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Abstract
In this paper, we study the monotonicity and convexity of the period function associated with centers of a specific
class of symmetric Newtonian systems of degree 8. In this regard, we prove that if the period annulus surrounds
only one elementary center, then the corresponding period function is monotone; but, for the other cases, the
period function has exactly one critical point. We also prove that in all cases, the period function is convex.
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1. INTRODUCTION

Let f be a real-valued analytic function on R and consider the Newtonian system

T=-y
{y=ﬂ@7 (L.1)

with f(0) = 0 and f/(0) > 0. The Hamiltonian function associated with system (1.1) is of the form H(z,y) = % +F(z),
where F(z) = [ f(s)ds is the potential function of system (1.1). Under these conditions, it is easy to verify that
the origin is an elementary center of system (1.1) which is surrounded by a family of periodic orbits (period annulus)
{T',}, passing through the point (0,a) for a € (0,¢), where ¢ > 0. We denote the projection of this period annulus

on the z-axes by (¢, ¢,), where ¢; < 0 < ¢, and F(¢) = F(e,) = % (see Figure 1). Note that zf(x) > 0 for each

x € (¢, ¢r) \ {0}

FIGURE 1. The location of I'.
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The period function T : (0,¢) — [0,00) is defined as the period of the periodic orbit I';. By the first equation of
system (1.1), T is given by

T(a) =— d—m, a € (0,c), (1.2)
r. Y
where the orientation of the above Abelian integral is determined by the vector field (1.1) which is counter-clockwise.
We recall that a critical point of T is a value a* € (0, ¢) such that 77(a*) = 0 and in this case, T'(a*) is named as a
critical period. The study of the period function and finding the number of its critical periods are interesting problems
which are closely related to the study of Abelian integrals, week Hilbert 16th problem and some nonlinear boundary
value problems, for example, see [2, 9]. Most of the papers on this subject are devoted to finding some conditions to
guarantee the monotonicity of period function, see for instance [3, 8, 11]. However, there are also very few papers
dealing with the number of critical periods, see [1, 6, 7].
Schaaf in [8] considered a class of Hamiltonian systems of the form

&= —g(y)
. 1.3

{ i = f(), (13)
and found some conditions on f and g to guarantee the monotonicity of the associated period function. System (1.1)

is a special case of (1.3) by taking g(y) = y. So we recall his result for Newtonian system (1.1). In fact, he supposed
the Newtonian system (1.1) satisfies one of the following assumptions:

(A) (5(f")2 =3ff")(x) > 0 if f/(0) >0, and f(x)f"(x) <0if f'(x) =0;
(B) (5(f")? =3f"f")(x) < 0if f'(0) >0, and f(x)f"(z) < 0if f'(z) = 0;
and then he obtained a result implying the following theorem.
Theorem 1.1. ([8]) If condition (A) (resp. (B)) holds for x € (ci,¢p), then T'(a) > 0 (resp. T'(a) < 0) for all
a € (0,c).
Li and Lu in [5] added the following assumptions to the Newtonian system (1.1),
(C) If there exists z € (¢;,0) with f/(x) < 0, then (3f'(2Ff' — f2) —2F ff")(c;) > 0, and if there exists x € (0, ¢;)
such that f/(z) <0, then (3f'(2Ff — f2) —2Fff")(c,) > 0;
(D) If there exists z € (c;,0) with f/(x) < 0, then (3f'(2F f' — f2) —2F ff")(c;) < 0, and if there exists z € (0, ¢,)
such that f’(z) < 0, then (3f(2Ff' — f2) —2F ff")(¢;) < 0;
and proved the following theorem.
Theorem 1.2. (/5]) If assumption (A) (resp. (B)) is fulfilled for x € (¢, ¢r), and assumption (C) (resp. (D)) holds,
then T"(a) > 0 (resp. T"(a) < 0) for a € (0,c).

Moreover, they considered a class of Newtonian system of the form

T=-y
{ j =z - a)(z - B)(z - 1), (1.4)

where 0 < o < 8 < 1, and proved the following theorem.

Theorem 1.3. ([5]) The period function associated with each period annulus of the system (1.4) is monotonically
increasing if the period annulus surrounds only one elementary center. Otherwise, the period function has exactly one
critical point.

In this paper, we will consider a class of symmetric Newtonian systems of the form

T=-y
{ § = —(a? —a?)(a? — B7)(a* ~ 1), (15)
with hyperelliptic Hamiltonian function H(z,y) = % + F(z), where
1 1 1 1
F(z) = -3 z® + G (a®+ 8% +1)2° — 1 (?B% + o + 2) 2 + 5042B2x2, 1.6)

B8 _
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FIGURE 2. Bifurcation diagram of system (1.5).

and 0 < a < 8 < 1. Following Li and Lu’s idea in [5], our main goal is to prove Theorem 1.3 for the system (1.5). In
this way, we give the bifurcation diagram and all topologically different phase portraits of the system (1.5) in section 2.
Then, in section 3, we investigate the monotonicity and convexity of T'(a) when {T',} is a period annulus surrounding
a unique elementary center of system (1.5). Finally, in section 4 we discuss on convexity and the number of critical
periods of T'(a) when the period annulus {I', } surrounds more than one equilibrium point of the system (1.5) counted
with multiplicities.

2. BIFURCATION DIAGRAM AND PHASE PORTRAITS OF SYSTEM (1.5)

In this section, the bifurcation diagram and all topologically different phase portraits of the Newtonian system (1.5)
will be considered. Let us denote the equilibrium points of system (1.5) by po = (0,0), p+g = (£3,0), pro = (£, 0)
and py1 = (£1,0). Also, denote the corresponding critical energy levels of H by

hO :H(pO) :O,
1

ha = H(pta) = ﬂo/1 (a4—2a2ﬁ2 —2a2+662),
1

hg = H(p+p) = ﬂﬂ“ (B* —2a%8* - 2% +64a?),
1

hi=H(pt1) = — (626 =20 —25% +1).

24

Note that the global structure of the phase portrait of system (1.5) will change either there exists a critical point z
which is degenerate i.e., F”(Z) = 0 or at least two maximum values of F' are equal. The first happens when « = 0,
B =1or a = 3 and the later holds if h, = hg or equivalently 23? — a? = 1. Therefore, as shown in Figure 2, the
bifurcation diagram of system (1.5) contains the boundary of the triangle T'= {(a, 8)] 0 < o < § < 1} and the curve

2
v= @A <a<p<1i=1"0)

According to this bifurcation diagram, system (1.5) has 11 topologically different phase portraits, illustrated in
(1) — (11) of Figure 3, that we classify them respectively as follows:

(1): If « = B =0, then pg is a nilpotent centre of order two and p4; are hyperbolic saddles. The corresponding
energy levels are hg = hq = hg = 0 and hy = 57 (see Figure 3 (1)).
an
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F1GURE 3. Classification of phase portraits of system (1.5).

(2): Ifa—OandO<,3<2,
Pt1 are hyperbolic saddles. The corresponding energy levels are hg = hy = 0, hg = 5; L6 (52 — 1) and
hy = 5 (1—28%). So hg < hg < hy (see Figure 3 (2)).

B): Ifa=0and 8 = , then pg is a nilpotent saddle of order one p+g are elementary centers and py are

hyperbolic saddles. The corresponding energy levels are hg = *m and hg = hy = h1 = 0 (see Figure 3 (3)).

(4): If « = 0 and g < B < 1, then py is a nilpotent saddle of order one, pig are elementary centers and

p+1 are hyperbolic saddles. The corresponding energy levels are hg = ho = 0, hg = iﬁﬁ‘ (52 — 1) and
hi = 57(1 —282). So hg < hy < hq (see Fig. 3 (4)).

(5): fa=0and 8 =1, then pg is a nilpotent saddle of order one and p1; are cusps of order one with energy
levels hg = ho =0 and hg = hy = —3; (see Fig. 3 (5)).

