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Abstract

..

In this paper, we study the monotonicity and convexity of the period function associated with centers of a specific

class of symmetric Newtonian systems of degree 8. In this regard, we prove that if the period annulus surrounds
only one elementary center, then the corresponding period function is monotone; but, for the other cases, the
period function has exactly one critical point. We also prove that in all cases, the period function is convex.
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1. Introduction

Let f be a real-valued analytic function on R and consider the Newtonian system{
ẋ = −y
ẏ = f(x),

(1.1)

with f(0) = 0 and f ′(0) > 0. The Hamiltonian function associated with system (1.1) is of the formH(x, y) = y2

2 +F (x),

where F (x) =
∫ x

0
f(s)ds is the potential function of system (1.1). Under these conditions, it is easy to verify that

the origin is an elementary center of system (1.1) which is surrounded by a family of periodic orbits (period annulus)
{Γa}, passing through the point (0, a) for a ∈ (0, c), where c > 0. We denote the projection of this period annulus

on the x-axes by (cl, cr), where cl < 0 < cr and F (cl) = F (cr) = c2

2 (see Figure 1). Note that xf(x) > 0 for each
x ∈ (cl, cr) \ {0}.

Figure 1. The location of Γa.
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The period function T : (0, c) → [0,∞) is defined as the period of the periodic orbit Γa. By the first equation of
system (1.1), T is given by

T (a) = −
∮
Γa

dx

y
, a ∈ (0, c), (1.2)

where the orientation of the above Abelian integral is determined by the vector field (1.1) which is counter-clockwise.
We recall that a critical point of T is a value a∗ ∈ (0, c) such that T ′(a∗) = 0 and in this case, T (a∗) is named as a
critical period. The study of the period function and finding the number of its critical periods are interesting problems
which are closely related to the study of Abelian integrals, week Hilbert 16th problem and some nonlinear boundary
value problems, for example, see [2, 9]. Most of the papers on this subject are devoted to finding some conditions to
guarantee the monotonicity of period function, see for instance [3, 8, 11]. However, there are also very few papers
dealing with the number of critical periods, see [1, 6, 7].

Schaaf in [8] considered a class of Hamiltonian systems of the form{
ẋ = −g(y)
ẏ = f(x),

(1.3)

and found some conditions on f and g to guarantee the monotonicity of the associated period function. System (1.1)
is a special case of (1.3) by taking g(y) = y. So we recall his result for Newtonian system (1.1). In fact, he supposed
the Newtonian system (1.1) satisfies one of the following assumptions:

(A) (5(f ′′)2 − 3f ′f ′′′)(x) > 0 if f ′(0) > 0, and f(x)f ′′(x) < 0 if f ′(x) = 0;
(B) (5(f ′′)2 − 3f ′f ′′′)(x) < 0 if f ′(0) > 0, and f(x)f ′′(x) < 0 if f ′(x) = 0;

and then he obtained a result implying the following theorem.

Theorem 1.1. ([8]) If condition (A) (resp. (B)) holds for x ∈ (cl, cr), then T ′(a) > 0 (resp. T ′(a) < 0) for all
a ∈ (0, c).

Li and Lu in [5] added the following assumptions to the Newtonian system (1.1),

(C) If there exists x ∈ (cl, 0) with f
′(x) < 0, then (3f ′(2Ff ′ − f2)− 2Fff ′′)(cl) > 0, and if there exists x ∈ (0, cr)

such that f ′(x) < 0, then (3f ′(2Ff ′ − f2)− 2Fff ′′)(cr) > 0;
(D) If there exists x ∈ (cl, 0) with f

′(x) < 0, then (3f ′(2Ff ′ − f2)− 2Fff ′′)(cl) < 0, and if there exists x ∈ (0, cr)
such that f ′(x) < 0, then (3f ′(2Ff ′ − f2)− 2Fff ′′)(cr) < 0;

and proved the following theorem.

Theorem 1.2. ([5]) If assumption (A) (resp. (B)) is fulfilled for x ∈ (cl, cr), and assumption (C) (resp. (D)) holds,
then T ′′(a) > 0 (resp. T ′′(a) < 0) for a ∈ (0, c).

Moreover, they considered a class of Newtonian system of the form{
ẋ = −y
ẏ = x(x− α)(x− β)(x− 1),

(1.4)

where 0 ≤ α ≤ β ≤ 1, and proved the following theorem.

Theorem 1.3. ([5]) The period function associated with each period annulus of the system (1.4) is monotonically
increasing if the period annulus surrounds only one elementary center. Otherwise, the period function has exactly one
critical point.

In this paper, we will consider a class of symmetric Newtonian systems of the form{
ẋ = −y
ẏ = −x(x2 − α2)(x2 − β2)(x2 − 1),

(1.5)

with hyperelliptic Hamiltonian function H(x, y) = y2

2 + F (x), where

F (x) = −1

8
x8 +

1

6

(
α2 + β2 + 1

)
x6 − 1

4

(
α2β2 + α2 + β2

)
x4 +

1

2
α2β2x2, (1.6)
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Figure 2. Bifurcation diagram of system (1.5).

and 0 ≤ α ≤ β ≤ 1. Following Li and Lu’s idea in [5], our main goal is to prove Theorem 1.3 for the system (1.5). In
this way, we give the bifurcation diagram and all topologically different phase portraits of the system (1.5) in section 2.
Then, in section 3, we investigate the monotonicity and convexity of T (a) when {Γa} is a period annulus surrounding
a unique elementary center of system (1.5). Finally, in section 4 we discuss on convexity and the number of critical
periods of T (a) when the period annulus {Γa} surrounds more than one equilibrium point of the system (1.5) counted
with multiplicities.

2. Bifurcation diagram and phase portraits of system (1.5)

In this section, the bifurcation diagram and all topologically different phase portraits of the Newtonian system (1.5)
will be considered. Let us denote the equilibrium points of system (1.5) by p0 = (0, 0), p±β = (±β, 0), p±α = (±α, 0)
and p±1 = (±1, 0). Also, denote the corresponding critical energy levels of H by

h0 = H(p0) = 0,

hα = H(p±α) =
1

24
α4

(
α4 − 2α2β2 − 2α2 + 6β2

)
,

hβ = H(p±β) =
1

24
β4

(
β4 − 2α2β2 − 2β2 + 6α2

)
,

h1 = H(p±1) =
1

24
(6α2β2 − 2α2 − 2β2 + 1).

Note that the global structure of the phase portrait of system (1.5) will change either there exists a critical point x̄
which is degenerate i.e., F ′′(x̄) = 0 or at least two maximum values of F are equal. The first happens when α = 0,
β = 1 or α = β and the later holds if hα = hβ or equivalently 2β2 − α2 = 1. Therefore, as shown in Figure 2, the
bifurcation diagram of system (1.5) contains the boundary of the triangle T = {(α, β)| 0 ≤ α ≤ β ≤ 1} and the curve

γ := {(α, β)|0 ≤ α ≤ β ≤ 1, β =

√
α2 + 1

2
}.

According to this bifurcation diagram, system (1.5) has 11 topologically different phase portraits, illustrated in
(1)− (11) of Figure 3, that we classify them respectively as follows:

(1): If α = β = 0, then p0 is a nilpotent centre of order two and p±1 are hyperbolic saddles. The corresponding
energy levels are h0 = hα = hβ = 0 and h1 = 1

24 (see Figure 3 (1)).
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Figure 3. Classification of phase portraits of system (1.5).

(2): If α = 0 and 0 < β <
√
2
2 , then p0 is a nilpotent saddle of order one, p±β are elementary centers and

p±1 are hyperbolic saddles. The corresponding energy levels are h0 = hα = 0, hβ = 1
24β

6
(
β2 − 1

)
and

h1 = 1
24 (1− 2β2). So hβ < h0 < h1 (see Figure 3 (2)).

(3): If α = 0 and β =
√
2
2 , then p0 is a nilpotent saddle of order one, p±β are elementary centers and p±1 are

hyperbolic saddles. The corresponding energy levels are hβ = − 1
128 and h0 = hα = h1 = 0 (see Figure 3 (3)).

(4): If α = 0 and
√
2
2 < β < 1, then p0 is a nilpotent saddle of order one, p±β are elementary centers and

p±1 are hyperbolic saddles. The corresponding energy levels are h0 = hα = 0, hβ = 1
24β

6
(
β2 − 1

)
and

h1 = 1
24 (1− 2β2). So hβ < h1 < h0 (see Fig. 3 (4)).

