671919219741887[7, 8], a32 = 0.3539530060337439[6, 7],

a34 = −0.0141906949311411[5, 4], a41 = 0.1774825722545226[1, 2],

a42 = 0.3134451147418683[4, 5], a43 = 0.3526767575162718[6, 7].

This notation means that in our computer calculations we have taken, for example,

w1 =0.1739274225687269[2, 3]

=[0.17392742256872692, 0.17392742256872693],

where, as previously, x denotes the largest machine number less or equal to x (similarly, x denotes the smallest machine
number greater or equal to x). Such intervals enclosure the exact (not representable) values. Although we cannot
assert that the left and the right ends of intervals differ internally by one unit in the last (binary) place, but such
intervals are satisfactory for the Delphi Pascal Extended type used in our calculations.

In the examples presented below, we compare results obtained by our interval version of Kutzmann-Butcher
method with exact solutions (if such solutions are known) and with results obtained by the VNODE-LP package
[34], which uses an interval method based on high-order Taylor series. We have used our own implementation of
floating-point interval arithmetic in Delphi Pascal. This implementation has been written in the form of a unit called
IntervalArithmetic32and64 (the current version of this unit is presented in [27]). This unit takes advantage of the
Delphi Pascal floating-point Extended type. All programs written in Delphi Pascal for the examples presented can be
found in [26]. In [26] it is also included a Delphi Pascal program for solving any initial value problem by our interval
version of Kutzmann-Butcher method. This program requires the user to write a dynamic link library with definitions
of appropriate interval functions.

In the examples considered we start with a simple initial value problem, and then we consider more complicated
problems, including stiff differential equations.

Example 5.1. Let us consider the simple initial value problem

y′ = −y, y(0) = 1, (5.1)

with the exact solution y = exp(−t). On the basis of (4.4) for

∆t = {t ∈ R : 0 ≤ t ≤ 10} ,
∆y = {y ∈ R : 0.000046 ≤ y ≤ 1} ,
h0 = 0.01, M = 2.81 · 10−10,

we have found tmax = η = 1. Taking h = 0.01, and assuming ϵ = 10−18 we have obtained intervals presented in Table
1. The number of iterations (in the equation (4.6)) in each step has not exceeded 8.
Comparing these intervals with the exact solution we see high compatibility. For instance, the exact solution at t = 1
is equal to

exp(−1) ≈ 0.36787944117144232.

CMDE Vol. 10, No. 1, 2022, pp. 44-60 53

The VNODE-LP package at t = 1 produces very quickly the output

0.367879441171442[1, 6],

what can be written in the form

[3.678794411714421E−0001, 3.678794411714426E−0001].

The width of this interval is 5 · 10−16. Comparing this result with the widths presented in Table 1 we see that our
method gives tighter enclosures of the exact solution. Unfortunately, our method is multiple more expensive from the
point of view of execution time. But ”something for something”.

Table 2. Widths of interval solutions for different step sizes for the problem (5.1) and the method
(4.2)–(4.3)

h k Yk(1.0) Width
0.0001 10000 [3.6787944117144132E−0001,

3.6787944117144305E−0001]

≈ 1.71 · 10−15

0.0005 2000 [3.6787944117144210E−0001,

3.6787944117144249E−0001]

≈ 3.80 · 10−16

0.001 1000 [3.6787944117144220E−0001,

3.6787944117144242E−0001]

≈ 2.15 · 10−16

0.005 200 [3.6787944117144227E−0001,

3.6787944117144236E−0001]

≈ 8.15 · 10−17

0.01 100 [3.6787944117144228E−0001,

3.6787944117144236E−0001]

≈ 6.54 · 10−17

0.05 20 [3.6787944117144229E−0001,

3.6787944117144235E−0001]

≈ 5.22 · 10−17

0.1 10 [3.6787944117144228E−0001,

3.6787944117144234E−0001]

≈ 5.23 · 10−17

0.0001

0.0005

0.001

0.005

0.01

0.05

0.1

0 5E-16 1E-15 1,5E-15 2E-15

width

h

Figure 1. Widths of interval solutions for different step sizes for the problem (5.1) and the method
(4.2)–(4.3)