(6): f 0 < @ < 1and g =1, then pg lS an elementary center, pL, are hyperbolic saddles and p4q are cusps of
order one. The correspondlng energy levels are hg = 0, hy, 214 at (a —4a’+ 6) and hg = hy = (4a —1).
So ho < hq < hy (see Figure 3 (6)).

(7): If « = 8 =1, then pg is an elementary center and p4; are nilpotent saddles of order one with energy levels
ho =0 and ho = hg = hy = § (see Figure 3 (7)).

(8): If 0 < @ = 8 < 1, then py is an elementary center, pL, are cusps of order one and py; are hyperbolic
saddles, with energy levels hg = 0, ho = hg = iaﬁ (4 — a2) and hy = i((ﬁ ot —4a?+ 1). So hg < hg < hy
(see Figure 3 (8)).

9): fa< f<4/2 +1 and 0 < o < 1, then py and p+g are elementary centers and p4, and p+; are hyperbolic
saddles. Also, hg < ha, hg < hq and h, < hy (see Figure 3 (9)).

(10): If B = /< 2“ and 0 < o < 1, then py and p+p are elementary centers and pi, and p4; are hyperbolic
saddles. Also, ho < hq, hg < hg and h, = hy (see Figure 3 (10)).

(11): If 4/ < 2“ < B <land 0 < « < 1, then pg and p4g are elementary centers and p4, and p+; are hyperbolic
saddles. Also, ho < ha, hg < hi and hy < h, (see Figure 3 (11)).

then po is a nilpotent saddle of order one, pig are elementary centers and

(&)
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3. PERIOD ANNULUS SURROUNDING A UNIQUE ELEMENTARY CENTER

This section will consider the monotonicity and convexity of the period functions associated with those period annuli
of the system (1.5) which surround a unique elementary center. To tackle this, we consider two cases separately. First,
we treat those period annulus which surrounding the unique elementary center at the origin, and then we consider
those period annulus which surrounding one of the elementary centers at p4g.

3.1. Period annulus surrounding only the elementary center py. This subsection is devoted to period annulus
surrounding only the elementary center py. As shown in Figure 3, this happens in cases (6) — (11), when 0 < a <
B < 1. Note that in these cases we have f(z) = —z(2? — a?)(z? — $%)(2® — 1), f(0) = 0, f/(0) = a?B? > 0 and
vf(z) = —2%(2? — a?) (2% — B?)(22 — 1) > 0 for # € (—a,a) \ {0}. So we have the following lemma.

Lemma 3.1. For f(z) = —z(2? — o?)(a? — 8%)(2* — 1) and F(x) = [ f(s)ds, assumption (A) holds for x € (—a, )
and assumption (C) is true for ¢, = —a and ¢, = a.

Proof. We set
A(z; o, ) :=5(f"(2))? = 3f'(x) f" ()

=441021° + a42® + azz® + asz? + a12? + ao, (3.1)
where
ag = —3990(a? + 5% 4+ 1),
az = 1100(a* + B* + 1) + 2704(a*B? + o® + B?),
ag = —570(a* + B* + a*B? + 2B + o? + 3?) — 1080 o232,

ar = 126(a* + g* 4+ a*B) + 72(a? % + o?B* + a2 B?),

ap = 18(a*B* + a*B% + o p4).
Now, we will prove that if (a,3) € Il = {0 < a < <1}, then A(z;a,8) >0 for z € (—a,a). A direct computation
gives A(—a;a, B) = A(a; o, B) = 162 A(a, 3), where

Ala,8) =950% — 116 a5% + 41 a?B* — 116 a5 + 106 a* 5% — 30028 +41a* — 300262 +95%, (a,p) € IL
To prove A(a, ) > 0 for (a, 3) € II, we note that
Ao, 1) = (950* —420% +9) (> —1)° >0, O<a<l,

A(a,a):20a4(a271)2>0, 0<a<l,
-1 1 287

A(5,8) = — (655" —438% + —— 1.
(275) 16(655 38° + 16)>0, 0<B<

Thus, if there exists @ € (0,1) such that A(a, 8) has roots in the interval (a,1), then the number of these roots
(counted with multiplicities) should be even. By continuously moving o from @ to 3, one can find & such that A(a, 3)
has a multiple zero in (&, 1). So the equations

- 0A

A =0 — =0

(a7 B) I’ 65 (a7 ﬁ) ’

should have a solution in II\{8 = 1}. Computing the resultant between A(a, 3) and g—g(a,ﬁ) with respect to «, we
get

= 0A
Res(A, Er o) = 13931406950400 5'° (6667 3* — 132 3% + 15568)2 (B* - 1)4,
which doesn’t have any solution for 8 € (0,1). Hence
A(_a;aaﬂ) = A(a;a,ﬁ) > 0. (32)

[E)E
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Now by setting o = i and = % in A(z; o, B), we get

41895 131859 ; 120645 , 20223 , 189
g 7 614 512 0 T o048 U T 2048°

11
Alw; >, =) = 441022 —
(33,4,2) Oz

By applying Sturm’s theorem to A(x; i, %) and straightforward calculation with Maple, it follows that the above

expression is non-vanishing for all x € R. Hence,
11
Alz; =, =) > 0. 3.3

Since A is continuous, it follows from (3.2) and (3.3) that if there exists (a1, 51) € II such that A(x; aq, 51) has a root

in (—a1,a1), then varying (o, 8) from (1, 1) to (a1, 1) in II continuously, one may find a point (as, B2) € II which

A(z; g, B2) has a multiple root in (—aq, as), i.e. the equations

0A
A(x;a,,@) = 07 %(33,0(,,6) = 07 (34)

have a solution in (—ag,az). By computing the resultant with respect to  between A(z;a, ) and %(m; a, f), we
obtain

Res(A, 04

5 %) = Ca?B*(a?B? + o + 52)[Pi(a, B) P2 (a, B))7, (3.5)

where C' = 107914372256939438631813120000 and

Pi(a, B) =225a%8* — 306 a°B° + 225 0% — 50a°8% — 78 a®B* + 225 3% — 306 o
+2250% — 78a°5% + 186 a*Bt — 78 %% — 78 8% — 5002 — T8t B? — T8 %S4
— 306 8% 4+ 225 a* — 50 2% + 225 54,
Py (a, ) =124416359375 % 5% — 135340051875 o' 510 4 334804385685 o' 312 — 129618282626 4 314
+ 334804385685 o2 316 — 135340051875 o058 + 124416359375 o8 52° 4 408049812500 a?° 36
— 266804794375 o'8 3% 4- 641553565485 o' 510 + 334476148678 a4 312 + 334476148678 2
+ 641553565485 o *0 316 — 266804794375 o B8 + 408049812500 a° 420 4 961575656250 o2 34
— 272865873750 o'® 85 + 1591928735775 a*® 3% 4 849153788154 14410 + 2651495392518 o' 312

(&)
(EE



242 R. KAZEMI AND M. H. AKRAMI

+ 849153788154 a8 + 1591928735775 a8 16 — 272865873750 o’ B8 + 961575656250 o 52°
+ 408049812500 o2° 3% — 272865873750 '8 8 — 364990138050 o135 — 377773237310 a1 3®
+ 298859364930 a'2 810 + 298859364930 o' 412 — 377773237310 o® 51+ — 364990138050 b 516
— 272865873750 a1 + 408049812500 o2 520 + 124416359375 a?° — 266804794375 o852

+ 1591928735775 o158 — 377773237310 o1 8¢ + 6534531610810 12 3% + 1442974207290 10310
+ 6534531610810 o852 — 377773237310 a5 314 + 1591928735775 o 316 — 266804794375 o2 518
+ 124416359375 52° + 641553565485 o' 5% + 849153788154 a4 5* + 298859364930 12 3°