(5): If α = 0 and β = 1, then p0 is a nilpotent saddle of order one and p±1 are cusps of order one with energy
levels h0 = hα = 0 and hβ = h1 = − 1

24 (see Fig. 3 (5)).
(6): If 0 < α < 1 and β = 1, then p0 is an elementary center, p±α are hyperbolic saddles and p±1 are cusps of

order one. The corresponding energy levels are h0 = 0, hα = 1
24 α

4
(
α4 − 4α2 + 6

)
and hβ = h1 = 1

24 (4α
2−1).

So h0 < hα < h1 (see Figure 3 (6)).
(7): If α = β = 1, then p0 is an elementary center and p±1 are nilpotent saddles of order one with energy levels
h0 = 0 and hα = hβ = h1 = 1

8 (see Figure 3 (7)).
(8): If 0 < α = β < 1, then p0 is an elementary center, p±α are cusps of order one and p±1 are hyperbolic

saddles, with energy levels h0 = 0, hα = hβ = 1
24α

6
(
4− α2

)
and h1 = 1

24 (6α
4 − 4α2 + 1). So h0 < hα < h1

(see Figure 3 (8)).

(9): If α < β <
√

α2+1
2 and 0 < α < 1, then p0 and p±β are elementary centers and p±α and p±1 are hyperbolic

saddles. Also, h0 < hα, hβ < hα and hα < h1 (see Figure 3 (9)).

(10): If β =
√

α2+1
2 and 0 < α < 1, then p0 and p±β are elementary centers and p±α and p±1 are hyperbolic

saddles. Also, h0 < hα, hβ < hα and hα = h1 (see Figure 3 (10)).

(11): If
√

α2+1
2 < β < 1 and 0 < α < 1, then p0 and p±β are elementary centers and p±α and p±1 are hyperbolic

saddles. Also, h0 < hα, hβ < h1 and h1 < hα (see Figure 3 (11)).
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3. Period annulus surrounding a unique elementary center

This section will consider the monotonicity and convexity of the period functions associated with those period annuli
of the system (1.5) which surround a unique elementary center. To tackle this, we consider two cases separately. First,
we treat those period annulus which surrounding the unique elementary center at the origin, and then we consider
those period annulus which surrounding one of the elementary centers at p±β .

3.1. Period annulus surrounding only the elementary center p0. This subsection is devoted to period annulus
surrounding only the elementary center p0. As shown in Figure 3, this happens in cases (6) − (11), when 0 < α ≤
β ≤ 1. Note that in these cases we have f(x) = −x(x2 − α2)(x2 − β2)(x2 − 1), f(0) = 0, f ′(0) = α2β2 > 0 and
xf(x) = −x2(x2 − α2)(x2 − β2)(x2 − 1) > 0 for x ∈ (−α, α) \ {0}. So we have the following lemma.

Lemma 3.1. For f(x) = −x(x2 −α2)(x2 − β2)(x2 − 1) and F (x) =
∫ x

0
f(s)ds, assumption (A) holds for x ∈ (−α, α)

and assumption (C) is true for cl = −α and cr = α.

Proof. We set

A(x;α, β) :=5(f ′′(x))2 − 3f ′(x)f ′′′(x)

=4410x10 + a4x
8 + a3x

6 + a2x
4 + a1x

2 + a0, (3.1)

where

a4 = −3990(α2 + β2 + 1),

a3 = 1100(α4 + β4 + 1) + 2704(α2β2 + α2 + β2),

a2 = −570(α4 + β4 + α4β2 + α2β4 + α2 + β2)− 1080α2β2,

a1 = 126(α4 + β4 + α4β4) + 72(α4β2 + α2β4 + α2β2),

a0 = 18(α4β4 + α4β2 + α2β4).

Now, we will prove that if (α, β) ∈ Π = {0 < α ≤ β ≤ 1}, then A(x;α, β) > 0 for x ∈ (−α, α). A direct computation
gives A(−α;α, β) = A(α;α, β) = 16α2Ā(α, β), where

Ā(α, β) =95α8 − 116α6β2 + 41α4β4 − 116α6 + 106α4β2 − 30α2β4 + 41α4 − 30α2β2 + 9β4, (α, β) ∈ Π.

To prove Ā(α, β) > 0 for (α, β) ∈ Π, we note that

Ā(α, 1) = (95α4 − 42α2 + 9)
(
α2 − 1

)2
> 0, 0 < α < 1,

Ā(α, α) = 20α4
(
α2 − 1

)2
> 0, 0 < α < 1,

Ā(
1

2
, β) =

1

16
(65β4 − 43β2 +

287

16
) > 0, 0 < β < 1.

Thus, if there exists ᾱ ∈ (0, 1) such that Ā(ᾱ, β) has roots in the interval (ᾱ, 1), then the number of these roots
(counted with multiplicities) should be even. By continuously moving α from ᾱ to 1

2 , one can find α̂ such that Ā(α̂, β)
has a multiple zero in (α̂, 1). So the equations

Ā(α, β) = 0,
∂Ā

∂β
(α, β) = 0,

should have a solution in Π\{β = 1}. Computing the resultant between Ā(α, β) and ∂Ā
∂β (α, β) with respect to α, we

get

Res(Ā,
∂Ā

∂β
, α) = 13931406950400β16

(
6667β4 − 132β2 + 15568

)2 (
β2 − 1

)4
,

which doesn’t have any solution for β ∈ (0, 1). Hence

A(−α;α, β) = A(α;α, β) > 0. (3.2)
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Now by setting α = 1
4 and β = 1

2 in A(x;α, β), we get

A(x;
1

4
,
1

2
) = 4410x10 − 41895

8
x8 +

131859

64
x6 − 120645

512
x4 +

20223

2048
x2 +

189

2048
.

By applying Sturm’s theorem to A(x; 1
4 ,

1
2 ) and straightforward calculation with Maple, it follows that the above

expression is non-vanishing for all x ∈ R. Hence,

A(x;
1

4
,
1

2
) > 0. (3.3)

Since A is continuous, it follows from (3.2) and (3.3) that if there exists (α1, β1) ∈ Π such that A(x;α1, β1) has a root
in (−α1, α1), then varying (α, β) from ( 14 ,

1
2 ) to (α1, β1) in Π continuously, one may find a point (α2, β2) ∈ Π which

A(x;α2, β2) has a multiple root in (−α2, α2), i.e. the equations

A(x;α, β) = 0,
∂A

∂x
(x;α, β) = 0, (3.4)

have a solution in (−α2, α2). By computing the resultant with respect to x between A(x;α, β) and ∂A
∂x (x;α, β), we

obtain

Res(A,
∂A

∂x
, x) = Cα2β2(α2β2 + α2 + β2)[P1(α, β)P2(α, β)]

2, (3.5)

where C = 107914372256939438631813120000 and

P1(α, β) =225α8β4 − 306α6β6 + 225α4β8 − 50α8β2 − 78α6β4 + 225β8 − 306α6

+ 225α8 − 78α6β2 + 186α4β4 − 78α2β6 − 78α4β6 − 50α2β8 − 78α4β2 − 78α2β4

− 306β6 + 225α4 − 50α2β2 + 225β4,

P2(α, β) =124416359375α20β8 − 135340051875α18β10 + 334804385685α16β12 − 129618282626α14β14

+ 334804385685α12β16 − 135340051875α10β18 + 124416359375α8β20 + 408049812500α20β6

− 266804794375α18β8 + 641553565485α16β10 + 334476148678α14β12 + 334476148678α12β14

+ 641553565485α10β16 − 266804794375α8β18 + 408049812500α6β20 + 961575656250α20β4

− 272865873750α18β6 + 1591928735775α16β8 + 849153788154α14β10 + 2651495392518α12β12
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+ 849153788154α10β14 + 1591928735775α8β16 − 272865873750α6β18 + 961575656250α4β20

+ 408049812500α20β2 − 272865873750α18β4 − 364990138050α16β6 − 377773237310α14β8

+ 298859364930α12β10 + 298859364930α10β12 − 377773237310α8β14 − 364990138050α6β16

− 272865873750α4β18 + 408049812500α2β20 + 124416359375α20 − 266804794375α18β2

+ 1591928735775α16β4 − 377773237310α14β6 + 6534531610810α12β8 + 1442974207290α10β10

+ 6534531610810α8β12 − 377773237310α6β14 + 1591928735775α4β16 − 266804794375α2β18