3All the results are presented in the form obtained by our programs [26]

54 A. MARCINIAK, B. SZYSZKA, AND T. HOFFMANN

It may be interesting that in this example for smaller step sizes h we obtain intervals with greater widths, while
for some h greater than 0.01 the widths are smaller (see Table 2 and Figure 1, and compare h = 0.1 and 0.05 with
other values of step sizes). This can be explained by a greater number of calculations for smaller h, which causes a
growth of rounding errors. Thus, the step size h should be suitably selected for each problem considered. Of course,
too small step size connected with a greater number of calculations has an effect on increase the execution time (see
Figure 2, from which it follows that, for example, for h = 0.0001 the CPU time is approximately 1000 times longer
than for h = 0.1). Moreover, it can be observed that the execution time is approximately proportional to the number
of steps.

�
In the above simple example, we have f(t, y) = −y, and hence a lot of derivatives f

(l)
tpyq (l = p+ q), which are needed

to find Ψ(Tk, Yk), are equal to zero (only f
(1)
y equals −1). In general, one can put a lot of effort into finding all these

derivatives. Mathematical software (e.g., Derive, Matlab, Mathematica) can be very helpful to find analytical forms
of them, and then their interval extensions can be determined easily.

0.0001 0.0005 0.001 0.005 0.01 0.05 0.1

0,1

1

10

100

1000

10000

execution time

h

Figure 2. Execution times for different step sizes for the problem (5.1) (execution time = 1 unit for
h = 0.1; on Lenovo Z51 computer with Intel R⃝CoreTM i7-5500U 2,4 GHz processor; 1 unit means
0.633 sec)

Example 5.2. The initial value problem

y′ =
1

exp(t/4)

(
2 cos 2t− sin2 2t

4y exp(t/4)
− sin 2t

4y

)
, y(0) = 1, (5.2)

has the exact solution

y = 1 +
sin 2t

exp(t/4)
.

If we take

∆t = {t ∈ R : 0 ≤ t ≤ 2} ,
∆y =

{
y ∈ R : 0.4 ≤ y ≤ 1.9

}
,

h0 = 0.02, M = 3.87 · 10−4,

than using the procedure described in Sec. 4, we can find tmax ≈ 0.18. For h = 0.01 and ϵ = 10−18 we have obtained
the results presented in Table 3 (with the maximum number of iterations not greater then 5 in each step).
At t = 0.18 the exact solution (which is, of course, within our interval) is equal to

1 + sin(0.36) / exp(0.045) ≈ 1.33677327992567203,

CMDE Vol. 10, No. 1, 2022, pp. 44-60 55

Table 3. The interval solution of the problem (5.2)

t = kh ∈ Tk Yk Width

0.06 [1.1179299247165512E+0000,

1.1179299247165513E+0000]

≈ 5.96 · 10−18

0.12 [1.2306774521289623E+0000,

1.2306774521289624E+0000]

≈ 1.20 · 10−17

0.18 [1.3367732799256720E+0000,

1.3367732799256721E+0000]

≈ 1.79 · 10−17

while the VNODE-LP package gives

1.33677327992567[08, 36].

As in Example 5.1, we can observe that our method gives tighter enclosures.

�
One can find many examples for comparing numerical methods for the initial value problem in [8] and [9]. Let us

consider two problems from these references (chosen at random).

Example 5.3. For the initial value problem (the problem A5 from [9, p. 23])

y′ =
y − t

y + t
, y(0) = 4, (5.3)

let us take

∆t = {t ∈ R : 0 ≤ t ≤ 4} ,
∆y =

{
y ∈ R : 4 ≤ y ≤ 6.3

}
,

h0 = 0.01, M = 1.96 · 10−3.

For these data and our method, we have found tmax ≈ 1.46. Using our interval version of Kutzmann-Butcher method
with h = 0.01 and ϵ = 10−18 we have obtained intervals presented in Table 4 (with the maximum number of iterations
not greater than 6 in each step).