+ 1442974207290 o *° 3% + 1442974207290 8510 + 298859364930 o® 312 4 849153788154 o 14
+ 641553565485 o2 516 — 135340051875 B8 + 334804385685 a6 + 334476148678 a'* 52

+ 2651495392518 o*2 8% + 298859364930 o' 8 4 6534531610810 o® 5% + 298859364930 o° 310
+ 2651495392518 ot 812 + 334476148678 o* B+ + 334804385685 516 + 334476148678 o'? 52

+ 849153788154 o03* — 377773237310 8% — 377773237310 a° 3% + 849153788154 o* 510

+ 334476148678 o2 12 — 129618282626 314 + 334804385685 a'? + 641553565485 1?52

+ 1591928735775 o B* — 364990138050 o® 3% 4 1591928735775 a* 3% + 641553565485 a2 310

+ 334804385685 512 — 135340051875 o' — 266804794375 o852 — 272865873750 o® 5

— 272865873750 o 85 — 266804794375 o2 8% — 135340051875 310 + 124416359375 o

+ 408049812500 a® 5% + 961575656250 a* 8+ + 408049812500 o> 8¢ — 135340051875 '8

— 129618282626 a''* + 124416359375 3%,

Now we want to show that Py Py # 0 for (a, 8) € II. Indeed, we have

Pi(a,1) =16 (250" +20% +9) (a® = 1)* >0, 0<a<l,

Pi(a,a) = 160* (9a* +20% +25) (a® — 1)° > 0, 0<a<l,
1 55497 , 10725 ¢ 3625 2405 , 2601

P2 B) = 4 _ 6 8 _ 2 <1

=" P~ e s e 050

)# 0 for 0 < 8 <1 and so it is positive. A similar argument

Applying Sturm’s Theorem, one concludes that P; (%,
, B) has roots on the interval (&, 1), then the equations

shows that if there exists @ € (0, 1) such that P (&

opP,

Pl(aaﬁ)zoa %

(a7 ﬁ) =0,

should have a solution in IT\{3 = 1}. Computing the resultant with respect to a between P;(«, 8) and %—1;1(04, B), we
obtain

Res(Pr, 25 o) = DY (82 - 1) [o(B))°,

op

where D = 16906881566693365288796160000 and

po(B) = (1255 — 150 80 + 323 8% — 84 8% + 323 8* — 15082 + 125) .

[E)E
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Sturm’s Theorem implies that po(3) doesn’t have any solution for 8 € (0,1). Hence, Pi(«, 8) # 0 for (o, 8) € II. We
also have

Py (a, 1) =2026508000000 a*® — 1350021440000 a*® 4 4771583235840 a*® 4 1352476833792 '
+13773802194432 a'? + 6194401747968 o'° + 16655571555840 o — 617440143360 o
+ 8911080005376 a* + 2234549464576 o + 518143103744, 0<a<l,

Ps(a, ) =256 ® (2023996499 o*” + 8728708846 o™® + 34808906271 ' — 2411875560 o'
+ 65060826390 a*? 4 24196881828 a*? 4 53803914822 ® + 5283112632 o°

+ 18638997015 a* — 5273521250 o® +7916046875) , 0<a<l,
1 1
P2(§, B) =55 (307640738240000000 32° — 235440199280000000 3'*

+ 624859105476000000 56 + 626505759600000 54
+ 645190692553890000 512 + 94340347409122500 510
+ 188574175067299875 3° + 81909753788118300 3°
+ 66695730948144210 5* + 6366244596556360 32
+453375473850131) , 0<p<1.

By applying Sturm’s Theorem to each above expressions, we see that Ps(«, 1), Pa(a, ) and PQ(%, B) are positive on
their corresponding intervals. Again, if there exists & € (0,1) such that P(&, 8) has roots on the interval (&, 1), then
the equations

OP:
PQ(O‘?ﬂ):Oa 72

85 (aaB) = 07

must have a solution in IT\{$ = 1}. Note that

Res(Py, %—Z a) = BB (pu(8)(02(8))" (03(8))° (0a(8))°.

where F is a constant and pp, p2, p3, and py are polynomials of degree 36, 48, 12 and 36, respectively. It follows
from Sturm’s Theorem that p;(3) # 0 for all 5 € (0,1] and ¢ = 1,--- ,4. Therefore Ps(a, §) # 0 for (o, 8) € II. So
A(z;a,8) > 0 for (o, 8) € Il and = € (—a, «) and the first part of the assumption (A) is verified. We also have

fl(x)=—-725+5 (a2 + 5%+ 1) -3 (04252 +a?+ Bz) z? 4+ o232, (3.6)
which implies that
F(-1) = /(1) = ~2(a> ~ 1)(5* ~ 1) <0,
F'(=8) = ['(8) = 28%(a® - B*)(8* — 1) > 0,
f'(=a) = f'(a) = =20 (a? = §%)(a® = 1) <0,
f(0) =a’B% > 0.

Since f’ is a polynomial of degree six, f’(x) has exactly a simple positive root x1 € (0, «). It follows that f’ vanishes

at —x1 € (—,0) and f(z1) = —f(—z1) <0, because f’ is even. Also, it is easy to see that z is a local maximum of f.
This yields that f(x1)f"(z1) = f(—z1)f”(—z1) < 0, which implies the second part of the assumption (A). Moreover,
f(xa)=0and 3f (2Ff — f2) — 2Fff")(+a) = 6(F f*)(£a) > 0. So assumption (C) is verified. O

By putting Lemma 3.1 and Theorems 1.1 and 1.2 together, the following theorem can be concluded.

Theorem 3.2. The period function associated with the period annulus surrounding only the elementary center pg of
system (1.5) is convex and monotonically increasing.

(&)
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3.2. Period annulus surrounding only one of the elementary centers pys. First, we note that in cases (2)—(4)
and (9) — (11) of the phase portraits (shown in Figure 3), there are two period annulus which one of them surrounds
the elementary center p_g and the other surrounds the elementary center pg. In these cases, we have 0 < oo < 8 < 1,
see Fig 3. By the symmetry property of system (1.5), we only consider the period annulus surrounding the elementary
center pg. We bring pg to the origin by the change of variable z — 8 = t. Consequently, the potential function F(x)
in (1.6) transforms to

- 1
F(t) = ﬂt2(25+t)2(6a2ﬁ2+8a2t5+4a2t2 — 68 —1633t —208%t> — 12613 —3t* — 60>+ 6 5% +8t3 +412).

Therefore,

ft)=F'(t) = =t +B)((t+ B)* = a®)((t+ B)* = B)((t + B)* — 1), (3.7)

and in this case the projection of period annulus on the t-axes is (o = 8,1 = p). It is easy to check that f(()) =0,
f(0) >0 and tf(¢t) >0 for t € (a« — 8,1 — B)\{0}. Now, we have the following lemma.

Lemma 3.3. For f = f and F = F assumption (A) holds in the interval (o« — 8,1 — ) and assumption (C) is true
forco=a—0 andcyo=1- 0.

Proof. We set

B(t; o, B) :=5(f"(t))> = 3f' () f"(t)
=4410t1° + 441008t° + bst® + brt” + bet® + bst® + bat* + bgt® + bat? + byt + by,

where,

bg =210(9264% — 1902 — 19),
by =1680(2963° — 19025 — 1943),
bs =(1100 a* — 109016 o 5% 4 815480 B* + 2704 o — 109016 5% + 1100),
bs =2483(275 a* — 8634 a2 % + 37270 B4 + 676 o* — 8634 32 + 275),
by =(15930 a* 5% — 239310 a2 B* + 663300 3% — 570 a* + 39480 0?32
— 239310 8* — 570 a? + 15930 5?),
by =40 5(493 a*5% — 4291 a2 B* + 8194 35 — 57 ot + 1244 o2 52
— 4291 8* — 57 % + 493 3?),
by =(13206 a* % — 74580 o 3% + 103230 5% — 3348 a1 5% + 34152 a2 5*
— 74580 3% + 126 ! — 3348 a2 4 13206 5%),
by =128(381 a*B* — 1498 %2 + 1565 5% — 178 a* 5% + 1004 o2 5*
— 1498 8% + 21 o* — 178 a%3% + 381 84),
bo =164 (41 a*B* — 116 a*B° + 95 8% — 30 a5 + 106 o> *
— 116 8° + 9a* — 300252 + 41 8%).