+ 124416359375β20 + 641553565485α16β2 + 849153788154α14β4 + 298859364930α12β6

+ 1442974207290α10β8 + 1442974207290α8β10 + 298859364930α6β12 + 849153788154α4β14

+ 641553565485α2β16 − 135340051875β18 + 334804385685α16 + 334476148678α14β2

+ 2651495392518α12β4 + 298859364930α10β6 + 6534531610810α8β8 + 298859364930α6β10

+ 2651495392518α4β12 + 334476148678α2β14 + 334804385685β16 + 334476148678α12β2

+ 849153788154α10β4 − 377773237310α8β6 − 377773237310α6β8 + 849153788154α4β10

+ 334476148678α2β12 − 129618282626β14 + 334804385685α12 + 641553565485α10β2

+ 1591928735775α8β4 − 364990138050α6β6 + 1591928735775α4β8 + 641553565485α2β10

+ 334804385685β12 − 135340051875α10 − 266804794375α8β2 − 272865873750α6β4

− 272865873750α4β6 − 266804794375α2β8 − 135340051875β10 + 124416359375α8

+ 408049812500α6β2 + 961575656250α4β4 + 408049812500α2β6 − 135340051875α18

− 129618282626α14 + 124416359375β8,

Now we want to show that P1P2 ̸= 0 for (α, β) ∈ Π. Indeed, we have

P1(α, 1) = 16
(
25α4 + 2α2 + 9

) (
α2 − 1

)2
> 0, 0 < α < 1,

P1(α, α) = 16α4
(
9α4 + 2α2 + 25

) (
α2 − 1

)2
> 0, 0 < α < 1,

P1(
1

2
, β) =

55497

256
β4 − 10725

32
β6 +

3625

16
β8 − 2405

128
β2 +

2601

256
, 0 < β ≤ 1.

Applying Sturm’s Theorem, one concludes that P1(
1
2 , β) ̸= 0 for 0 < β ≤ 1 and so it is positive. A similar argument

shows that if there exists ᾱ ∈ (0, 1) such that P1(ᾱ, β) has roots on the interval (ᾱ, 1), then the equations

P1(α, β) = 0,
∂P1

∂β
(α, β) = 0,

should have a solution in Π\{β = 1}. Computing the resultant with respect to α between P1(α, β) and
∂P1

∂β (α, β), we

obtain

Res(P1,
∂P1

∂β
, α) = Dβ16

(
β2 − 1

)4
[p0(β)]

6,

where D = 16906881566693365288796160000 and

p0(β) =
(
125β12 − 150β10 + 323β8 − 84β6 + 323β4 − 150β2 + 125

)
.
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Sturm’s Theorem implies that p0(β) doesn’t have any solution for β ∈ (0, 1). Hence, P1(α, β) ̸= 0 for (α, β) ∈ Π. We
also have

P2(α, 1) =2026508000000α20 − 1350021440000α18 + 4771583235840α16 + 1352476833792α14

+ 13773802194432α12 + 6194401747968α10 + 16655571555840α8 − 617440143360α6

+ 8911080005376α4 + 2234549464576α2 + 518143103744, 0 < α < 1,

P2(α, α) =256α8
(
2023996499α20 + 8728708846α18 + 34808906271α16 − 2411875560α14

+ 65060826390α12 + 24196881828α10 + 53803914822α8 + 5283112632α6

+ 18638997015α4 − 5273521250α2 +7916046875) , 0 < α < 1,

P2(
1

2
, β) =

1

220
(
307640738240000000β20 − 235440199280000000β18

+ 624859105476000000β16 + 626505759600000β14

+ 645190692553890000β12 + 94340347409122500β10

+ 188574175067299875β8 + 81909753788118300β6

+ 66695730948144210β4 + 6366244596556360β2

+453375473850131) , 0 < β ≤ 1.

By applying Sturm’s Theorem to each above expressions, we see that P2(α, 1), P2(α, α) and P2(
1
2 , β) are positive on

their corresponding intervals. Again, if there exists ᾱ ∈ (0, 1) such that P2(ᾱ, β) has roots on the interval (ᾱ, 1), then
the equations

P2(α, β) = 0,
∂P2

∂β
(α, β) = 0,

must have a solution in Π\{β = 1}. Note that

Res(P2,
∂P2

∂β
, α) = Eβ68(p1(β))

2(p2(β))
4(p3(β))

6(p4(β))
6,

where E is a constant and p1, p2, p3, and p4 are polynomials of degree 36, 48, 12 and 36, respectively. It follows
from Sturm’s Theorem that pi(β) ̸= 0 for all β ∈ (0, 1] and i = 1, · · · , 4. Therefore P2(α, β) ̸= 0 for (α, β) ∈ Π. So
A(x;α, β) > 0 for (α, β) ∈ Π and x ∈ (−α, α) and the first part of the assumption (A) is verified. We also have

f ′(x) = −7x6 + 5
(
α2 + β2 + 1

)
x4 − 3

(
α2β2 + α2 + β2

)
x2 + α2β2, (3.6)

which implies that

f ′(−1) = f ′(1) = −2(α2 − 1)(β2 − 1) < 0,

f ′(−β) = f ′(β) = 2β2(α2 − β2)(β2 − 1) > 0,

f ′(−α) = f ′(α) = −2α2(α2 − β2)(α2 − 1) < 0,

f ′(0) = α2β2 > 0.

Since f ′ is a polynomial of degree six, f ′(x) has exactly a simple positive root x1 ∈ (0, α). It follows that f ′ vanishes
at −x1 ∈ (−α, 0) and f(x1) = −f(−x1) < 0, because f ′ is even. Also, it is easy to see that x1 is a local maximum of f .
This yields that f(x1)f

′′(x1) = f(−x1)f ′′(−x1) < 0, which implies the second part of the assumption (A). Moreover,

f(±α) = 0 and (3f ′(2Ff ′ − f2)− 2Fff ′′)(±α) = 6(Ff ′
2
)(±α) > 0. So assumption (C) is verified. �

By putting Lemma 3.1 and Theorems 1.1 and 1.2 together, the following theorem can be concluded.

Theorem 3.2. The period function associated with the period annulus surrounding only the elementary center p0 of
system (1.5) is convex and monotonically increasing.
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3.2. Period annulus surrounding only one of the elementary centers p±β. First, we note that in cases (2)−(4)
and (9)− (11) of the phase portraits (shown in Figure 3), there are two period annulus which one of them surrounds
the elementary center p−β and the other surrounds the elementary center pβ . In these cases, we have 0 ≤ α < β < 1,
see Fig 3. By the symmetry property of system (1.5), we only consider the period annulus surrounding the elementary
center pβ . We bring pβ to the origin by the change of variable x − β = t. Consequently, the potential function F (x)
in (1.6) transforms to

F̃ (t) =
1

24
t2(2β+ t)2(6α2β2 +8α2tβ+4α2t2 − 6β4 − 16β3t− 20β2t2 − 12β t3 − 3 t4 − 6α2 +6β2 +8 tβ+4 t2).

Therefore,

f̃(t) = F̃ ′(t) = −(t+ β)((t+ β)2 − α2)((t+ β)2 − β2)((t+ β)2 − 1), (3.7)

and in this case the projection of period annulus on the t-axes is (α − β, 1 − β). It is easy to check that f̃(0) = 0,

f̃ ′(0) > 0 and tf̃(t) > 0 for t ∈ (α− β, 1− β)\{0}. Now, we have the following lemma.

Lemma 3.3. For f = f̃ and F = F̃ assumption (A) holds in the interval (α − β, 1− β) and assumption (C) is true
for c1 = α− β and c2 = 1− β.

Proof. We set

B(t;α, β) :=5(f̃ ′′(t))2 − 3f̃ ′(t)f̃ ′′′(t)

=4410t10 + 44100βt9 + b8t
8 + b7t

7 + b6t
6 + b5t

5 + b4t
4 + b3t

3 + b2t
2 + b1t+ b0,

where,

b8 =210(926β2 − 19α2 − 19),

b7 =1680(296β3 − 19α2β − 19β),

b6 =(1100α4 − 109016α2β2 + 815480β4 + 2704α2 − 109016β2 + 1100),

b5 =24β(275α4 − 8634α2β2 + 37270β4 + 676α2 − 8634β2 + 275),

b4 =(15930α4β2 − 239310α2β4 + 663300β6 − 570α4 + 39480α2β2

− 239310β4 − 570α2 + 15930β2),

b3 =40β(493α4β2 − 4291α2β4 + 8194β6 − 57α4 + 1244α2β2

− 4291β4 − 57α2 + 493β2),

b2 =(13206α4β4 − 74580α2β6 + 103230β8 − 3348α4β2 + 34152α2β4

− 74580β6 + 126α4 − 3348α2β2 + 13206β4),

b1 =12β(381α4β4 − 1498β6α2 + 1565β8 − 178α4β2 + 1004α2β4

− 1498β6 + 21α4 − 178α2β2 + 381β4),

b0 =16β2(41α4β4 − 116α2β6 + 95β8 − 30α4β2 + 106α2β4

− 116β6 + 9α4 − 30α2β2 + 41β4).

