- [1] B. Adcock and D. Huybrechs, Multivariate modified Fourier expansions, Proceedings of the International Confer- ence on Spectral and High Order Methods, (2009), 85–92.
- [2] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, New York, 1983.
- [3] S. Barnett, Matrices: Methods and Applications, 2nd ed., Oxford University Press, 1994.
- [4] R. Bellman, Stability Theory of Differential Equations, McGraw-Hill, 1953.
- [5] J. C. Burkill, Functions of intervals, Proceedings of the London Mathematical Society, 22 (1924), 375–446.
- [6] D. Cheu and L. Longpre, Towards the possibility of objective interval uncertainty in physics, Reliab. Comput., 15 (2011) 43–46.
- [7] G. W. Cross and P. Lancaster, Square roots of complex matrices, Linear Multilinear Algebra, 1 (1974), 289–293.
- [8] M. Dehghan and M. Hajarian, Determination of a matrix function using the divided difference method of Newton and the interpolation technique of Hermite, J. Comput. Appl. Math., 231 (2009), 67–81.
- [9] M. Dehghan and M. Hajarian, Computing matrix functions using mixed interpolation methods, Math. Comput. Modelling, 52 (2010), 826–836.
- [10] L. Dymova and M. Pilarek, Organizing Calculations in Algorithms for Solving Systems of Interval Linear Equa- tions Using the Interval Extended Zero Method, Parallel Processing and Applied Mathematics, 7204 (2012), 439–446.
- [11] L. Dymova, P. Sevastjanov, and M. Pilarek, A method for solving systems of linear interval equations applied to the Leontief input output model of economics, Expert Systems with Applications, 40 (2013), 222–230.
- [12] S. S. Ganji, A. Barari, and D. D. Ganji, Approximate analysis of two-mass spring systems and buckling of a column, Comput. Math. Appl., 61 (2011), 1088–1095.
- [13] J. Garloff, Bibliography on interval mathematics, continuation, Freiburger Intervall-Berichte, 2 (1987), 1–50.
- [14] J. Garloff and K. P. Schwierz, A bibliography on interval mathematics, Comput. Appl. Math., 6 (1980), 67–79.
- [15] M. Ghanbari, T. Allahviranloo, and E. Haghi, Estimation of algebraic solution by limiting the solution set of an interval linear system, Soft Comput., 16 (2012), 2135–2142.
- [16] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.
- [17] A. Goldsztejn, Modal intervals revisited, Part 1: A generalized interval natural extension, Reliab. Comput., 16 (2012), 130–183.
- [18] A. Goldsztejn, Modal intervals revisited, Part 2: A generalized interval mean value extension, Reliab. Comput., 16 (2012), 184–209.
- [19] E. R. Hansen, Interval arithmetic in matrix computations, Part I, SIAM J. Numer. Anal., 2 (1965), 308–320.
- [20] E. R. Hansen, Global Optimization Using Interval Analysis, Dekker, Inc., New York, 1992.
- [21] G. I. Hargreaves and N. J. Higham, Efficient algorithms for the matrix cosine and sine, Numer. Algorithms, 40 (2005), 383–400.
- [22] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl., 26 (2005), 1179–1193.
- [23] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008.
- [24] N. J. Higham and M. I. Smith, Computing the matrix cosine, Numer. Algorithms 34 (2003), 13–26.
- [25] M. Hladik, Solution sets of complex linear interval systems of equations, Reliab. Comput., 14 (2010), 78–87.
- [26] M. Hladik, Weak and strong solvability of interval linear systems of equations and inequalities, Linear Algebra Appl., 438 (2013), 4156–4165.
- [27] R. B. Kearfott and V. Kreinovich, editors. Applications of Interval Computations, Applied Optimization, Dor- drecht, Netherlands, Kluwer, 1996.
- [28] R. B. Kearfott, Interval computations: Introduction, uses, and resources, Euromath Bulletin, (1996), 95–112.
- [29] B. J. Kubica and A. Wozniak, Interval methods for computing the Pareto-front of a multicriterial problem, Parallel Processing and Applied Mathematics, 4967 (2008), 1382–1391.
- [30] B. J. Kubica and A. Wozniak, An Interval Method for Seeking the Nash Equilibria of Non-cooperative Games, Parallel Processing and Applied Mathematics, 6068 (2010), 446–455.
- [31] Y. Y. Lu, A Pade approximation method for square roots of symmetric positive definite matrices, SIAM J. Matrix Anal. Appl. 19 (1998), 833–845.
- [32] R. E. Moore, Interval Arithmetic and Automatic Error Analysis in Digital Computing, Thesis (Ph.D.)–Stanford University, 1962
- [33] R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, SIAM, 2009.
- [34] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, England, 1990.
- [35] M. Pilarek and R. Wyrzykowski, Solving Systems of Interval Linear Equations in Parallel Using Multithreaded Model and Interval Extended Zero Method, Parallel Processing and Applied Mathematics, 7203 (2012), 206–214.
- [36] H. Richter, Uber Matrixfunktion, Math. Ann., 122 (1950), 16–34.
- [37] R. F. Rinehart, The equivalence of definitions of a matrix function, Amer. Math. Monthly, 62 (1955), 395–414.
- [38] S. M. Rump, Fast and parallel interval arithmetic, BIT Numer. Math., 39 (1999), 534–554.
- [39] A. Sasane, Differential Equations, Department of Mathematics, London School of Economics, Lecture notes.
- [40] S. P. Shary, On nonnegative interval linear systems and their solution, Reliab. Comput., 15 (2011), 358–369.
- [41] A. Shehata and M. Abul-Dahab, On Humbert matrix functions, J. Egyptian Math. Soc., 20 (2012), 167–171.
- [42] T. Sunaga, Theory of an Interval Algebra and its Application to Numerical Analysis, Gaukutsu Bunken Fukeyu- kai, Tokyo, 1958.
- [43] J. J. Sylvester, On the equation to the secular inequalities in the planetary theory, Phill. Mag., 16 (1883), 267–269.
- [44] R. C. Young, The algebra of many-valued quantities, Math. Ann., 104 (1931), 260–290.
|