Now, we prove that if (a,8) € Q ={0 < a < 8 < 1}, then B(t;a,8) >0fort € I = (a — 5,1 — 3). Let

B(a,B) := Bla — B;a, 8) = 16a%(95a® — 116(6* + 1)’
+ (418* 4+ 1068% + 41)a* — 308%(6% + 1)a® + 98%), (a,B) € Q.
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To show that B(«, 8) > 0 for (a, ) € 2, note that
B(0,8) =96* >0, 0<p<1,

B(3,B)=208*(B-1)*(B+1)*>0, 0<B<I,

1121a* 7502 9
_ = < 1.
16 3 +16>0, 0<a<

Thus, if there exists a value § € (0,1) such that B(a, ) has roots for a € (0,3), then the number of these roots

(counted with multiplicities) is even. By continuously moving § from § to %, we can find 3 such that B(«, ) has a

multiple zero on (0, 3). Hence the equations

Bp=0,  Sl@p)=0 3:5)

have a solution in  \ {« = 0}. By computing the resultant between B(a, ) and ‘3—5 with respect to 3, we obtain

1
B(o, 5) = 950® — 14500 +

Res(B, g—g, ) =120736'2(229805 ' — 507680 a** + 590056 o®
— 415728 a8 + 185727 a* — 49644 o? + 5904)%(a? — 1)*.
Sturm’s Theorem implies that the above expression has no zero for « € (0,1). We set
B(a, B) :==B(1 — B;a, f) = 144 0*B* — 480 * 5% — 480 &*B* + 656 o*
+ 1696 a2 5% + 6563* — 1856 a* — 1856 82 + 1520, (a, B) € Q.
To prove the inequality B(a, 8) > 0 for (o, 8) € Q, observe that
B(0,8) = 656 3* — 1856 % 4 1520 > 0, 0<p<1,
B(B,) = 144 8% — 960 8% + 3008 8* — 371282 +1520 >0, 0 < B <1,
B(a, %) = 545a* — 1462 a® + 1097 > 0, 0<a<l.

Again, if there exists § € (0,1) such that B(w, ) has zero for a € (0,), then the number of these zeros is even
(counted with multiplicities). By continuously moving § from 5 to %, we can find 3 such that B(a, 3) has a multiple

zero on (0, 5). Hence, the equations

- 0B

B(aa/@) = 07 8704(0[7B) = Oa (39)
have a solution in 2. Computing the resultant between B(a, B) and g—f(a, B) with respect to 8, we obtain
- OB 4 2 2 2
Res(B, %’6) =180(113 a™ — 466 o + 973)(a* — 1)=, (3.10)
which has no solution for o € (0,1). So we have proved that
Bla-p;a,6) >0, B(l-p5;0,8) >0, (a,B) €. (3.11)
Now, by setting o = % and 8 = % in B(t; o, 8), we get
13 417585 5862907
B(t; 3 1) =4410t'° + 33075 ¢° + — 2 +179865¢" + D t6
7122663 . 39217755 , 6543405 5 9930663 ,
64 1024 1024 32768
553581 684855 11
> 0, te(—,-). 3.12
65536 + 65536 ( 4 4) ( )

BE
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By continuity of B, it follows from (3.11) and (3.12) that if there exists (a1, 51) € Q such that B(¢; a1, 51) has a root

inté€ (ag —p1,1— 1), then changing («, ) from (%, %) to (a1, 1) in © continuously, one may find (az, f2) € Q in

which B(t; s, f2) has a multiple root in (ag — 82,1 — B2), i.e. the equations
OB

have a solution in (ag — 2,1 — B2). Computing the resultant with respect to t between B(t; «, 3) and ‘93 - (t o, B), w
get

ReS(Ba 867?7t) = 005252(0é2/62 + a? + BQ)P1(0[7B)P2(O[’/B)5 (314)

where the above expression is the same as in (3.5). Hence, B(t;a, 8) > 0 for (o, 8) € Q and ¢t € I. Accordingly, the
first part of the assumption (A) is true. In what follows, we verify the second part of the condition (A). We have

Ft)=—7t"—42B8t°+ (50> —100 8% + 5) t* + (208 — 120 3° + 20 8) t*
+ (27028 — 758 —3a® +275%) 2 + (14028 — 22 8° — 6a°B + 14 8%) ¢t
+2a28r —285 —2a2B% 4254,

and we get
f(-1-B8)=-2(B>-1)(a®*—1) <0,
f(=28)= 262 (,6’2 1) (o = 5%) >0,
fll—a—p)= ( —1) (e = 5%) <0,
f'(=B) =a?p* >0,
flla—p)= (/5’2 1) (o* = 8%) <0,
) =

f(0) = 252 (62 1) (o® = 5%) >0,

flA=8)=-2(8-1)(a*~1) <0,
Since f'(t) is a polynomial of degree six, it has exactly one simple root ¢; € (o — 3,0) and one simple root to €
(0,1 — B). Tt is clear that f(¢1) < 0 and f(t2) > 0. Also, one can check that ¢; is a local minimum, and ¢ is a local

maximum. So we have f”(¢1) > 0 and f”(¢2) < 0. This implies the second part of the condition (A). Moreover, since
fla—=8) = f(1—p) =0, the second part of assumption (C) holds. This completes the proof. O

Finally, considering Lemma 3.3 and Theorems 1.2, 1.3 and symmetry property of system (1.5), we conclude the
following theorem.

Theorem 3.4. The period functions associated with those period annulus of system (1.5) that surround only one of
the elementary centers p+g are monotonically increasing and convez.

4. PERIOD ANNULUS SURROUNDING FIVE SINGULARITIES

This section treats the period functions associated with those period annulus of the system (1.5) which surrounding
five singularities counted with multiplicities. As shown in Figure 3, this happens in cases (1), (2), (8) and (9), which
correspond to region S = S; U~ U~ U{(0,0)} in the (a, 8)-plane, where

V2

m={(e,8):0<a=08<1}, ’)/2:{0620,O<6<7},

and S is the open curved triangle region bounded by line segments 71, 2 and curve v = {(e, 8)[0 <a < < 1,5 =
a?+1
2

}, see Figure 4. Thus, if T'y, is a closed orbit surrounding five singularities counted with multiplicities, then we
have the following four cases.
oo
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(1)

(4)

247

Y2

FIGURE 4. The region S which contains an annulus surrounding five singularities.

In case (9), we have (o, ) € S1 and system (1.5) has three elementary centers at py and pig, and four
hyperbolic saddles at p+, and p+1. There is a double eight-figure loop through the saddles p4, that surrounds
all three elementary centers. In this case, I', surrounds the double eight-figure loop (see Figure 3(9)). As
shown in Figure 4, the upper half of I';, has three local maximum at (£, a) and (0, ). and two local minimum
at (+a,d), where a,b,d > 0.

In case (8), we have (a, 8) € 71 and in this case, centers pig and saddles pi, come together and make an
eye-figure loop surrounding the origin as an elementary center (see Figure 3(8)). therefore, I', surrounds this
eye-figure loop and it’s upper half has one maximum point at (0,) and two inflection points. (In fact, one of
these inflection points is produced by merging maximum point (3, a) with the minimum point (a, d) and the
other is produced by merging maximum point (—/,a) with the minimum point (—«, d)).