Now, we prove that if (α, β) ∈ Ω = {0 ≤ α < β < 1}, then B(t;α, β) > 0 for t ∈ I = (α− β, 1− β). Let

B̄(α, β) := B(α− β;α, β) = 16α2(95α8 − 116(β2 + 1)α6

+ (41β4 + 106β2 + 41)α4 − 30β2(β2 + 1)α2 + 9β4), (α, β) ∈ Ω.
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To show that B̄(α, β) > 0 for (α, β) ∈ Ω, note that

B̄(0, β) = 9β4 > 0, 0 < β < 1,

B̄(β, β) = 20β4(β − 1)2(β + 1)2 > 0, 0 < β < 1,

B̄(α,
1

2
) = 95α8 − 145α6 +

1121α4

16
− 75α2

8
+

9

16
> 0, 0 ≤ α < 1.

Thus, if there exists a value β̂ ∈ (0, 1) such that B̄(α, β̂) has roots for α ∈ (0, β̂), then the number of these roots

(counted with multiplicities) is even. By continuously moving β from β̂ to 1
2 , we can find β̄ such that B̄(α, β̄) has a

multiple zero on (0, β̄). Hence the equations

B̄(α, β) = 0,
∂B̄

∂α
(α, β) = 0, (3.8)

have a solution in Ω \ {α = 0}. By computing the resultant between B̄(α, β) and ∂B̄
∂α with respect to β, we obtain

Res(B̄,
∂B̄

∂α
, β) =120736α12(229805α12 − 507680α10 + 590056α8

− 415728α6 + 185727α4 − 49644α2 + 5904)2(α2 − 1)4.

Sturm’s Theorem implies that the above expression has no zero for α ∈ (0, 1). We set

B̃(α, β) :=B(1− β;α, β) = 144α4β4 − 480α4β2 − 480α2β4 + 656α4

+ 1696α2β2 + 656β4 − 1856α2 − 1856β2 + 1520, (α, β) ∈ Ω.

To prove the inequality B̃(α, β) > 0 for (α, β) ∈ Ω, observe that

B̃(0, β) = 656β4 − 1856β2 + 1520 > 0, 0 < β < 1,

B̃(β, β) = 144β8 − 960β6 + 3008β4 − 3712β2 + 1520 > 0, 0 < β < 1,

B̃(α,
1

2
) = 545α4 − 1462α2 + 1097 > 0, 0 ≤ α < 1.

Again, if there exists β̂ ∈ (0, 1) such that B̃(α, β̂) has zero for α ∈ (0, β̂), then the number of these zeros is even

(counted with multiplicities). By continuously moving β from β̂ to 1
2 , we can find β̄ such that B̃(α, β̄) has a multiple

zero on (0, β̄). Hence, the equations

B̃(α, β) = 0,
∂B̃

∂α
(α, β) = 0, (3.9)

have a solution in Ω. Computing the resultant between B̃(α, β) and ∂B̃
∂α (α, β) with respect to β, we obtain

Res(B̃,
∂B̃

∂α
, β) = 180(113α4 − 466α2 + 973)(α2 − 1)2, (3.10)

which has no solution for α ∈ (0, 1). So we have proved that

B(α− β;α, β) > 0, B(1− β;α, β) > 0, (α, β) ∈ Ω. (3.11)

Now, by setting α = 1
2 and β = 3

4 in B(t;α, β), we get

B(t;
1

2
,
3

4
) =4410 t10 + 33075 t9 +

417585

4
t8 + 179865 t7 +

5862907

32
t6

+
7122663

64
t5 +

39217755

1024
t4 +

6543405

1024
t3 +

9930663

32768
t2

+
553581

65536
t+

684855

65536
> 0, t ∈ (−1

4
,
1

4
). (3.12)
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By continuity of B, it follows from (3.11) and (3.12) that if there exists (α1, β1) ∈ Ω such that B(t;α1, β1) has a root
in t ∈ (α1 − β1, 1 − β1), then changing (α, β) from ( 12 ,

3
4 ) to (α1, β1) in Ω continuously, one may find (α2, β2) ∈ Ω in

which B(t;α2, β2) has a multiple root in (α2 − β2, 1− β2), i.e. the equations

B(t;α, β) = 0,
∂B

∂t
(t;α, β) = 0, (3.13)

have a solution in (α2 − β2, 1− β2). Computing the resultant with respect to t between B(t;α, β) and ∂B
∂t (t;α, β), we

get

Res(B,
∂B

∂t
, t) = Cα2β2(α2β2 + α2 + β2)P1(α, β)P2(α, β), (3.14)

where the above expression is the same as in (3.5). Hence, B(t;α, β) > 0 for (α, β) ∈ Ω and t ∈ I. Accordingly, the
first part of the assumption (A) is true. In what follows, we verify the second part of the condition (A). We have

f ′(t) =− 7 t6 − 42β t5 +
(
5α2 − 100β2 + 5

)
t4 +

(
20α2β − 120β3 + 20β

)
t3

+
(
27α2β2 − 75β4 − 3α2 + 27β2

)
t2 +

(
14α2β3 − 22β5 − 6α2β + 14β3

)
t

+ 2α2β4 − 2β6 − 2α2β2 + 2β4,

and we get

f ′(−1− β) = −2
(
β2 − 1

) (
α2 − 1

)
< 0,

f ′(−2β) = 2β2
(
β2 − 1

) (
α2 − β2

)
> 0,

f ′(−α− β) = −2α2
(
β2 − 1

) (
α2 − β2

)
< 0,

f ′(−β) = α2β2 > 0,

f ′(α− β) = −2α2
(
β2 − 1

) (
α2 − β2

)
< 0,

f ′(0) = 2β2
(
β2 − 1

) (
α2 − β2

)
> 0,

f ′(1− β) = −2
(
β2 − 1

) (
α2 − 1

)
< 0,

Since f ′(t) is a polynomial of degree six, it has exactly one simple root t1 ∈ (α − β, 0) and one simple root t2 ∈
(0, 1 − β). It is clear that f(t1) < 0 and f(t2) > 0. Also, one can check that t1 is a local minimum, and t2 is a local
maximum. So we have f ′′(t1) > 0 and f ′′(t2) < 0. This implies the second part of the condition (A). Moreover, since
f(α− β) = f(1− β) = 0, the second part of assumption (C) holds. This completes the proof. �

Finally, considering Lemma 3.3 and Theorems 1.2, 1.3 and symmetry property of system (1.5), we conclude the
following theorem.

Theorem 3.4. The period functions associated with those period annulus of system (1.5) that surround only one of
the elementary centers p±β are monotonically increasing and convex.

4. Period annulus surrounding five singularities

This section treats the period functions associated with those period annulus of the system (1.5) which surrounding
five singularities counted with multiplicities. As shown in Figure 3, this happens in cases (1), (2), (8) and (9), which
correspond to region S = S1 ∪ γ1 ∪ γ2 ∪ {(0, 0)} in the (α, β)-plane, where

γ1 = {(α, β) : 0 < α = β < 1}, γ2 = {α = 0, 0 < β <

√
2

2
},

and S1 is the open curved triangle region bounded by line segments γ1, γ2 and curve γ = {(α, β)|0 ≤ α ≤ β ≤ 1, β =√
α2+1

2 }, see Figure 4. Thus, if Γh is a closed orbit surrounding five singularities counted with multiplicities, then we

have the following four cases.
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Figure 4. The region S which contains an annulus surrounding five singularities.

(1) In case (9), we have (α, β) ∈ S1 and system (1.5) has three elementary centers at p0 and p±β , and four
hyperbolic saddles at p±α and p±1. There is a double eight-figure loop through the saddles p±α that surrounds
all three elementary centers. In this case, Γh surrounds the double eight-figure loop (see Figure 3(9)). As
shown in Figure 4, the upper half of Γh has three local maximum at (±β, a) and (0, b). and two local minimum
at (±α, d), where a, b, d > 0.