Table 4. The interval solution of the problem (5.3)

t = kh ∈ Tk Yk Width

0.2 [4.1906101485118331E+0000,

4.1906101485118332E+0000]

≈ 3.51 · 10−17

0.6 [4.5241459756042591E+0000,

4.5241459756042593E+0000]

≈ 1.10 · 10−16

1.0 [4.8075923778847061E+0000,

4.8075923778847064E+0000]

≈ 1.91 · 10−16

1.4 [5.0513616875327934E+0000,

5.0513616875327937E+0000]

≈ 2.79 · 10−16

At t = 1.4 the VNODE-LP package produces the output

5.051361687532[7871, 8014],

what means that the interval width is approximately equal to 10−13, while in our method we have 10−16. But, on the
other hand, the VNODE-LP package gives results much faster than our method.

56 A. MARCINIAK, B. SZYSZKA, AND T. HOFFMANN

�
The interval version of Kutzmann-Butcher method can be also applied in the case of data uncertainties.

Example 5.4. Let us consider Example 5.3, but now let us assume that Y0 = [3.99, 4.01]. The intervals obtained are
presented in Table 5.

Table 5. The interval solution of the problem (5.3) with Y0 = [3.99, 4.01]

t = kh ∈ Tk Yk Width

0.2 [4.1796358815223235E+0000,

4.2015893070901247E+0000]

≈ 2.20 · 10−2

0.6 [4.5113421918621374E+0000,

4.5369639637013887E+0000]

≈ 2.56 · 10−2

1.0 [4.7930841568533574E+0000,

4.8221237507052542E+0000]

≈ 2.90 · 10−2

1.4 [5.0352481519527752E+0000,

5.0675071277936416E+0000]

≈ 3.23 · 10−2

Taking into account that the width of Y0 is 0.02, we see that the method (4.2)–(4.3) gives quite good enclosures.

�
Implicit methods are recognized as appropriate for stiff differential equations (see, e.g., [6] and [13]). Thus, in the

last example, we consider such a problem. It should be mentioned that although in section 4 we have presented our
method in the scalar case (for simplicity), there is no problem to expand the method to the multi-dimensional case.

Example 5.5. Let us take the initial value problem E2 given in [8, p. 32] and [9, p. 21]:

y′1 = y2, y′2 = 5(1− y2
1)y2 − y1,

y1(0) = 2, y2(0) = 0.
(5.4)

Assuming

∆t = {t ∈ R : 0 ≤ t ≤ 1} ,
∆y =

{
(y1, y2) ∈ R2 : 1.8 ≤ y1 ≤ 2.1, −0.2 ≤ y2 ≤ 0.1

}
,

h0 = 0.001, M1 = 3.32 · 103, M2 = 1.82 · 105,

we have found tmax ≈ 0.053. Taking h = 0.001 and ϵ = 10−18 at t = 0.05, i.e. after 50 steps, we have obtained (with
the number of iterations not exceeding 8 at each step)

Y 1 =[1.9980234267738453E+0000, 1.9980234267738454E+0000],

Y 2 =[−7.0355564016027207E−0002,−7.0355564016027200E−0002],
(5.5)

with widths 1.13 · 10−17 and 5.83 · 10−18, respectively, while the VNODE-LP package produces

Y1 =1.99802342677384[48, 55],

Y2 =− 0.070355564016027[1, 3].

As in the previous examples, our enclosures are tighter than those from VNODE-LP.
It may be interesting that the conventional Kutzmann-Butcher method gives results placed inside the intervals (5.5),
namely

Y1 =1.99802342677384539E+0000,

Y2 =− 7.03555640160272031E−0002,
(5.6)

CMDE Vol. 10, No. 1, 2022, pp. 44-60 57

but, of course, from these results, we have no information on rounding errors. If in our interval method we assume
that Ψ = 0 and α = 0 (for both Y1 and Y2), then at t = 0.05 we obtain