In case (2), we have (a, ) € 72 and system (1.5) has two saddles at py1, two centers at p+g and a nilpotent
saddle at the origin. Note that this nilpotent saddle is produced by merging p+, and (0,0). Thus, there is an
eight-figure loop connecting to the origin and surrounding centers p4g. In this case, the orbit I'j, surrounds
this eight-figure loop (See Figure 3 (2)). The upper half of T';, has two maximum point at (+3,a) and one
minimum at (0, b).

In case (1), we have («, 8) = (0,0) and all five singularities pg, p+o and pig of system (1.5) come together to
make a degenerate center at pg. So, I'j, surrounds this degenerate center and has a unique maximum at (0, b)
(see Figure 3 (1)).

In all the above cases, along the orbit I'},, we have

2 2

2 2
Hizy) =2 + Fa)=h =1 + F(£p) d b

- = (4.1)

Since system (1.5) is symmetric with respect to both z-axes and y-axes, we can write % = T1(h) + T(h), where

-B 0
Ty (h) / dr T2<h>:/ dr
Sh Yy -8 Y

and sp is x—coordinate of the intersection point of I';, and z-axes in negative section, see Fig 5. From equation

% + F(z) = h in (4.1), we treat y as a function of z and h i.e. y = y(z,h) for x € (sp,0). First, we investigate the
behavior of Ta(h). If (o, 8) = (0,0), then Ty(h) = 0. Otherwise, since y = y(z,h) > 0 for z € [-45,0] and % =3

1

along the orbit I'y,, we get

(4.2)
[c [ V]
(o] €]

0 0
dxr dxr

T’h:—/ — <0, T“h:/ — > 0.
2() —,8?/3 2() —,8?/5
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-1 Sk - —a 0 e 8 —Sh

F1GURE 5. Half of the period annulus surrounding 5 singularities.

Now, we need to study the behavior of T3 (h). By setting t = z 4 § in f(z), we bring equilibrium point p_g of system
(1.5) to the origin. Therefore, function f(z) and its potential function transform to

Aty == @=B) (~a+ (= 8)) (=82 + (1= 87) (¢ -8 -1), (4.3)
Fi(t) itZ (28 —1)*(60°8% —8a’Bt+40°t? — 68 +16 5t
—206%2 +128t3 —3t* — 60> + 632 — 83 + 41%). (4.4)
Inspired by the idea of the proof of Theorem 2.1 in [5], we use the change of variables
(sign f1(x))\/Fi(z) =rcosb, y = V2rsiné, (4.5)
that map the level curve y + Fi(z) = 2 {0 the circle r = 5+ Using (4.5), we get Fy(z) = 72 cos? § and
fi(z)dx = —2r? cos 0 sin 0df = —ay cos Od6, (4.6)
= =2 20 = =27 4.
fi(z) o rcos” 6 . (4.7)
On account of x = (0, a) and using (4.7), we get
Or  Oxor _ 2F1(:r). (4.8)
da  Orda  afi(x)
Now we substitute (4.6) in T (h) to get
™ cosf
Ti(h)=a | ——db, 4.9
1(h) z fi(z) (49)
where a depends on h as stated in (4.1) and d“ = 1. Taking (4.8) into account, we get
8T1 da
T =
1(h) = B dh / o(x) cos 0d0,
1
Ty (h) = E/ P (x) cos 0d0, (4.10)
where
ft —2Ffi 2F1¢' — f1¢
o) = St @), vle) = (@), (4.11)
1

The following lemma shows that the period function T'(h) has at least one critical point in the interval (F(—a), F(—1))
for every (a, 8) € S.

Lemma 4.1. For (o, ) € S, we have

lim T(h) = +o0, lim T(h) =+o0. (4.12)
hNF(—a) hAF(—1)
[E)E
(=
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Proof. From [4, pp. 56-58,] we recall that if I'j, tends to a saddle connection, then T'(h) tends in a monotone way
to +o00. Taking this into account and noting that in all cases, if h ,* F(—1) then I', tends to a saddle connection,
which implies that limj, xp_1) T'(h) = +o00. Moreover, if (o, 3) € Sy or (o, 8) € 72 and h \ F(—a) then I'j, tends to
a saddle connection and T'(h) tends to +o0o. We treat other cases separately as follows. If (o, 8) € 11 and h \, F(—«)
then I';, tends to the eye-figure loop. Hence, according to (4.9) and (4.5), for h = F(—a) = F(—0), we have

do

Ti(h) " oSt g / T (sign fi(x))y/2F1(2)

L R@T T s fi(@)
N/" do
"5 V6P - a2t

which goes to infinity when h \, F(—a), because z — 0. If (o, 5) = (0,0) and h \, F(—a) then I';, tends to nilpotent
center pg = (0,0). Similarly, for h = 0, we have

s

cosf T de
T =a | 2240~ / =z
WW=af w@®” ), Vo
which goes to infinity when h N\, F(—a) = 0, because  — 0. O

Taking Lemma 4.1 into account, the next lemma proves that the critical point of T'(h) is unique.
Lemma 4.2. Ifh € (F(—a),F(-1)) and (o, 8) € S, then T"(h) > 0.

Proof. Since, 6 € (%, ), then cosf < 0. If we show that (z) < 0 for 3 —1 < x < 0, then from (4.10), we get
T/ (h) > 0. Hence, on account of (4.2), we get T"(h) > 0. Therefore, in what follow we show that ¥ (z) < 0 for
8 —1< x <0. By substituting F; and f; from (4.3) and (4.4) in (4.11), we get

1/}(:6)* M(aj;aaﬂ)

N 5 (4.13)
144((@ = B)(@> — (¢ = BP)(B —2)* = 1))

where M (z;a, 8) = Zif:o my (o, B)z™ and coefficients m., («, 8) are as follows:

myg =297,
myy = — 5346 3,
mig = — 1236 a? + 45690 5% — 1236,
mas =19776 o8 — 246336 3° + 19776 3,
mag =1815 a* — 149196 o2 8% + 938790 8* + 5304 o® — 149196 52 + 1815,
mis = — 25410 a8 + 704424 o* 8% — 2685396 35 — 74256 o B + 704424 32 — 25410 3,
mis = — 1120 a% + 166320 o* 3% — 2329176 % 8* + 5974688 B¢ — 7920 o*
+ 484896 a2 82 — 2329176 8* — 7920 o 4 166320 3% — 1120,

