- [1] A. Abdelhalim, K. Nakata, M. El-Alem, and A. Eltawil, A hybrid evolutionary-simplex search method to solve nonlinear constrained optimization problems, Soft Computing, 23(22) (2019), 12001-12015, Doi: 10.1080/0305215x.2017.1340945.
- [2] M. Abdollahi, A. Bouyer, and D. Abdollahi, Improved cuckoo optimization algorithm for solving systems of nonlinear equations, The Journal of Supercomputing, 72(3) (2016), 1246-1269, Doi:10.1007/s11227-016-1660-8.
- [3] M. Abdollahi, A. Isazadeh, and D. Abdollahi, Imperialist competitive algorithm for solving sys- tems of nonlinear equations, Computers and Mathematics with Applications, 65(12) (2013), 1894-1908, Doi:10.1016/j.camwa.2013.04.018.
- [4] E. Atashpaz-Gargari and C. Lucas, Imperialist competitive algorithm: an algorithm for optimization in- spired by imperialistic competition, IEEE congress on evolutionary computation, (2007), 4661-4667, Doi: 10.1109/CEC.2007.4425083.
- [5] X. Chen and C. T. Kelley, Convergence of the EDIIS algorithm for nonlinear equations, SIAM Journal on Scientific Computing, 41(1) (2019), A365-A379, Doi: doi.org/10.1137/18M1171084.
- [6] I.M. El-Emary and M.A. El-Kareem, Towards using genetic algorithm for solving nonlinear equation systems, World Applied Sciences Journal, 5(3) (2008), 282-289.
- [7] C. Grosan and A. Abraham, A new approach for solving nonlinear equations systems, IEEE Transac- tions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(3) (2008), 698-714, Doi: 10.1109/TSMCA.2008.918599.
- [8] M.J. Hirsch, P.M. Pardalos, and M. G. Resende, Solving systems of nonlinear equations with continuous GRASP, Nonlinear Analysis: Real World Applications, 10(4) (2009), 2000-2006, Doi: 10.1016/j.nonrwa.2008.03.006.
- [9] S. Hosseini and A. Al Khaled, A survey on the imperialist competitive algorithm metaheuristic: implementa- tion in engineering domain and directions for future research, Applied Soft Computing, 24 (2014), 1078-1094, Doi:10.1016/j.asoc.2014.08.024.
- [10] A. M. Ibrahim and M. A. Tawhid, A hybridization of differential evolution and monarch butterfly optimization for solving systems of nonlinear equations, Journal of Computational Design and Engineering, 6(3) (2019a), 354-367, Doi:10.1016/j.jcde.2018.10.006.
- [11] A. M. Ibrahim and M. A. Tawhid, A hybridization of cuckoo search and particle swarm optimization for solving nonlinear systems, Evolutionary Intelligence, 12(4) (2019b), 541-561, Doi:10.1016/j.camwa.2006.12.081.
- [12] A. F. Izmailov, A. S Kurennoy, and M. V. Solodov, Critical solutions of nonlinear equations: stability issues, Mathematical Programming, (2016), 1-33, Doi: 10.1007/s10107-016-1047-x.
- [13] M. Jaberipour, E. Khorram, and B. Karimi, Particle swarm algorithm for solving systems of nonlinear equations, Computers and Mathematics with Applications, 62(2) (2011), 566-576, Doi: 10.1016/j.camwa.2011.05.031.
- [14] M. Juneja and S. K. Nagar, Particle swarm optimization algorithm and its parameters: A review, International Conference on Control, Computing, Communication and Materials (ICCCCM), IEEE, (2016), 1-5, Doi: 10.1109/ICCCCM.2016.7918233.
- [15] JA. Koupaei and S. Hosseini, A new hybrid algorithm based on chaotic maps for solving systems of nonlinear equations, Chaos Solitons Fractals, 81 (2015), 233245, Doi: 10.1016/j.chaos.2015.09.027
- [16] G. Li and Z. Zeng, A neural-network algorithm for solving nonlinear equation systems, International Conference on Computational Intelligence and Security (IEEE), 1 (2008), 20-23, Doi: 10.1109/CIS.2008.65.
- [17] MD. Li, H. Zhao, XW. Weng, and T. Han, A novel nature-inspired algorithm for optimization: virus colony search, Advances in Engineering Software, 92 (2016), 6588, Doi: 10.1016/j.advengsoft.2015.11.004.
- [18] L. Liu, M. X. Liu, N. Wang, and P. Zou, Modified cuckoo search algorithm with variational parameters and logistic map, Algorithms, 11(3) (2018), 30, Doi: 10.3390/a11030030.
- [19] M.A. Luersen and R. Le Riche, Globalized NelderMead method for engineering optimization, Computers and structures, 82(23) (2004), 2251-2260, Doi: 10.1016/j.compstruc.2004.03.072.