Y 1 =[1.9980234267738453E+0000, 1.9980234267738454E+0000],

Y 2 =[−7.0355564016027206E−0002,−7.0355564016027200E−0002],
(5.7)

with widths 5.96 · 10−18 and 5.08 · 10−18, respectively. These intervals include rounding errors, but we have still no
information on the truncation error included in them. Both these errors contain the intervals presented previously. On
the other hand, if we compare the widths of intervals (5.5) and (5.7), we see that the truncation error of the method
has an insignificant influence on the results obtained.
It may be also interesting to compare the cost of guaranteed bounds versus estimates. Using floating-point interval
arithmetic, to include only the rounding errors, i.e., to obtain (5.7), the cost is no greater than eight times (it follows
from the definition of multiplication and division of intervals in this arithmetic see, e.g., [14] for details). This cost is
significantly increased due to calculations of Ψ and α, but, on the other hand, to well estimate (5.6) one has to put a
lot of efforts into doing it.
Unfortunately, although our method at t = 0.05 gives tighter intervals than VNODE-LP, this method cannot be
recommended for solving the problems like (5.4). Taking into account that the equations (5.4) present a periodic
problem with a period of about 12, the value of tmax ≈ 0.053 is much too short to be useful. On the other hand,
the VNODE-LP package can integrate this problem for at least a period. Another problem for solving a system of
differential equations by interval methods consists in controlling the wrapping effect (for a definition of wrapping effect
see, e.g., [14]). It has not been executed yet in our method.

�
In our method, the widths of intervals are greater in each next integration step. Such a situation cannot be accepted

in the case if from a theoretical justification it follows that the interval solution is contractive. But there is a way to
manage such a problem with our method.

Example 5.6. Consider the problem

y′ = −y, y(0) ∈ [1, 2], (5.8)

for which the exact solution at t = 1 is y(1) ∈ [1/e, 2/e]. It means that the initial interval [1, 2] at t = 0 contracts by
the factor 1/e to [1/e, 2/e] at t = 1. The VNODE-LP package produces for this problem quite good interval at t = 1:

[0.3678794411714420, 0.7357588823428852]. (5.9)

Unfortunately, using directly our method with

∆t = {t ∈ R : 0 ≤ t ≤ 10} ,
∆y = {y ∈ R : 0.000046 ≤ y ≤ 2} ,
h0 = 0.01, M = 2.81 · 10−10,

and taking h = 0.01, at t = 1 we obtain the interval

[−8.0783912487742413E−0001, 1.9114774483917511E+0000]

of the width 2.72, approximately. Although the exact interval is inside the interval obtained, such a solution is not
useful. Nevertheless, we can solve the problem (5.8) twice with initial point intervals Y0 = [1, 1] and Y0 = [2, 2]. For
the first point initial interval the solution at t = 1 is (see Example 5.1)

[3.6787944117144228E−0001, 3.6787944117144236E−0001]. (5.10)

Taking ∆t, h0,M and h the same as previously, and

∆y = {y ∈ R : 0.000095 ≤ y ≤ 2} ,
for the second initial point interval at t = 1 we obtain

[7.3575888234288457E−0001, 7.3575888234288471E−0001]. (5.11)

58 A. MARCINIAK, B. SZYSZKA, AND T. HOFFMANN

If we take the lower bound of interval (5.10) and upper one of interval (5.11), then we obtain the interval

[3.6787944117144228E−0001, 7.3575888234288471E−0001],

which can be accepted as an enclosure of interval solution to the problem (5.8) at t = 1. One can observe that the
last interval is a little bit tighter than the interval (5.9).

�

6. Conclusions

The main conclusion from the examples presented in this paper and many others carried out by the authors
using this and other interval methods is that the interval methods executed in floating-point interval arithmetic yield
enclosures of solutions in the form of intervals which contain all possible numerical errors and data uncertainties. Our
interval version of the Kutzmann-Butcher method gives very good enclosures of the exact solutions to the initial value
problem. The examples presented show that these enclosures are tighter than those obtained by the methods based on
high-order Taylor series, as implemented in the VNODE-LP package. This remark does not depreciate these methods
(which in our opinion are the best in general), but only points out that sometimes it is worth to consider other interval
methods realized in interval floating-point arithmetic. However, the cost of our method is greater than the cost of those
methods, but “something for something”. A certain inconvenience of our method concerns the integration interval
which cannot be too large (see the last example), but this follows directly from the theory of interval Runge-Kutta
methods (see (4.4)). The method also required analytical forms of a number of partial derivatives of the right-hand
function occurring in (2.1) (to construct their interval extensions), but these derivatives can be obtained easily by one
of the well-known mathematical software packages. Although in our method the widths of intervals are greater in each
next integration step, the method can be also used successfully in the case of contractive interval solutions (see the
last example).