BE
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my1 =13440 a5 — 674520 o83 + 5716992 o? 35 — 10569840 57 + 95040 o* 3
— 1957440 o3 4 5716992 3° + 95040 a8 — 674520 B> + 13440 3,
mio =256 a® — 74620 o® 5% + 1892487 o* 4 — 10770128 8% + 15067541 38
+ 4900 o — 524496 o* 82 4 5455332 a? 3% — 10770128 3% + 11817 a*
— 524496 o 5% + 1892487 5* + 4900 o — 74620 5% + 256,
mg = — 2560 a3 + 253400 a® 8% — 3882150 o 8° + 15873632 87
— 17425810 82 — 49000 a° 8 + 1760160 o* 32 — 11096808 o? 3°
+ 15873632 87 — 118170 o* B 4 1760160 o2 3> — 3882150 3°
— 49000 o3 + 253400 33 — 2560 3,
ms =11680 a® 5% — 585352 a® 3% + 5996262 o* 85 — 18477476 o2 3°
+ 16371206 10 — 1120 a® + 221080 ® 3% — 3997500 o* 3*
+ 16972808 a2 3% — 18477476 8% — 7152 a® + 530982 o* 52
— 3997500 o® % + 5996262 3¢ — 7152 o* + 221080 a? 2
— 585352 8% — 1120 a® + 11680 52,
my = — 32000 o883 + 966656 a° 3% — 7070496 o* 87 + 17014816 o> 3°
— 12443008 8! + 8960 o® 8 — 592640 o 3% + 6463200 o* 3°
— 19799680 a7 + 17014816 3° + 57216 a°3 — 1411776 o* 33
+ 6463200 o2 3% — 7070496 37 4 57216 o* 3 — 592640 o2 3>
+ 966656 5° + 8960 a5 — 32000 33,
me =58076 2% — 1166116 o° 8% + 6377844 o 8% — 12321196 o> 510
+ 7574000 312 — 31400 a8 8% + 1043156 a5 5* — 7610124 o* 36
+ 17659468 o? 3% — 12321196 510 + 1596 a® — 198636 o 32
+ 2456040 o 8t — 7610124 %3¢ + 6377844 3% + 4092 o
— 198636 o* 82 + 1043156 o2 8* — 1166116 8% + 1596 o*
— 31400 o 32 + 58076 3%,
ms = — 72488 a8 % + 1030232 587 — 4361304 o*3° + 6914632 o* 81!
— 3626944 813 + 62960 o® 5% — 1254776 a5 8° + 6550536 a* 57
— 11938120 a?3° + 6914632 B — 9576 a®3 + 390792 a® 33
— 2912400 o* 3% + 6550536 o257 — 4361304 52 — 24552 a3
+ 390792 a3 — 1254776 o 3° + 1030232 37 — 9576 o* B + 62960 o> 33 — 72488 3°
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my =62416 3% — 656656 a°5% + 2211024 o* 510 — 2929136 0?32
+ 1327520 81 — 78464 o8 8* + 1037680 o® 3% — 4066320 o* 3%
+ 5984272 o2 510 — 2929136 12 + 23376 o® 5% — 474576 a5 54
+ 2371392 8% — 4066320 o2 3% + 2211024 810 — 864 ®
+ 59856 a® 32 — 474576 a* * + 1037680 o2 ¢ — 656656 53
— 864 a8 + 23376 o B2 — 78464 %5 4 62416 3°,
ms = — 36064 o®B7 + 290976 a5 5% — 797088 o* B + 895712 2813
— 354432 815 4+ 61376 a88° — 576160 a® 87 + 1757280 a*3°
— 2134624 o281 4 895712 B3 — 29664 853 + 361056 o°3°
— 1296960 o* 87 + 1757280 o2 8% — 797088 B! + 3456 o®
— 75744 0583 + 361056 o* 3% — 576160 o> 57 + 290976 3°
+ 3456 a®8 — 29664 o* 33 + 61376 o> 3° — 36064 7,
ma =13036 o 8% — 83272 a5 310 + 189360 o* 312 — 182840 5
+ 63716 51° — 28696 o3¢ + 201472 a8 3% — 492528 o* 510
+ 502592 a2 812 — 182840 £ + 20256 3% — 165072 a5 5°
+ 447984 o* 88 — 492528 2310 4 189360 812 — 4776 o 32
+ 51648 a® 8% — 165072 o ° + 201472 o2 8® — 83272 510
+180a® — 4776 o552 + 20256 o* 8* — 28696 5% + 13036 3%,
my = — 2520 a85° + 13200 a8 — 25440 o* 83 + 21360 o2 51°
— 6600 87 + 6960 a® 87 — 38400 a®5? + 77280 o* 51!
— 67200 313 + 21360 55 — 6720 a®° 4 39840 a° 37
— 84960 a8 + 77280 28! — 25440 83 + 2640 o853
— 17280 a%B% + 39840 o 87 — 38400 o2 + 13200 g1
— 36008 + 2640 3% — 6720 o* 8% + 6960 o257 — 2520 82,
mo =168 %410 — 768 a8 312 + 1296 o* 814 — 960 26 + 264 318
— 576 %% + 2688 a® 510 — 4608 o* 512 + 3456 2314 — 960 316
+ 720 a® 8% — 3456 o5 3% + 6048 o* 810 — 4608 2% + 1296 514
—384a88* +1920a°8% — 3456 o 8% + 2688 02310 — 768 12
+72086% — 384 a58% 4+ 720 0* 3% — 576 02 5% + 168 510,
Since the denominator of equation (4.13) is negative for = € (8 — 1,0), we have to show that M (z; «, §) is positive for
z € (f—1,0) and (o, B) € S.

First, we prove M(x; «, ) is positive on the boundary of S for z € (8 — 1,0).
(i) Let (o, 8) = (0,0). Therefore, for « € (—1,0) we have

M(x;0,0) = 2% (297 2% — 1236 2° + 18152 — 1120 2% + 256) > 0.
(ii) Let (o, B) € 1. Since on y; we have a = f3, then
M((E, Baﬁ) = _x3(25 - Z’)3N(.’E, 5)7

BE
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where N(z, 3) is a polynomial of degree 12 with respect to x. We assert that N(z,3) > 0 for z € (8 — 1,0). In fact
N(B-1,8) =12 (82— 1)" >0,
N(0,8) =112 8* (82— 1)" > 0,

1 281 3447 14427 48015 3645 3465
N(z,3) —2972'% — 1782511 — 31300 L T2 o 6+ x’ — b4 — a4+ —a*

5 ¢ 2 16 " 1 16 © 16 YT 16
24183 . 999 , 351 567 1
BT x—32x—32x+256>(), x € ( 2,0).

Now, if there exists some 3 € (0,1) such that N(w,ﬁ) has root in (B —1,0), then by continuity of N, if we change g
from % to 3, we should find 3 € (0,1) in which N(z, 8) has a multiple root in (5 — 1,0). By computing the resultant
with respect to z between N(z, ) and %(w, B) we have

ON

Res(N, v x) =C1 (% — 4)10(% — 1)?%(19836494433 520 — 218103939324 B8 4- 992591597436 31°
X

— 2585249712004 84 + 4864706813326 312 — 7190845624644 10 + 8243627754476 58

— 7804991817404 5° 4 5806396549161 5+ — 2703302266624 5% + 844228231168)2,

where, C7; = 488701849901452631212032. Applying Sturm’s Theorem, one concludes that the above expression doesn’t
have any solution for 8 € (0,1). Therefore, M (z; 3, 3) is positive for z € (§ — 1,0).
(iii) Let («, B) € y2. We get

M(:0.8) = (8- 1) No(w. ). 0<8< L

where
3 2
No(B—1,8) = —12 (82 =1)" (8* +1)" >0,
No(0,8) = 245°(115% = 7) (82 —1)” > 0,
1 13053 91023 166057 769
No(z, 5) =297 2 — 2079 213 + 5583 1% — 64712 + T 20 + I z — = z® -5 z’

115839 55ATT o 667 ,  STAT o 8499 , 10557 1377
61 " 64 © 8 Y T e 1024 1024 2048

Similarly, computing the resultant with respect to = between Ny and agco’ yields

1
>0, forx € (*5,0).

Res(No, %,x) —0uB (1187~ 1) (8 - 1) (8 - )" (8 1)
x (142733221319586425 £2° — 1169294930918600096 520
+ 3372641185026329411 524 — 2687577605763201772 572
— 5626044685429051562 520 + 12296167417091577440 518
— 2575830200312501898 516 — 12624745972881421272 414
+ 10360822225718623269 312 + 3304488880785423584 31°
— 7028558807284193705 5% 4 1147021568627052836 3°

+ 1522286540556519164 8 — 260343816785020928 5% — 166968082647482368)2,

where Cy = —13683651797240673673936896. Again, Sturm’s Theorem shows that the above expression doesn’t have
any solution for 5 € (0, g) Thus, M(z;8,8) > 0 for x € (8 —1,0).

a0

BE
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V2 | o
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FIGURE 6. Relative position of curves 3 and 4 with respect to region S.