(2) In case (8), we have (α, β) ∈ γ1 and in this case, centers p±β and saddles p±α come together and make an
eye-figure loop surrounding the origin as an elementary center (see Figure 3(8)). therefore, Γh surrounds this
eye-figure loop and it’s upper half has one maximum point at (0, b) and two inflection points. (In fact, one of
these inflection points is produced by merging maximum point (β, a) with the minimum point (α, d) and the
other is produced by merging maximum point (−β, a) with the minimum point (−α, d)).

(3) In case (2), we have (α, β) ∈ γ2 and system (1.5) has two saddles at p±1, two centers at p±β and a nilpotent
saddle at the origin. Note that this nilpotent saddle is produced by merging p±α and (0, 0). Thus, there is an
eight-figure loop connecting to the origin and surrounding centers p±β . In this case, the orbit Γh surrounds
this eight-figure loop (See Figure 3 (2)). The upper half of Γh has two maximum point at (±β, a) and one
minimum at (0, b).

(4) In case (1), we have (α, β) = (0, 0) and all five singularities p0, p±α and p±β of system (1.5) come together to
make a degenerate center at p0. So, Γh surrounds this degenerate center and has a unique maximum at (0, b)
(see Figure 3 (1)).

In all the above cases, along the orbit Γh, we have

H(x, y) =
y2

2
+ F (x) = h =

a2

2
+ F (±β) = d2

2
+ F (±α) = b2

2
. (4.1)

Since system (1.5) is symmetric with respect to both x-axes and y-axes, we can write T (h)
4 = T1(h) + T2(h), where

T1(h) =

∫ −β

sh

dx

y
, T2(h) =

∫ 0

−β

dx

y
,

and sh is x−coordinate of the intersection point of Γh and x-axes in negative section, see Fig 5. From equation
y2

2 + F (x) = h in (4.1), we treat y as a function of x and h i.e. y = y(x, h) for x ∈ (sh, 0). First, we investigate the

behavior of T2(h). If (α, β) = (0, 0), then T2(h) ≡ 0. Otherwise, since y = y(x, h) > 0 for x ∈ [−β, 0] and ∂y
∂h = 1

y

along the orbit Γh, we get

T ′
2(h) = −

∫ 0

−β

dx

y3
< 0, T ′′

2 (h) =

∫ 0

−β

dx

y5
> 0. (4.2)
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0-1 −β −α α β 1

(−β, a)

(0, b)
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Figure 5. Half of the period annulus surrounding 5 singularities.

Now, we need to study the behavior of T1(h). By setting t = x+ β in f(x), we bring equilibrium point p−β of system
(1.5) to the origin. Therefore, function f(x) and its potential function transform to

f1(t) =− (t− β)
(
−α2 + (t− β)

2
)(

−β2 + (t− β)
2
)(

(t− β)
2 − 1

)
, (4.3)

F1(t) =
1

24
t2 (2β − t)

2
(6α2β2 − 8α2β t+ 4α2t2 − 6β4 + 16β3t

− 20β2t2 + 12β t3 − 3 t4 − 6α2 + 6β2 − 8 tβ + 4 t2). (4.4)

Inspired by the idea of the proof of Theorem 2.1 in [5], we use the change of variables

(sign f1(x))
√
F1(x) = r cos θ, y =

√
2r sin θ, (4.5)

that map the level curve y2

2 + F1(x) =
a2

2 to the circle r = a√
2
. Using (4.5), we get F1(x) = r2 cos2 θ and

f1(x)dx = −2r2 cos θ sin θdθ = −ay cos θdθ, (4.6)

f1(x)
∂x

∂r
= 2r cos2 θ =

2F1(x)

r
. (4.7)

On account of x = x(θ, a) and using (4.7), we get

∂x

∂a
=
∂x

∂r

∂r

∂a
=

2F1(x)

af1(x)
. (4.8)

Now we substitute (4.6) in T1(h) to get

T1(h) = a

∫ π

π
2

cos θ

f1(x)
dθ, (4.9)

where a depends on h as stated in (4.1) and da
dh = 1

a . Taking (4.8) into account, we get

T ′
1(h) =

∂T1
∂a

da

dh
=

1

a

∫ π

π
2

ϕ(x) cos θdθ,

T ′′
1 (h) =

1

a3

∫ π

π
2

ψ(x) cos θdθ, (4.10)

where

ϕ(x) =
f21 − 2F1f

′
1

f31
(x), ψ(x) =

2F1ϕ
′ − f1ϕ

f1
(x). (4.11)

The following lemma shows that the period function T (h) has at least one critical point in the interval (F (−α), F (−1))
for every (α, β) ∈ S.

Lemma 4.1. For (α, β) ∈ S, we have

lim
h↘F (−α)

T (h) = +∞, lim
h↗F (−1)

T (h) = +∞. (4.12)
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Proof. From [4, pp. 56-58,] we recall that if Γh tends to a saddle connection, then T (h) tends in a monotone way
to +∞. Taking this into account and noting that in all cases, if h ↗ F (−1) then Γh tends to a saddle connection,
which implies that limh↗F (−1) T (h) = +∞. Moreover, if (α, β) ∈ S1 or (α, β) ∈ γ2 and h↘ F (−α) then Γh tends to
a saddle connection and T (h) tends to +∞. We treat other cases separately as follows. If (α, β) ∈ γ1 and h↘ F (−α)
then Γh tends to the eye-figure loop. Hence, according to (4.9) and (4.5), for h ≈ F (−α) = F (−β), we have

T1(h) = a

∫ π

π
2

cos θ

f1(x)
dθ =

∫ π

π
2

(sign f1(x))
√
2F1(x)

f1(x)
dθ

≈
∫ π

π
2

dθ√
6α3(1− α2)|x| 12

,

which goes to infinity when h↘ F (−α), because x→ 0. If (α, β) = (0, 0) and h↘ F (−α) then Γh tends to nilpotent
center p0 = (0, 0). Similarly, for h ≈ 0, we have

T1(h) = a

∫ π

π
2

cos θ

f1(x)
dθ ≈

∫ π

π
2

dθ√
6x2

,

which goes to infinity when h↘ F (−α) = 0, because x→ 0. �

Taking Lemma 4.1 into account, the next lemma proves that the critical point of T (h) is unique.

Lemma 4.2. If h ∈ (F (−α), F (−1)) and (α, β) ∈ S, then T ′′(h) > 0.

Proof. Since, θ ∈ (π2 , π), then cos θ < 0. If we show that ψ(x) < 0 for β − 1 < x < 0, then from (4.10), we get
T ′′
1 (h) > 0. Hence, on account of (4.2), we get T ′′(h) > 0. Therefore, in what follow we show that ψ(x) < 0 for
β − 1 < x < 0. By substituting F1 and f1 from (4.3) and (4.4) in (4.11), we get

ψ(x) =
M(x;α, β)

144
(
(x− β)(α2 − (x− β)2)((β − x)2 − 1)

)5 , (4.13)

where M(x;α, β) =
∑18

n=0mn(α, β)x
n and coefficients mn(α, β) are as follows:

m18 =297,

m17 =− 5346β,

m16 =− 1236α2 + 45690β2 − 1236,

m15 =19776α2β − 246336β3 + 19776β,

m14 =1815α4 − 149196α2β2 + 938790β4 + 5304α2 − 149196β2 + 1815,

m13 =− 25410α4β + 704424α2β3 − 2685396β5 − 74256α2β + 704424β3 − 25410β,

m12 =− 1120α6 + 166320α4β2 − 2329176α2β4 + 5974688β6 − 7920α4

+ 484896α2β2 − 2329176β4 − 7920α2 + 166320β2 − 1120,
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m11 =13440α6β − 674520α4β3 + 5716992α2β5 − 10569840β7 + 95040α4β