- [20] A. Majd, M. Abdollahi, G. Sahebi, D. Abdollahi, M. Daneshtalab, J. Plosila, and H. Tenhunen, Multi-population parallel imperialist competitive algorithm for solving systems of nonlinear equations, In- ternational Conference on High Performance Computing and Simulation (HPCS), IEEE, (2016), 767-775, Doi:10.1109/HPCSim.2016.7568412.
- [21] A. Majd, G. Sahebi, M. Daneshtalab, J. Plosila, S. Lotfi, and H. Tenhunen, Parallel imperialist competitive algorithms, Concurrency and Computation: Practice and Experience, 30(7) (2018), e4393, Doi: 10.1002/cpe.4393.
- [22] E.L. Melnick and A. Tenenbein, Misspecifications of the normal distribution, The American Statistician, 36(4) (1982), 372-373.
- [23] Y. Mo, H. Liu, and Q. Wang, Conjugate direction particle swarm optimization solving systems of nonlinear equations, Computers and Mathematics with Applications, 57(11) (2009), 1877-1882, Doi: 10.1016/j.camwa.2008.10.005.
- [24] H. Mhlenbein, M. Schomisch, and J. Born, The parallel genetic algorithm as function optimizer, Parallel comput- ing, 17(6-7) (1991), 619-632, Doi:10.1016/S0167-8191(05)80052-3.
- [25] H.A. Oliveira and A. Petraglia, Solving nonlinear systems of functional equations with fuzzy adaptive simulated annealing, Applied Soft Computing, 13(11) (2013), 4349-4357, Doi: 10.1016/j.asoc.2013.06.018.
- [26] J. Pei, Z. Drai, M. Drai, N. Mladenovi, and P.M. Pardalos, Continuous variable neighborhood search (C-VNS) for solving systems of nonlinear equations, INFORMS Journal on Computing, 31(2) (2019), 235-250, Doi: 10.1287/ijoc.2018.0876.
- [27] E. Pourjafari and H. Mojallali, Solving nonlinear equations systems with a new approach based on invasive weed optimization algorithm and clustering, Swarm and Evolutionary Computation, 4 (2012), 33-43, Doi: 10.1016/j.swevo.2011.12.001.
- [28] M. A. Z. Raja, M. A. Zameer, A.K. Kiani, A. Shehzad, and M. A. R. Khan, Nature-inspired computational intelligence integration with NelderMead method to solve nonlinear benchmark models, Neural Computing and Applications, 29(4) (2018), 1169-1193, Doi: 10.1007/s00521-016-2523-1.
- [29] J. R. Sharma, I. K. Argyros, and D. Kumar, On a general class of optimal order multipoint methods for solving nonlinear equations, Journal of Mathematical Analysis and Applications, (2016), Doi: 10.1016/j.jmaa.2016.12.051.
- [30] J. R. Sharma and H. Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations, Applied Mathematics and Computation, 222 (2013), 497-506, Doi: 10.1016/j.amc.2013.07.066.
- [31] M. Shehab, A.T. Khader, and M. A. Al-Betar, A survey on applications and variants of the cuckoo search algorithm, Applied Soft Computing, 61 (2017), 1041-1059, Doi: 10.1016/j.asoc.2017.02.034.
- [32] N. Singh and S. B. Singh, Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance, Journal of Applied Mathematics, (2017), Doi: 10.1016/j.asoc.2017.02.034.
- [33] OE. Turgut, MS. Turgut, and MT. Coban, Chaotic quantum behaved particle swarm optimization algorithm for solving nonlinear system of equations, Computers and Mathematics with Applications, 68(4) (2014), 508530, Doi: 10.1016/j.camwa.2014.06.013.
- [34] C. Wang, R. Luo, K. Wu, and B. Han, A new filled function method for an unconstrained nonlinear equation, Journal of Computational and Applied Mathematics, 235(6) (2011), 1689-1699, Doi: 10.1016/j.cam.2010.09.010.
- [35] X. Wang and N. Zhou, Pattern Search Firefly Algorithm for Solving Systems of Nonlinear Equations, Seventh International Symposium on Computational Intelligence and Design, IEEE, 2 (2014), 228-231, Doi: 10.1109/IS- CID.2014.222.
- [36] X. S. Yang and S. Deb, Cuckoo search via Lvy flights, World congress on nature and biologically inspired computing (NaBIC), IEEE, (2009), 210-214, Doi: 10.1109/NABIC.2009.5393690.
- [37] X. Zhang, Q. Wan, and Y. Fan, Applying modified cuckoo search algorithm for solving systems of nonlinear equations, Neural Computing and Applications, 31(2) (2019), 553-576, Doi: 10.1007/s00521-017-3088-3.
|