(iv) Let (o, B) € v = {a(B) = /252 — 1, @ < B < 1}. Then, for z € (—1,0), we get

M(8 - 1;a(B), ) = —432(8> — 1)7 > 0,

M(0;(B), 8) = 726%(8* = 1)* > 0,
26250033, 84287385 ,; 92455587

3.3 15 8019 ., 194481 4 15
cal(2). 2) = — — 872
M(z,a(4),4) 297 x 5 ¥ + g 87237 x7° + 198 5eg ° 956
262923327 11 6123011985 10 1844710497 O 18004476285 i 1007392707 o7
1024 65536 131072 524288 65536
864857007 , 355316787 4

2780130591 46— 5175000495 5 . -
2097152 4194304 2097152 16777216

5229615699 22 778248135 . 466948881 N
1073741824 2147483648 8589934592 '
As before, by computing the resultant of M (z; «(8), ) and %—]‘g(x; (), B) with respect to z, we obtain a polynomial

on 3, which has no solution for g € (@, 1). Thus, M (z;«a(B), B) is positive for z € (8 — 1,0).
In (i)-(iv), we proved that M (z;«a, 3) > 0 on 8S. In what follows, we prove that M (z;a, 8) > 0 for (o, 8) € Si.

For (o, 8) € S1, we have
M(B =10, 8) = = 12(8% = 1)*(a® = 1)*(20* = 5 = 1)* > 0,
M(0;c, B) =24B%(8% — 1)*(a® = B*)*(Ta®B* — 11 8* = 3a® + 75°).
As illustrated in Figure 6, the branches of graph 7 o232 — 11 8* — 3 o? 47 32 which is denoted by 73 and v, are located
outside of Sy. Therefore, M(0;«, 3) > 0 for («, 8) € S;. Also, note that
M( ! 1) =297 28 — 2673217 + @ 20 — 20286 27 54;?231 't

T, =, =
12
1391085 1y 174G513 ,, | 4300497 . 6807969
128 ° 256 1024

256
2550159 o 29110095 5 2456307 . 27220293

1024 " 8192 2048 262144
15783579

46331919 . 8494551 , 1985067 3 -
262144 262144 262144 4194304

2066715 ot 137781 0. forae (_} 0)
4194304 8388608 ’ 277

BE
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Hence, if there exist a point (d,B) €5y and 7 € (B —1,0) such that M (&; &,B) < 0, then moving («, 8) continuously

from (&, 8) to (%,1) in S}, we can find (&,B) €S5)and 7 € (B —1,0) such that (Z; &, 8) is a solution of system

172
M(z;a,8) =0, aa—]\j(m, a, ) =0. (4.14)
Now, we show that system (4.14) doesn’t have any solution for (a, 8) € S; and z € (8 — 1,0). Indeed,
Res(M, 270 0) =Cya™ (8 — 2)(28 — 2)!((8 — )” 1)

x (p(z, 8)) " (q(, 8))?,
where C3 = 2282521714753536, p(z, 3) = 28% — 2Bz + 2% — 2 and ¢(z, 8) is a polynomial in z of degree 46. It is easy
to check that p(z,8) < 0 for x € (8 — 1,0). Also, we have
q(B —1,8) = — 2457600 528 + 44236800 5% — 351436800 3**
+ 1661337600 522 — 5271552000 532° — 38051148800 38
— 20031897600 8¢ + 25303449600 514 — 24249139200 512
+ 17571840000 310 — 9488793600 5% + 3706060800 3°
— 990412800 3% 4 162201600 32 — 12288000.

By Sturm’s Theorem it is easy to check that the above expression is non-vanishing on (0, 1). On the other hand,

q(0, B) =1024 31*(2940784 332 — 42878528 30 + 291801664 £*°
— 1229816896 325 + 3591171584 5% — 7700300608 522
+ 12534570048 32 — 15790302528 £ + 15546122592 316
— 11991947968 54 4 7216873664 312 — 3349458112 510
+ 1174036864 58 — 300149696 3° + 3916259 3*
— 5691840 32 + 284592).

Numerical calculation shows that ¢(0, ) = 0 has a unique solution §* ~ 0.21666 in (0,1). So, if § < 8* (respectively,

B > [*), then the number of solutions of ¢(x, ) =0 for = € (§ —1,0) is odd (respectively, even). Simple calculations

show that ¢(z,0.1) has a unique root at z; ~ —0.85662 for z € (—0.9,0) and ¢(z,0.3) has exactly two roots at

x2 ~ —0.66002 and z3 = —0.02871 for © € (—0.7,0). After substituting (x,8) = (x1,0.1) in (4.14) we obtain

ap ~ 0.710787. Also, for (z,3) = (x2,0.3) the corresponding solution of system (4.14) is as &~ 0.73837. However, for

(23,0.3), system (4.14) doesn’t have any solution for «.. Clearly, («1,0.1) and (ae, 0.3) are not located in S.
Computing the resultant of ¢(x, ) and %(w, B) with respect to z we get

Res(q, 02 2) =3"2(8” — 2)°(5 ~ 1)(8 — 5)°(36" — 5)° x La(B)(La(8)Ls(B))* (La( )",
where L1 () = 7% —23% — 41 8* — 144 3% + 384 and Ly(f), L3(B) and L4(3) are polynomials in 3 of degrees 48,
48 and 144, respectively. Moreover, Sturm’s Theorem implies that L;(8) # 0 on (0,1) for ¢ = 1,--- ;4. As a result,
for 8 € (0,1), each solution of ¢(x,8) = 0, named by = = z(5), is simple. Accordingly, the equation ¢(z, ) = 0 has
exactly one simple solution = = z¢(8) in (8 — 1,0) for g € (0,8*) and exactly two simple solution = = z1(8) and
x=x2(8) in (8 —1,0) for B € (5*,1). Now, we claim that %—]‘a/f(x; a, ) # 0 along each solution of (4.14). Indeed

oM

Res(M, —

es( 90

where p(z, ) is the same as before and aq, as and asz are polynomials in = of degree 44, 14 and 10 respectively where

their coefficients are polynomials with respect to 5. To prove our claim, we only need to show that for i = 1,2, 3,
an
EE

,a) = 7827577896962 "% (8 — )*°(26 — 2)*((8 — 2)* = 1)™* x (p(=, B))*(ar(z, B))*az(x, B) (as(z, §))?,
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a;(z,B) and ¢(x, 8) have no common roots satisfying
B-l<ax<0<fB<Ll. (4.15)
Note that
Res(ai(x, 8), q(x, B),x) =Caf**(8> — 1)*4(8% — 2)* (b:1(8))*(c1(8)) ",
Res(az(x, B), q(z, B), ) =C58% (8% — 1)™(8% — 2)"2(b2(B))* (c2(B))?,
Res(az(, B), q(, B), z) =Ce52 (8% — 1) (b3(8))?(c3(8))?,
where Cy, Cs and Cg are constants and b; and ¢; for ¢ = 1,2, 3 are polynomials in 5 whose their degrees are deg b; = 188,
degcy = 84, deg by = 126, degco = 28, degbs = 88 and degcz = 14.
By applying Sturm’s Theorem, we obtain that b;(8) # 0 and ¢1(8) # 0 for 8 € (0,1). On the other hand
q(z,v/2) = (x — v/2)%q(z), where
qo(x) = 145101727232 2*° + 224117784588896 % + 49908701308457363 ¢
+ 3814124509165001335 23 + 132751041164430232663 232
+ 2419403027525678151621 230 + 25014610076278101504857 28
+ 154083430545045467645631 26 + 582625357401025848750165 224
+ 1375177444554761099340375 222 + 2039160591666824560578528 2%°
+ 1894548440366475231840414 28 + 1090030210554766398228552 216
+ 380044729700592264040560 2** + 77632295605537853982464 12
+ 8842411953263012013056 210 4 522719079993355760640 z°
+ 14415340221165076480 25 + 156175787793981440 2
+ 475184964481024 z2 + 141436911616
— (2902034544640 2°° + 1391027777084704 2
+ 172340476607542614 234 4 8684510563134831119 232
+ 215956656413709305392 2°° + 2941803892500654928715 2%°
+ 23365626957475336073798 226 + 112447421356232019409947 22*
+ 335460882813568984703820 22 + 627447240627558376147245 12°
+ 737117128929392848744200 8 + 540034289999307609756366 26
+ 242695723966658503819008 * + 65099087290392926542352 2:'2
+ 10003375904403152610176 21 + 829702343867046840320 8
+ 34051893053211258880 25 + 605200559041429504 2

+ 3693758117855232 2% 4 4507614949376) 2v/2:x.