− 1957440α2β3 + 5716992β5 + 95040α2β − 674520β3 + 13440β,

m10 =256α8 − 74620α6β2 + 1892487α4β4 − 10770128α2β6 + 15067541β8

+ 4900α6 − 524496α4β2 + 5455332α2β4 − 10770128β6 + 11817α4

− 524496α2β2 + 1892487β4 + 4900α2 − 74620β2 + 256,

m9 =− 2560α8β + 253400α6β3 − 3882150α4β5 + 15873632α2β7

− 17425810β9 − 49000α6β + 1760160α4β3 − 11096808α2β5

+ 15873632β7 − 118170α4β + 1760160α2β3 − 3882150β5

− 49000α2β + 253400β3 − 2560β,

m8 =11680α8β2 − 585352α6β4 + 5996262α4β6 − 18477476α2β8

+ 16371206β10 − 1120α8 + 221080α6β2 − 3997500α4β4

+ 16972808α2β6 − 18477476β8 − 7152α6 + 530982α4β2

− 3997500α2β4 + 5996262β6 − 7152α4 + 221080α2β2

− 585352β4 − 1120α2 + 11680β2,

m7 =− 32000α8β3 + 966656α6β5 − 7070496α4β7 + 17014816α2β9

− 12443008β11 + 8960α8β − 592640α6β3 + 6463200α4β5

− 19799680α2β7 + 17014816β9 + 57216α6β − 1411776α4β3

+ 6463200α2β5 − 7070496β7 + 57216α4β − 592640α2β3

+ 966656β5 + 8960α2β − 32000β3,

m6 =58076α8β4 − 1166116α6β6 + 6377844α4β8 − 12321196α2β10

+ 7574000β12 − 31400α8β2 + 1043156α6β4 − 7610124α4β6

+ 17659468α2β8 − 12321196β10 + 1596α8 − 198636α6β2

+ 2456040α4β4 − 7610124α2β6 + 6377844β8 + 4092α6

− 198636α4β2 + 1043156α2β4 − 1166116β6 + 1596α4

− 31400α2β2 + 58076β4,

m5 =− 72488α8β5 + 1030232α6β7 − 4361304α4β9 + 6914632α2β11

− 3626944β13 + 62960α8β3 − 1254776α6β5 + 6550536α4β7

− 11938120α2β9 + 6914632β11 − 9576α8β + 390792α6β3

− 2912400α4β5 + 6550536α2β7 − 4361304β9 − 24552α6β

+ 390792α4β3 − 1254776α2β5 + 1030232β7 − 9576α4β + 62960α2β3 − 72488β5,
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m4 =62416α8β6 − 656656α6β8 + 2211024α4β10 − 2929136α2β12

+ 1327520β14 − 78464α8β4 + 1037680α6β6 − 4066320α4β8

+ 5984272α2β10 − 2929136β12 + 23376α8β2 − 474576α6β4

+ 2371392α4β6 − 4066320α2β8 + 2211024β10 − 864α8

+ 59856α6β2 − 474576α4β4 + 1037680α2β6 − 656656β8

− 864α6 + 23376α4β2 − 78464α2β4 + 62416β6,

m3 =− 36064α8β7 + 290976α6β9 − 797088α4β11 + 895712α2β13

− 354432β15 + 61376α8β5 − 576160α6β7 + 1757280α4β9

− 2134624α2β11 + 895712β13 − 29664α8β3 + 361056α6β5

− 1296960α4β7 + 1757280α2β9 − 797088β11 + 3456α8β

− 75744α6β3 + 361056α4β5 − 576160α2β7 + 290976β9

+ 3456α6β − 29664α4β3 + 61376α2β5 − 36064β7,

m2 =13036α8β8 − 83272α6β10 + 189360α4β12 − 182840α2β14

+ 63716β16 − 28696α8β6 + 201472α6β8 − 492528α4β10

+ 502592α2β12 − 182840β14 + 20256α8β4 − 165072α6β6

+ 447984α4β8 − 492528α2β10 + 189360β12 − 4776α8β2

+ 51648α6β4 − 165072α4β6 + 201472α2β8 − 83272β10

+ 180α8 − 4776α6β2 + 20256α4β4 − 28696α2β6 + 13036β8,

m1 =− 2520α8β9 + 13200α6β11 − 25440α4β13 + 21360α2β15

− 6600β17 + 6960α8β7 − 38400α6β9 + 77280α4β11

− 67200α2β13 + 21360β15 − 6720α8β5 + 39840α6β7

− 84960α4β9 + 77280α2β11 − 25440β13 + 2640α8β3

− 17280α6β5 + 39840α4β7 − 38400α2β9 + 13200β11

− 360α8β + 2640α6β3 − 6720α4β5 + 6960α2β7 − 2520β9,

m0 =168α8β10 − 768α6β12 + 1296α4β14 − 960α2β16 + 264β18

− 576α8β8 + 2688α6β10 − 4608α4β12 + 3456α2β14 − 960β16

+ 720α8β6 − 3456α6β8 + 6048α4β10 − 4608α2β12 + 1296β14

− 384α8β4 + 1920α6β6 − 3456α4β8 + 2688α2β10 − 768β12

+ 72α8β2 − 384α6β4 + 720α4β6 − 576α2β8 + 168β10.

Since the denominator of equation (4.13) is negative for x ∈ (β− 1, 0), we have to show that M(x;α, β) is positive for
x ∈ (β − 1, 0) and (α, β) ∈ S.

First, we prove M(x;α, β) is positive on the boundary of S for x ∈ (β − 1, 0).
(i) Let (α, β) = (0, 0). Therefore, for x ∈ (−1, 0) we have

M(x; 0, 0) = x10
(
297x8 − 1236x6 + 1815x4 − 1120x2 + 256

)
> 0.

(ii) Let (α, β) ∈ γ1. Since on γ1 we have α = β, then

M(x;β, β) = −x3(2β − x)3N(x, β),
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where N(x, β) is a polynomial of degree 12 with respect to x. We assert that N(x, β) > 0 for x ∈ (β − 1, 0). In fact

N(β − 1, β) =12
(
β2 − 1

)4
> 0,

N(0, β) =112β4
(
β2 − 1

)4
> 0,

N(x,
1

2
) =297x12 − 1782x11 − 3735

2
x9 +

7281

2
x10 +

3447

16
x6 +

14427

4
x7 − 48015

16
x8 +

3645

16
x3 +

3465

16
x4

− 24183

16
x5 − 999

32
x2 − 351

32
x+

567

256
> 0, x ∈ (−1

2
, 0).

Now, if there exists some β̂ ∈ (0, 1) such that N(x, β̂) has root in (β̂ − 1, 0), then by continuity of N , if we change β

from 1
2 to β̂, we should find β̄ ∈ (0, 1) in which N(x, β̄) has a multiple root in (β̄ − 1, 0). By computing the resultant

with respect to x between N(x, β) and ∂N
∂x (x, β) we have

Res(N,
∂N

∂x
, x) =C1 β

12(β2 − 4)10(β2 − 1)24(19836494433β20 − 218103939324β18 + 992591597436β16

− 2585249712004β14 + 4864706813326β12 − 7190845624644β10 + 8243627754476β8

− 7804991817404β6 + 5806396549161β4 − 2703302266624β2 + 844228231168)2,

where, C1 = 488701849901452631212032. Applying Sturm’s Theorem, one concludes that the above expression doesn’t
have any solution for β ∈ (0, 1). Therefore, M(x;β, β) is positive for x ∈ (β − 1, 0).

(iii) Let (α, β) ∈ γ2. We get

M(x; 0, β) = (β − x)4N0(x, β), 0 < β <

√
2

2
,

where

N0(β − 1, β) = −12
(
β2 − 1

)3 (
β2 + 1

)2
> 0,

N0(0, β) = 24β6(11β2 − 7)
(
β2 − 1

)3
> 0,

N0(x,
1

2
) =297x14 − 2079x13 + 5583x12 − 6471x11 +

13053

16
x10 +

91023

16
x9 − 166057

32
x8 +

769

2
x7

+
115339

64
x6 − 55477

64
x5 − 667

8
x4 +

8747

64
x3 − 8499

1024
x2 − 10557

1024
x+

1377

2048
> 0, for x ∈ (−1

2
, 0).

Similarly, computing the resultant with respect to x between N0 and ∂N0

∂x , yields

Res(N0,
∂N0

∂x
, x) =C2β

30
(
11β2 − 7

)2 (
β2 − 1

)12 (
β2 − 2

)14 (
β2 + 1

)14
× (142733221319586425β28 − 1169294930918600096β26

+ 3372641185026329411β24 − 2687577605763201772β22

− 5626044685429051562β20 + 12296167417091577440β18

− 2575830200312501898β16 − 12624745972881421272β14

+ 10360822225718623269β12 + 3304488880785423584β10

− 7028558807284193705β8 + 1147021568627052836β6

+ 1522286540556519164β4 − 260343816785020928β2 − 166968082647482368)2,

where C2 = −13683651797240673673936896. Again, Sturm’s Theorem shows that the above expression doesn’t have

any solution for β ∈ (0,
√
2
2 ). Thus, M(x;β, β) > 0 for x ∈ (β − 1, 0).
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Figure 6. Relative position of curves γ3 and γ4 with respect to region S.

