- [1] K. Al-Khaled, Numerical study of Fisher’s reactiondiffusion equation by the Sinc collocation method, J. Comput. Appl. Math., 137(2) (2001), 245–255.
- [2] A. H. A. Ali, G. A. Gardner, and L. R. T. Gardner, A collocation solution for Burgers’ equation using cubic B-spline finite elements, Comput. Methods Appl. Mech. Eng., 100 (1992), 325–337.
- [3] K. K. Ali, K. R. Raslan, and T. S. El-Danaf, Non-polynomial Spline Method for Solving Coupled Burgers Equations, Comput. Methods Differ. Equ., 3 (2015), 218–230.
- [4] A. Asaithambi, Numerical solution of the Burgers equation by automatic differentiation, Appl. Math. Comput., 216 (2010), 2700–2708.
- [5] M. M. Cecchi, R. Nociforo, and P. P. Grego, Space-time finite elements numerical solutions of Burgers Problems, Le Matematiche, 51 (1996), 43–57.
- [6] R. Cherniha, Exact and numerical solutions of the generalized Fisher equation, Rep. Math. Phys., 47 (2001), 393–411.
- [7] C. Clavero, J. C. Jorge, and F. Lisbona, A uniformly convergent scheme on a nonuniform mesh for convection- diffusion parabolic problems, J. Comput. Appl. Math., 154 (2003), 415–429.
- [8] M. G. Cox, The numerical evaluation of B-splines, IMA J. Appl. Math., 10 (1972), 134–149.
- [9] C. De Boor, A practical guide to splines, New York: springer-verlag, 27 (1978), 325.
- [10] A. Dogan, A Galerkin finite element approach to Burgers’ equation, Appl. Math. Comput., 157(2) (2004), 331–346.
- [11] X. Han, Quadratic trigonometric polynomial curves with a shape parameter, Comput. Aided Geom. Des., 19 (2002), 503–512.
- [12] M. K. Jain, R. K. Jain, and R. K. Mohanty, High order difference methods for system of 1d nonlinear parabolic partial differential equations, Int. J. Comput. Math., 37 (1990), 105–112, Doi: 10.1080/00207169008803938.
- [13] A. Korkmaz and I˙. Da˘g, Cubic Bspline differential quadrature methods and stability for Burgers’ equation, Eng. Comput., 30 (2013), 320–344, Doi: 10.1108/02644401311314312.
- [14] M. Lakestani and M. Dehghan, Numerical solution of FokkerPlanck equation using the cubic Bspline scaling functions, Numer. Methods Partial Differ. Equ., 25 (2009), 418–429.
- [15] M. Lakestani and M. Dehghan, Numerical solutions of the generalized KuramotoSivashinsky equation using B- spline functions, Appl. Math. Model., 36 (2012), 605–617.
- [16] T. Mavoungou and Y. Cherruault, Numerical study of Fisher’s equation by Adomian’s method, Math. Comput. Model., 19 (1994), 89–95.
- [17] R. C. Mittal and R. K. Jain, Numerical solution of convection-diffusion equation using cubic B-splines collocation methods with Neumanns boundary conditions, Int. J. Appl. Math. Comput., 4 (2012), 115–127.
- [18] R. K. Mohanty, D. J. Evans, and N. Khosla, An non-uniform mesh cubic spline TAGE method for nonlinear singular two-point boundary value problems, Int. J. Comput. Math., 82 (2005), 1125–1139.
- [19] R. K. Mohanty and M. K. Jain, High-accuracy cubic spline alternating group explicit methods for 1D quasi-linear parabolic equations. Int. J. Comput. Math., 86 (2009), 1556–1571.
- [20] R. Pourgholi and A. Saeedi, Applications of cubic Bsplines collocation method for solving nonlinear inverse par- abolic partial differential equations,Numer. Methods. Partial. Differ. Equ., 33 (2017), 88–104.
- [21] L. B. Rall, Automatic differentiation: Techniques and applications,Lect. Notes Comput. Sci., 120 (1981).
- [22] K. R. Raslan, A collocation solution for Burgers equation using quadratic B-spline finite elements, Int. J. Comput. Math., 80 (2003), 931–938.
- [23] S. Singh, S. Singh, and R. Arora, Numerical solution of second-order one-dimensional hyperbolic equation by ex- ponential B-spline collocation method, Numer. Anal. Appl., 10(2017), 164–176, Doi: 10.1134/S1995423917020070.
- [24] X. Y. Wang, Exact and explicit solitary wave solutions for the generalized Fisher equation, Physics letters A, 131 (1988), 277–279.
- [25] H. Zadvan and J. Rashidinia, Development of non-polynomial spline and new B-spline with application to solution of Klein-Gordon equation, Computational Methods for Differential Equations, (2020), Doi: 10.22034/cmde.2020.27847.1377.
|