Thus, by applying Descartes’ rule of signs to qo(—z), we find that ¢(x, v/2) doesn’t have any negative roots. Therefore,
a1 (z, B) and ¢(z, 8) have no common roots satisfying (4.15). However, Sturm’ Theorem implies that each one of bs(3),
c2(B) and b3(B) has a unique root in (0,1); consequently, the previous method defeats for these cases. To find out
if there exist common roots of a;(x, 8) (i = 2,3) and ¢(z, 8) satisfying (4.15), we use Regular Chains Library in the
computer algebra software package Maple to compute the intervals in which all common roots exist (for more details
we refer to Appendix A of [10] or Maple help system). First, we consider the common roots of as(z, 8) and ¢(z, 8) as
follows:

with(RegularChains):
B
EE
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with(ChainTools):
with(SemiAlgebraicSetTools) :
sysl:=[a_2(x,beta) ,q(x,beta)]:
R:=PolynomialRing([x,betal):
decl:=Triangularize(sysl,R):
nops (decl);

L:=map(Equations,decl,R):
map(Dimension,decl,R);
(o, o, o, 0, 0, 0, 0, 0]
for i from 1 to 8 do print(i,Equations(dec1[i],R)): end do:

where p1g, p11, P12 and pi3 are polynomials in 3 of degree 26, 27, 26 and 28 respectively. Note that all the roots of
regular chains 3,4, --- ,8 don’t satisfy (4.15). Therefore we only consider first and second regular chains.

for i from 1 to 2 do C[i]:=Chain([L[i][2], L([i][1]],Empty(R), R):
RL[i] :=RealRootIsolate(C[i],R,’abserr’=1/10"5):
f[i] :=evalf (map(BoxValues,RL[i],R)):
print(i,f[i]) end do;

[z = [0.5642776489, 0.5642852783], 3 = [—0.6506557835, —0.6506557835]],
[z = [~1.865600586, —1.865592957], 8 = [—0.6506557835, —0.6506557835]],
[z = [~0.5875797272, —0.5875740051], 8 = [—1.269586680, —1.269586680]],
[z = [~1.951601028, —1.951595306], 8 = [—1.269586680, —1.269586680]],
[z = [1.951595306, 1.951601028], 8 = [1.269586680, 1.269586680]],

[z = [0.5875740051, 0.5875797272], 3 = [1.269586680, 1.269586680]],

[z = [1.865592957, 1.865600586], 8 = [0.6506557835, 0.6506557835]],

[z = [—0.5642852783, —0.5642776489], 8 = [0.6506557835, 0.6506557835]]],
[z = [—0.04209899902, —0.04209136963], 3 = [—0.8000901125, —0.8000901125]],
[z = [~1.558090210, —1.558082581], 8 = [—0.8000901125, —0.8000901125]],
[z = [1.558082581, 1.558090210], 8 = [0.8000901125, 0.8000901125]],

[z = [0.04209136963, 0.04209899902], 8 = [0.8000901125, 0.8000901125]]].

This Maple program shows that as(x, 5) and g(z, 8) have twelve pairs of common roots in the above twelve pairs of
interval; but, no one satisfies (4.15).
Now, it is turn to consider the common roots of as(z, §) and ¢(z, 3). So

[E)E
(=
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with(RegularChains):
with(ChainTools):
with(SemiAlgebraicSetTools) :
sys2:=[a_3(x,beta) ,q(x,beta)]:
R:= PolynomialRing([x,beta]):
dec2:=Triangularize(sys2,R):
nops (dec2) ;

K:= map(Equations, dec2,R):
map(Dimension, dec2, R);
(o, o, o, o, 0, 0, 0]
for i from 1 to 7 do print(i, Equations(dec2[i],R)): end do;

L, [p20(B)2* + p21(B)x + p22(B), p23(B)]
2, [p3o(8)2? + p31(B)x + p32(B), p33(B)]

3, [z, 8+ 1]

4, [z 42,8+ 1]
5,[z,8-1]
6,[x—2,8-1]
77[x’ ]

where psg, P21, D22, P23, P30, P31, P32, P33 are polynomials in 8 of degree 86, 87, 86, 88, 12, 13, 12 and 14 respectively.
It is clear that all the roots of regular chains 3,4,--- ;7 don’t satisfy (4.15) and we only need to consider first and
second regular chains. So

for i from 1 to 2 do C[i]:=Chain([K[i][2],K[i][1]],Empty(R),R):
RL[i] :=RealRootIsolate(C[i] ,R,’abserr’= 1/10°5):
f[i] :=evalf (map(BoxValues,RL[i],R)):
print(i,f[i]) end do;

1, [[z = [-0.6949234009, —0.6949157715], 8 = [—1.290633072, —1.290633072]],
x = [—1.886344910, —1.886337280], 8 = [—1.290633072, —1.290633072]],
x = [1.886337280, 1.886344910], 5 = [1.290633072, 1.290633072]],

[z =[-
[z =[-
[z =1
[z = [0.6949157715, 0.6949234009], 5 = [1.290633072, 1.290633072]]]
[z =[-
[z =[-
[z =1
[z =1

2, [z = [—0.04241943359, —0.04241180420], 8 = [—0.6557654040, —0.6557654040]],
z = [~1.269119263, —1.269111633], 8 = [—0.6557654040, —0.6557654040]],
x = [1.269111633, 1.269119263], 8 = [0.6557654040, 0.6557654040]],
z = [0.04241180420, 0.04241943359], 8 = [0.6557654040, 0.6557654040]]]

This program shows that agz(x, 8) and ¢(x, 8) have eight pairs of common roots in the above eight pairs of interval;
but, no one satisfies (4.15).

In short, we proved that along each solution of (4.14), denoted by z = (), we have %—]g(m; a, B) # 0. Therefore,
by the implicit function theorem, equation M (z(5);a, 3) = 0 determines a continuous function o = «(f) such that
M(z(B);a(B),8) =0, for 8 in some subinterval of (0, 1)

Now we are in a position to prove that system (4.14) has no solution for (a, 8) € S1 and = € (8 — 1,0). The proof
is by contradiction. Assume that there exist a point (&, ) € S; and Z € (8 — 1,0) which (Z, &, 3) satisfies (4.14). As a
result of continuously changing 3 from 3 to 0.1, the point (a(B), B) is also moving continuously from (& ﬂ) to (aq,0.1),
where aq ~ 0.710787. Accordingly, (a(53), 3) takes a value on the boundary of S, which means M (z;«,5) =0 has a

a0
B
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solution on the boundary of S for € (8 — 1,0). This is a contradiction, because we proved M (z;a, 8) > 0 on the
boundary of S for z € (5 —1,0). O

Combining Lemmas 4.1 and 4.2, we have:

Theorem 4.3. Period functions associated with those period annulus of system (1.5) which surround five singularities
counted with multiplicities, are convex and have exactly one critical point.

5. CONCLUSION

In this paper, we considered the monotonicity and convexity of the period function associated with centers of
symmetric Newtonian system (1.5). First we discussed about the bifurcation diagram and all topologically different
phase portraits of the Newtonian system (1.5). Then using Theorem 1.1, Theorem 1.2 and some computatinal methods,
we proved that if the period annulus surrounds only one elementary center, then the corresponding period function
is monotone; but, for the other cases, the period function has exactly one critical point. We also proved that in all
cases, the period function is convex.
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