(iv) Let (α, β) ∈ γ = {α(β) =
√
2β2 − 1,

√
2
2 ≤ β ≤ 1}. Then, for x ∈ (− 1

4 , 0), we get

M(β − 1;α(β), β) = −432(β2 − 1)7 > 0,

M(0;α(β), β) = 72β2(β2 − 1)8 > 0,

M(x;α(
3

4
),
3

4
) =297x18 − 8019

2
x17 +

194481

8
x16 − 87237x15 +

26256933

128
x14 − 84287385

256
x13 +

92455587

256
x12

− 262923327

1024
x11 +

6123011985

65536
x10 +

1844710497

131072
x9 − 18004476285

524288
x8 +

1007392707

65536
x7

− 2780130591

2097152
x6 − 5175000495

4194304
x5 +

864857007

2097152
x4 − 355316787

16777216
x3

− 5229615699

1073741824
x2 − 778248135

2147483648
x+

466948881

8589934592
> 0.

As before, by computing the resultant of M(x;α(β), β) and ∂M
∂x (x;α(β), β) with respect to x, we obtain a polynomial

on β, which has no solution for β ∈ (
√
2
2 , 1). Thus, M(x;α(β), β) is positive for x ∈ (β − 1, 0).

In (i)-(iv), we proved that M(x;α, β) > 0 on ∂S. In what follows, we prove that M(x;α, β) > 0 for (α, β) ∈ S1.
For (α, β) ∈ S1, we have

M(β − 1;α, β) =− 12(β2 − 1)3(α2 − 1)2(2α2 − β2 − 1)2 > 0,

M(0;α, β) =24β2(β2 − 1)3(α2 − β2)3(7α2β2 − 11β4 − 3α2 + 7β2).

As illustrated in Figure 6, the branches of graph 7α2β2−11β4−3α2+7β2 which is denoted by γ3 and γ4 are located
outside of S1. Therefore, M(0;α, β) > 0 for (α, β) ∈ S1. Also, note that

M(x;
1

4
,
1

2
) =297x18 − 2673x17 +

40437

4
x16 − 20286x15 +

5426631

256
x14

− 1391985

256
x13 − 1746513

128
x12 +

4399497

256
x11 − 6807969

1024
x10

− 2550159

1024
x9 +

29110095

8192
x8 − 2456307

2048
x7 − 27220293

262144
x6

+
46331919

262144
x5 − 8494551

262144
x4 − 1985067

262144
x3 +

15783579

4194304
x2

− 2066715

4194304
x+

137781

8388608
> 0, for x ∈ (−1

2
, 0).
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Hence, if there exist a point (α̂, β̂) ∈ S1 and x̂ ∈ (β̂ − 1, 0) such that M(x̂; α̂, β̂) ≤ 0, then moving (α, β) continuously

from (α̂, β̂) to ( 14 ,
1
2 ) in S1, we can find (α̃, β̃) ∈ S1 and x̃ ∈ (β̃ − 1, 0) such that (x̃; α̃, β̃) is a solution of system

M(x;α, β) = 0,
∂M

∂x
(x;α, β) = 0. (4.14)

Now, we show that system (4.14) doesn’t have any solution for (α, β) ∈ S1 and x ∈ (β − 1, 0). Indeed,

Res(M,
∂M

∂x
, α) =C3x

14(β − x)32(2β − x)14((β − x)2 − 1)18

× (p(x, β))14(q(x, β))2,

where C3 = 2282521714753536, p(x, β) = 2β2 − 2β x+ x2 − 2 and q(x, β) is a polynomial in x of degree 46. It is easy
to check that p(x, β) < 0 for x ∈ (β − 1, 0). Also, we have

q(β − 1, β) =− 2457600β28 + 44236800β26 − 351436800β24

+ 1661337600β22 − 5271552000β20 − 38051148800β18

− 20031897600β16 + 25303449600β14 − 24249139200β12

+ 17571840000β10 − 9488793600β8 + 3706060800β6

− 990412800β4 + 162201600β2 − 12288000.

By Sturm’s Theorem it is easy to check that the above expression is non-vanishing on (0, 1). On the other hand,

q(0, β) =1024β14(2940784β32 − 42878528β30 + 291801664β28

− 1229816896β26 + 3591171584β24 − 7700300608β22

+ 12534570048β20 − 15790302528β18 + 15546122592β16

− 11991947968β14 + 7216873664β12 − 3349458112β10

+ 1174036864β8 − 300149696β6 + 3916259β4

− 5691840β2 + 284592).

Numerical calculation shows that q(0, β) = 0 has a unique solution β∗ ≈ 0.21666 in (0, 1). So, if β < β∗ (respectively,
β > β∗), then the number of solutions of q(x, β) = 0 for x ∈ (β − 1, 0) is odd (respectively, even). Simple calculations
show that q(x, 0.1) has a unique root at x1 ≈ −0.85662 for x ∈ (−0.9, 0) and q(x, 0.3) has exactly two roots at
x2 ≈ −0.66002 and x3 = −0.02871 for x ∈ (−0.7, 0). After substituting (x, β) = (x1, 0.1) in (4.14) we obtain
α1 ≈ 0.710787. Also, for (x, β) = (x2, 0.3) the corresponding solution of system (4.14) is α2 ≈ 0.73837. However, for
(x3, 0.3), system (4.14) doesn’t have any solution for α. Clearly, (α1, 0.1) and (α2, 0.3) are not located in S.

Computing the resultant of q(x, β) and ∂q
∂x (x, β) with respect to x we get

Res(q,
∂q

∂x
, x) =β182(β2 − 2)15(β2 − 1)312(β2 − 5)2(3β2 − 5)2 × L1(β)(L2(β)L3(β))

2(L4(β))
4,

where L1(β) = 7β8 − 2β6 − 41β4 − 144β2 + 384 and L2(β), L3(β) and L4(β) are polynomials in β of degrees 48,
48 and 144, respectively. Moreover, Sturm’s Theorem implies that Li(β) ̸= 0 on (0, 1) for i = 1, · · · , 4. As a result,
for β ∈ (0, 1), each solution of q(x, β) = 0, named by x = x(β), is simple. Accordingly, the equation q(x, β) = 0 has
exactly one simple solution x = x0(β) in (β − 1, 0) for β ∈ (0, β∗) and exactly two simple solution x = x1(β) and
x = x2(β) in (β − 1, 0) for β ∈ (β∗, 1). Now, we claim that ∂M

∂α (x;α, β) ̸= 0 along each solution of (4.14). Indeed

Res(M,
∂M

∂α
, α) = 782757789696x12(β − x)20(2β − x)12((β − x)2 − 1)12 × (p(x, β))8(a1(x, β))

2a2(x, β)(a3(x, β))
2,

where p(x, β) is the same as before and a1, a2 and a3 are polynomials in x of degree 44, 14 and 10 respectively where
their coefficients are polynomials with respect to β. To prove our claim, we only need to show that for i = 1, 2, 3,
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ai(x, β) and q(x, β) have no common roots satisfying

β − 1 < x < 0 < β < 1. (4.15)

Note that

Res(a1(x, β), q(x, β), x) =C4β
224(β2 − 1)364(β2 − 2)36(b1(β))

2(c1(β))
4,

Res(a2(x, β), q(x, β), x) =C5β
84(β2 − 1)78(β2 − 2)12(b2(β))

2(c2(β))
2,

Res(a3(x, β), q(x, β), x) =C6β
28(β2 − 1)78(b3(β))

2(c3(β))
2,

where C4, C5 and C6 are constants and bi and ci for i = 1, 2, 3 are polynomials in β whose their degrees are deg b1 = 188,
deg c1 = 84, deg b2 = 126, deg c2 = 28, deg b3 = 88 and deg c3 = 14.

