- [1] A. Abdeldaim, A. A. El-Deeb, P. Agarwal, and H. A. El-Sennary, On some dynamic inequalities of Steffensen type on time scales, Math. Methods Appl. Sci., 41(12) (2018), 4737-4753.
- [2] P. Agarwal and J. E. Restrepo, An extension by means of ω-weighted classes of the generalized Riemann-Liouville k-fractional integral inequalities, J. Math. Ineq., 14 (1) (2020), 35-46.
- [3] P. Agarwal, J. Tariboon, and S. K. Ntouyas, Some generalized Riemann-Liouville k-fractional integral inequalities, J. Inequal. Appl, 2016 (2016), 122.
- [4] M. A. Ali, H. Budak, and I. B. Sial, Generalized fractional integral inequalities for product of two convex functions, Italian J. Pure Appl. Math., 45 (2021), 689698.
- [5] M. A. Ali, H. Budak, M. Abbas, M. Z. Sarikaya, and A. Kashuri, Hermite-Hadamard type inequalities for h-convex functions via generalized fractional integrals, J. Math. Extension, 14(4), (2020), 187-234.
- [6] M. Alomari, M. Darus, and U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (1) (2010), 225–232.
- [7] G. A. Anastassiou, General fractional Hermite–Hadamard inequalities using m-convexity and (s, m)-convexity, Frontiers in Time Scales and Inequalities, 237 (2016), 237-255.
- [8] A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Math., 28 (1994), 7-12.
- [9] H. Budak and P. Agarwal, New generalized midpoint type inequalities for fractional integral, Miskolc Math. Notes, 20 (2) (2019), 781–793.
- [10] H. Budak, F. Ertu˘gral, and E. Pehlivan, Hermite-Hadamard type inequalities for twice differantiable functions via generalized fractional integrals, Filomat, 33 (15) (2019), 4967–4979.
- [11] J. de la Cal, J. Carcamob, and L. Escauriaza, A general multidimensional Hermite-Hadamard type inequality, J. Math. Anal. Appl., 356 (2009), 659–663.
- [12] H. Chen and U.N. Katugampola, Hermite–Hadamard and Hermite–Hadamard–Fej´er type inequalities for gener- alized fractional integrals, J. Math. Anal. Appl., 446 (2) (2017), 1274–1291.
- [13] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. Online:[http://rgmia.org/papers/monographs/Master2.pdf].
- [14] S.S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11 (5) (1998), 91–95.
- [15] G. Farid, A. Ur Rehman, and M. Zahra, On Hadamard type inequalities for k-fractional integrals, Konurap J. Math., 4(2) (2016), 79–86.
- [16] G. Farid; A. Ur Rehman and Q. Ul Ain, K-fractional integral inequalities of Hadamard type for ( h m)-convex functions, Comput. Methods Differ. Equ., 8 (1) (2020), 119-140.
- [17] M. Iqbal, M.I. Bhatti, and K. Nazeer, Generalization of Inequalities Analogous to Hermite-Hadamard Inequality via Fractional Integrals, Bull. Korean Math. Soc., 52(3) (2015), 707716.
- [18] I˙. I˙¸scan and S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Compt., 238 (1) (2014), 237-244.
- [19] I˙. I˙¸scan, On generalization of different type integral inequalities for s-convex functions via fractional integrals, Math. Sci. Appl. E Notes, 2(1), 2014, 55-67.
- [20] M. Jleli and B. Samet, On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function, J. Nonlinear Sci. Appl., 9 (3) (2016), 1252-1260.
- [21] D. Kaur, P. Agarwal, M. Rakshit and M. Chand, Fractional calculus involving ( p, q)-mathieu type series, Appl. Math. Nonlinear Sci., 5 (2) (2020), 15-34.
- [22] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2020), 65-70.
- [23] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
- [24] U. S. Kirmaci, I nequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (1) (2004), 137–146.
- [25] X. Liu, L. Zhang, P. Agarwa,l and G. Wang, On some new integral inequalities of Gronwall–Bellman–Bihari type with delay for discontinuous functions and their applications, Indag. Math., 27 (1) (2016), 1-10.
- [26] K. Mehrez and P. Agarwal, New Hermite–Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2020), 274-285.
- [27] S. Mubeen and G. M Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Sciences, 7 (2) (2012), 89-94.
- [28] M. A. Noor and M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, TJMM, 5 (2) (2013), 129-136.
- [29] J.E. Peˇcari´c, F. Proschan, and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
- [30] M. E. O¨ zdemir, M. Avcı-Ardı¸c, and H. Kavurmacı-O¨ nalan, Hermite-Hadamard type inequalities for s-convex and s-concave functions via fractional integrals,Turkish J.Science, 1 (1) (2016), 28-40.
- [31] M. E. O¨ demir, M. Avci, and E. Set, On some inequalities of Hermite–Hadamard-type via m-convexity, Appl. Math. Lett., 23 (9) (2010), 1065–1070.
- [32] M. E. O¨ demir, M. Avci, and H. Kavurmaci, Hermite–Hadamard-type inequalities via (α, m)-convexity, Comput. Math. Appl., 61 (9) (2011), 2614–2620.
- [33] S. Qaisar and S. Hussain, On Hermite-Hadamard type inequalities for functions whose first derivative absolute values are convex and concave, Fasc. Math., 58 (2017), 155–166.
- [34] A. Saglam, M. Z. Sarikaya, and H. Yildirim, Some new inequalities of Hermite-Hadamard’s type, Kyungpook Math. J., 50 (3) (2010), 399-410.
- [35] M. Z. Sarikaya and F. Ertu˘gral, On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform., 47 (1) (2020), 193-213.
- [36] M. Z. Sarikaya and H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2) (2016), 1049–1059.
- [37] M. Z. Sarikaya, E. Set, H. Yaldiz, and N., Basak, Hermite -Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (9-10) (2013), 2403–2407.
- [38] M. Z. Sarikaya and H. Budak, Generalized Hermite-Hadamard type integral inequalities for fractional integrals, Filomat, 30 (5) (2016), 1315–1326.
- [39] M. Z. Sarikaya, A. Akkurt , H. Budak, M. E. Yildirim, and H. Yildirim, Hermite-Hadamard’s inequalities for conformable fractional integrals, Int. J. Optim. Control. Theor. Appl., 9 (1) (2019), 49-59.
- [40] E. Set, M. E. Ozdemir, and M. Z. Sarikaya, New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications, Facta Universitatis, Ser. Math. Inform., 27 (1) (2012), 67-82.
- [41] E. Set, M. Z. Sarikaya, M. E. Ozdemir, and H. Yildirim, The Hermite-Hadamard’s inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inform., 10 (2) (2014), 69-83.
- [42] E. Set, A. Ocak Akdemir, and F. Ozata, Gru¨ss type inequalities for fractional integral operator involving the extended generalized Mittag-Leffler function, Appl. Comput. Math., 19 (3) (2020), 422-434.
- [43] J. Wang, X. Li, M. Feˇckan, and Y. Zhou, Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92 (11) (2012), 2241–2253.
- [44] J. Wang, X. Li, and C. Zhu, Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon Stevin, 20 (4) (2013), 655–666.
- [45] M. F. Yassen, A. A. Attiya, and P. Agarwal, Subordination and Superordination properties for certain family of analytic functions associated with Mittag–Leffler function, Symmetry, 12 (10) (2020), 17-24.
- [46] Y. Zhang and J. Wang, On some new Hermite-Hadamard inequalities involving RiemannLiouville fractional integrals, J. Inequal. Appl., 2013 (2013), 220.
|