Acknowledgements

The paper was supported by the Poznan University of Technology (Poland) through the Grant No. 09/91/DSPB/0600.

References

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, New York, 1983, Doi:
10.1016/C2009-0-21898-8.

[2] H. Bauch, On the iterative inclusion of solutions in initial-value problems for ordinary differential equations,
Computing, 22 (1979), 339–354, Doi: 10.1007/BF02265314.

[3] M. Berz and G. Hoffstätter, Computation and application of Taylor polynomials with interval remainder bounds,
Reliable Computing, 4 (1998), 83–97, Doi: 10.1023/A:1009958918582.

[4] M. Berz and K. Makino, Performance of Taylor model methods for validated integration of ODEs, in: J. Don-
garra, and K. Madsen, and J. Wasniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific
Computing, (PARA 2004), Lecture Notes in Computer Science, Springer, Berlin, Heidelberg 3732 (2006), 65–73,
Doi: 10.1007/11558958-8.

[5] J. C. Butcher, Implicit Runge-Kutta processes, Mathematics of Computation, American Mathematical Society,
18 (1964), 50–64, Doi: 10.1090/S0025-5718-1964-0159424-9.

[6] , J. C. Butcher, The numerical analysis of Ordinary Differential Equations: Runge-Kutta and general linear
methods, Wiley-Interscience, New York, 1987.

[7] G. F. Corliss and R. Rihm, Validating an a priori enclosure using high-order Taylor series, in Scientific Comput-
ing, Computer Arithmetic, and Validated Numerics 90 (SCAN-95), Mathematical Research, Akademie Verlag,
1996, 228–238.

[8] W. H. Enright, and T. E. Hull, and B. Lindberg, Comparing numerical methods for stiff systems of O.D.E:s, BIT
Numerical Mathematics, Springer 15 (1975), 10–48, Doi: 10.1007/BF01932994.

[9] W. H. Enright, and J. D. Pryce, Two FORTRAN packages for assessing initial value methods, ACM Transactions
on Mathematical Software (TOMS), ACM, 13(1) (1987), 1–27, Doi: 10.1145/23002.27645.

REFERENCES 59

[10] K. Gajda, M. Jankowska, A. Marciniak, and B. Szyszka, A survey of interval Runge-Kutta and multistep methods
for solving the Initial Value Problem, in R. Wyrzykowski, and J. Dongarra, and K. Karczewski, and J. Wasniewski,
(eds) Parallel Processing and Applied Mathematics, (PPAM 2007), Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg 4967 (2008), 1361–1371, Doi: 10.1007/978-3-540-68111-3-144.

[11] K. Gajda, A. Marciniak, and B. Szyszka, Three-and four-stage implicit interval methods of Runge-Kutta type,
Computational Methods in Science and Technology, 6 (2000), 41–59.

[12] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I – nonstiff problems , Springer-
Verlag Berlin Heidelberg, 8 1993, Doi: 10.1007/978-3-540-78862-1.

[13] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II – stiff and differential - algerbaic problems,
Springer-Verlag Berlin Heidelberg, 14 1996, Doi: 10.1007/978-3-642-05221-7.

[14] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, Numerical toolbox for verified computing I. Basic numeri-
cal problems, theory, algorithms, and Pascal-XSC programs, Springer-Verlag Berlin Heidelberg, 21 1993, Doi:
10.1007/978-3-642-78423-1.