By applying Sturm’s Theorem, we obtain that b1(β) ̸= 0 and c1(β) ̸= 0 for β ∈ (0, 1). On the other hand

q(x,
√
2) = (x−

√
2)6q0(x), where

q0(x) = 145101727232x40 + 224117784588896x38 + 49908701308457363x36

+ 3814124509165001335x34 + 132751041164430232663x32

+ 2419403027525678151621x30 + 25014610076278101504857x28

+ 154083430545045467645631x26 + 582625357401025848750165x24

+ 1375177444554761099340375x22 + 2039160591666824560578528x20

+ 1894548440366475231840414x18 + 1090030210554766398228552x16

+ 380044729700592264040560x14 + 77632295605537853982464x12

+ 8842411953263012013056x10 + 522719079993355760640x8

+ 14415340221165076480x6 + 156175787793981440x4

+ 475184964481024x2 + 141436911616

−
(
2902034544640x38 + 1391027777084704x36

+ 172340476607542614x34 + 8684510563134831119x32

+ 215956656413709305392x30 + 2941803892500654928715x28

+ 23365626957475336073798x26 + 112447421356232019409947x24

+ 335460882813568984703820x22 + 627447240627558376147245x20

+ 737117128929392848744200x18 + 540034289999307609756366x16

+ 242695723966658503819008x14 + 65099087290392926542352x12

+ 10003375904403152610176x10 + 829702343867046840320x8

+ 34051893053211258880x6 + 605200559041429504x4

+ 3693758117855232x2 + 4507614949376) 2
√
2x.

Thus, by applying Descartes’ rule of signs to q0(−x), we find that q(x,
√
2) doesn’t have any negative roots. Therefore,

a1(x, β) and q(x, β) have no common roots satisfying (4.15). However, Sturm’ Theorem implies that each one of b2(β),
c2(β) and b3(β) has a unique root in (0, 1); consequently, the previous method defeats for these cases. To find out
if there exist common roots of ai(x, β) (i = 2, 3) and q(x, β) satisfying (4.15), we use Regular Chains Library in the
computer algebra software package Maple to compute the intervals in which all common roots exist (for more details
we refer to Appendix A of [10] or Maple help system). First, we consider the common roots of a2(x, β) and q(x, β) as
follows:

with(RegularChains):
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with(ChainTools):

with(SemiAlgebraicSetTools):

sys1:=[a_2(x,beta),q(x,beta)]:

R:=PolynomialRing([x,beta]):

dec1:=Triangularize(sys1,R):

nops(dec1);

8

L:=map(Equations,dec1,R):

map(Dimension,dec1,R);

[0, 0, 0, 0, 0, 0, 0, 0]

for i from 1 to 8 do print(i,Equations(dec1[i],R)): end do:

1, [Length of output exceeds limit of 1000000]

2, [p10(β)x
2 + p11(β)x+ p12(β), p13(β)]

3, [−6β x5 + x6 − 40β x3 + 30x4 − 24β x+ 60x2 + 8, β2 − 2]

4, [x, β + 1]

5, [x+ 2, β + 1]

6, [x, β − 1]

7, [x− 2, β − 1]

8, [x, β]

where p10, p11, p12 and p13 are polynomials in β of degree 26, 27, 26 and 28 respectively. Note that all the roots of
regular chains 3, 4, · · · , 8 don’t satisfy (4.15). Therefore we only consider first and second regular chains.

for i from 1 to 2 do C[i]:=Chain([L[i][2], L[i][1]],Empty(R), R):

RL[i]:=RealRootIsolate(C[i],R,’abserr’=1/10^5):

f[i]:=evalf(map(BoxValues,RL[i],R)):

print(i,f[i]) end do;

1, [[x = [0.5642776489, 0.5642852783], β = [−0.6506557835,−0.6506557835]],

[x = [−1.865600586,−1.865592957], β = [−0.6506557835,−0.6506557835]],

[x = [−0.5875797272,−0.5875740051], β = [−1.269586680,−1.269586680]],

[x = [−1.951601028,−1.951595306], β = [−1.269586680,−1.269586680]],

[x = [1.951595306, 1.951601028], β = [1.269586680, 1.269586680]],

[x = [0.5875740051, 0.5875797272], β = [1.269586680, 1.269586680]],

[x = [1.865592957, 1.865600586], β = [0.6506557835, 0.6506557835]],

[x = [−0.5642852783,−0.5642776489], β = [0.6506557835, 0.6506557835]]],

2, [[x = [−0.04209899902,−0.04209136963], β = [−0.8000901125,−0.8000901125]],

[x = [−1.558090210,−1.558082581], β = [−0.8000901125,−0.8000901125]],

[x = [1.558082581, 1.558090210], β = [0.8000901125, 0.8000901125]],

[x = [0.04209136963, 0.04209899902], β = [0.8000901125, 0.8000901125]]].

This Maple program shows that a2(x, β) and q(x, β) have twelve pairs of common roots in the above twelve pairs of
interval; but, no one satisfies (4.15).

Now, it is turn to consider the common roots of a3(x, β) and q(x, β). So
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with(RegularChains):

with(ChainTools):

with(SemiAlgebraicSetTools):

sys2:=[a_3(x,beta),q(x,beta)]:

R:= PolynomialRing([x,beta]):

dec2:=Triangularize(sys2,R):

nops(dec2);

7

K:= map(Equations, dec2,R):

map(Dimension, dec2, R);

[0, 0, 0, 0, 0, 0, 0]

for i from 1 to 7 do print(i, Equations(dec2[i],R)): end do;

1, [p20(β)x
2 + p21(β)x+ p22(β), p23(β)]

2, [p30(β)x
2 + p31(β)x+ p32(β), p33(β)]

3, [x, β + 1]

4, [x+ 2, β + 1]

5, [x, β − 1]

6, [x− 2, β − 1]

7, [x, β]

where p20, p21, p22, p23, p30, p31, p32, p33 are polynomials in β of degree 86, 87, 86, 88, 12, 13, 12 and 14 respectively.
It is clear that all the roots of regular chains 3, 4, · · · , 7 don’t satisfy (4.15) and we only need to consider first and
second regular chains. So

for i from 1 to 2 do C[i]:=Chain([K[i][2],K[i][1]],Empty(R),R):

RL[i]:=RealRootIsolate(C[i],R,’abserr’= 1/10^5):

f[i]:=evalf(map(BoxValues,RL[i],R)):

print(i,f[i]) end do;

1, [[x = [−0.6949234009,−0.6949157715], β = [−1.290633072,−1.290633072]],

[x = [−1.886344910,−1.886337280], β = [−1.290633072,−1.290633072]],

[x = [1.886337280, 1.886344910], β = [1.290633072, 1.290633072]],

[x = [0.6949157715, 0.6949234009], β = [1.290633072, 1.290633072]]]

2, [[x = [−0.04241943359,−0.04241180420], β = [−0.6557654040,−0.6557654040]],

[x = [−1.269119263,−1.269111633], β = [−0.6557654040,−0.6557654040]],

[x = [1.269111633, 1.269119263], β = [0.6557654040, 0.6557654040]],

[x = [0.04241180420, 0.04241943359], β = [0.6557654040, 0.6557654040]]]

This program shows that a3(x, β) and q(x, β) have eight pairs of common roots in the above eight pairs of interval;
but, no one satisfies (4.15).

In short, we proved that along each solution of (4.14), denoted by x = x(β), we have ∂M
∂α (x;α, β) ̸= 0. Therefore,

by the implicit function theorem, equation M(x(β);α, β) = 0 determines a continuous function α = α(β) such that
M(x(β);α(β), β) = 0, for β in some subinterval of (0, 1).

Now we are in a position to prove that system (4.14) has no solution for (α, β) ∈ S1 and x ∈ (β − 1, 0). The proof

is by contradiction. Assume that there exist a point (α̃, β̃) ∈ S1 and x̃ ∈ (β̃−1, 0) which (x̃, α̃, β̃) satisfies (4.14). As a

result of continuously changing β from β̃ to 0.1, the point (α(β), β) is also moving continuously from (α̃, β̃) to (α1, 0.1),
where α1 ≈ 0.710787. Accordingly, (α(β), β) takes a value on the boundary of S, which means M(x;α, β) = 0 has a
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solution on the boundary of S for x ∈ (β − 1, 0). This is a contradiction, because we proved M(x;α, β) > 0 on the
boundary of S for x ∈ (β − 1, 0). �

Combining Lemmas 4.1 and 4.2, we have:

Theorem 4.3. Period functions associated with those period annulus of system (1.5) which surround five singularities
counted with multiplicities, are convex and have exactly one critical point.

5. Conclusion

In this paper, we considered the monotonicity and convexity of the period function associated with centers of
symmetric Newtonian system (1.5). First we discussed about the bifurcation diagram and all topologically different
phase portraits of the Newtonian system (1.5). Then using Theorem 1.1, Theorem 1.2 and some computatinal methods,
we proved that if the period annulus surrounds only one elementary center, then the corresponding period function
is monotone; but, for the other cases, the period function has exactly one critical point. We also proved that in all
cases, the period function is convex.
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