[15] E. R. Hansen, Topics in interval analysis, Oxford University Press, London, 1969.
[16] K. R. Jackson and N. S. Nedialkov, Some recent advances in validated methods for IVPs for ODEs, Applied

Numerical Analysis and Computational Mathematics, 42 (2002), 269–284.
[17] M. Jankowska and A. Marciniak, Implicit interval multistep methods for solving the initial value problem, Com-

putational Methods in Science and Technology, 8(1) (2002), 17–30.
[18] M. Jankowska and A. Marciniak, On explicit interval methods of Adams-Bashforth type, Computational Methods

in Science and Technology, 8(2) (2002), 46–57.
[19] M. Jankowska and A. Marciniak, On two families of implicit interval methods of Adams-Moulton type, Compu-

tational Methods in Science and Technology, 12(2) (2006), 109–114.
[20] S. A. Kalmykov, Y. I. Shokin, and Z. H. Juldashev, On the solution of ordinary differential equations by interval

methods [in Russian], Doklady Akad. Nauk SSSR 230, 6 (1976), 1267–1270.
[21] R. J. Lohner, Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value

problems, in J. R. Cash, and I. Gladwell, (eds), Computational Ordinary Differential Equations, Clarendon Press,
Oxford, 1992, 425–435.

[22] A. Marciniak, Implicit interval methods for solving the initial value problem, Numerical Algorithms, Springer, 37
(2004), 241–251.

[23] A. Marciniak,Multistep interval methods of Nyström and Milne-Simpson types, Computational Methods in Science
and Technology, 13(1) (2007), 23–40.

[24] A. Marciniak, On multistep interval methods for solving the initial value problem, Journal of Computational and
Applied Mathematics, 199(2) (2007), 229–237.

[25] A. Marciniak, Selected interval methods for solving the initial value problem,
http://www.cs.put.poznan.pl/amarciniak/IMforIVP-book/IMforIVP.pdf, Publishing House of Poznan Uni-
versity of Technology, Poznan, 2009.

[26] A. Marciniak, Delphi Pascal programs for an interval Kutzmann-Butcher method,
http://www.cs.put.poznan.pl/amarciniak/IKBM-Examples/, 2016.

[27] A. Marciniak, Interval arithmetic module,
http://www.cs.put.poznan.pl/amarciniak/IAUnits/IntervalArithmetic32and64.pas, 2016.

[28] A. Marciniak, M. Jankowska, and T. Hoffmann, On interval predictor-corrector methods, Numerical Algorithms,
75(3) (2017), 777–808.

[29] A. Marciniak and B. Szyszka, One-and two-stage implicit interval methods of Runge-Kutta type, Computational
Methods in Science and Technology, 5 (1999), 53–65.

[30] R. E. Moore, The automatic analysis and control of error in digital computation based on the use of interval
numbers, in L. B. Rall (ed) Error in Digital Computation, John Wiley & Sons, New York, 1 1965, 61–130.

[31] R. E. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs, 1966.
[32] R. E. Moore, Methods and applications of interval analysis, SIAM Studies in applied and numerical mathematics,

Soc. for Industrial & Applied Math, Philadelphia, 1979, Doi: 10.1137/1.9781611970906.

60 REFERENCES

[33] N. S. Nedialkov, Interval tools for ODEs and DAEs, Technical Report CAS 06-09-NN, Department of Computing
and Software, McMaster University, Hamilton, 2006.

[34] N. S. Nedialkov, VNODE-LP - a validated solver for initial value problems in Ordinary Differential Equations,
Technical Report CAS 06-06-NN, Department of Computing and Software, McMaster University, Hamilton, 2006.

[35] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss, Validated solutions of initial value problems for Ordinary
Differential Equations, Applied Mathematics and Computation, Elsevier, 105(1) (1999), 21–68.

[36] K. Nickel, Using interval methods for the numerical solution of ODE’s, ZAMM-Journal of applied Mathematics
and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 66 (1986), 513–523.

[37] Y. I. Shokin, Interval analysis [in Russian], Nauka, Novosibirsk, 1981.

	1. Introduction
	2. Implicit Runge-Kutta methods
	3. The Kuntzmann-Butcher method of order 8
	4. An interval version of Kuntzmann-Butcher method
	5. Numerical examples
	6. Conclusions
	Acknowledgements
	References

