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Abstract In this work, collocation method based on B-spline functions is used to obtained a
numerical solution for one-dimensional hyperbolic telegraph equation. The proposed

method is consists of two main steps. As first step, by using finite difference scheme
for time variable, partial differential equation is converted to an ordinary differential
equation by space variable. In the next step, for solving this equation collocation
method is used. In the analysis section of the proposed method, the convergence of

the method is studied. Also, some numerical results are given to demonstrate the
validity and applicability of the presented technique. The L∞, L2 and Root-Mean-
Square(RMS) in the solutions show the efficiency of the method computationally.
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1. Introduction

We study the second-order linear hyperbolic telegraph equation

utt + 2αut + β2u = uxx + f(x, t) , a ≤ x ≤ b , 0 ≤ t ≤ T , (1.1)

with the initial conditions u(x, 0) = f0(x), a ≤ x ≤ b,

ut(x, 0) = f1(x), a ≤ x ≤ b,
(1.2)
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and boundary conditions u(a, t) = g0(t), 0 ≤ t ≤ T ,

u(b, t) = g1(t), 0 ≤ t ≤ T ,
(1.3)

where α and β are constants.
Telegraph equation and wave equation are typical examples of hyperbolic partial
differential equations. Telegraph equation is a linear differential equation which de-
scribes the voltage and current on an electrical transmission line with distance and
time. In fact, the telegraph equation is commonly used in signal analysis for trans-
mission and propagation of electrical signals and also has applications in the other
fields, see, for example [9, 10, 18]. In the past several years, many different methods
have been used to estimate the solution of the one-dimensional hyperbolic telegraph
equation, including dual reciprocity boundary integral equation(DRBIE) method [3],
alternating group explicit method [5], unconditionally stable difference schemes [6],
variational iteration method [1]. In the proposed method, time variable discretization
and collocation method for space variable have been used. This method is used in
various papers on partial differential equations as [7, 8, 20, 21]. Also different methods
based on cubic B-spline have been studied in [12, 14, 17]. The proposed method in
comparison with the cubic B-spline method, despite the use of a function with a lower
degree, due to use of midpoints as collocation points and the structure of the method
has an order of convergence equal to the cubic B-spline method. On the other hand,
compared to the cubic B-spline method, the proposed method has a lower computa-
tional values and therefore has a higher speed. In this work, numerical solution of
the one-dimensional hyperbolic telegraph equation by using the quadratic B-spline
collocation scheme is proposed. The collocation method together with B-spline ap-
proximations represents a cost-effective approach since it only requires the evaluation
of the unknown parameters at the grid points.

The organization of this article is as follows: In section 2, quadratic B-spline collo-
cation scheme is explained. In section 3, we present a finite difference approximation
to discretize the Eq. (1.1) in time variable. The uniform convergence of the quadratic
B-spline method is given in section 4. In section 5, some numerical illustrations and
results are presented to demonstrate the efficiency of our proposed method. Note that
we have computed the numerical results by Mathematica-8 programming.

2. Quadratic B-spline collocation method

To solve the Eq. (1.1) by collocation method with quintic B-splines as basis func-
tions, we define the approximation for u(x, t) as

U(x, t) =
N∑

i=−1

ci(t)Bi(x), (2.1)

where ci(t) are time-dependent quantities to be determined from the boundary condi-
tions and collocation form of the differential equations. Also Bi(x) are the quadratic
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B-spline basis functions at knots, given by

Bi(z) =
1

h2


(z − zi−1)

2, z ∈ [zi−1, zi),
2h2 − (zi+1 − z)2 − (z − zi)

2, z ∈ [zi, zi+1),
(zi+2 − z)2, z ∈ [zi+1, zi+2),
0, otherwise.

The above formula is based on the relationship introduced in [11, 16]. Also the reader
can see more information about the effect of mesh knots on the quadratic B-spline
functions in the [2].

The interval [a, b] is partitioned into a mesh of uniform length h = zj+1−zj , by the
knots zj where j = 0, 1, 2, . . . , N such that a = z0 < z1...zN−1 < zN and zj = z0+ jh.

Also the numerical solution U(x, t) is given at mid knots xi =
(zi+1+zi)

2 . The values of
Bi(x) and its first and second derivatives at the mid knots points are given in Table
1 and the values of Bi(x) at the knots given in Table 2.

Table 1. Bi, B
′

i, B
′′

i at mid points.

x xi−2 xi−1 xi xi+1 xi+2

Bi 0 1
4

3
2

1
4 0

hB
′

i 0 1 0 −1 0

h2B
′′

i 0 2 −4 2 0

Table 2. Bi at node points.

z zi−2 zi−1 zi zi+1 zi+2

Bi 0 0 1 1 0

Using approximate function (2.1) and Table 1, we have

Ui =
1

4
ci−1 +

3

2
ci +

1

4
ci+1, (2.2)

hU
′

i = −ci−1 + ci+1, (2.3)

h2U
′′

i = 2ci−1 − 4ci + 2ci+1. (2.4)
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3. Construction of the method

We discretize the time derivatives of the Eq. (1.1) using a finite-difference formula.
Using the finite difference method, we can write

un+1 − 2un + un−1

∆t2
+2α

un+1 − un−1

2∆t
+ β2u

n+1 + un−1

2

=
un+1
xx + un−1

xx

2
+ f(xn, tn). (3.1)

Rearranging the term and simplifying, we get(
1 + α∆t+

β2∆t2

2

)
un+1 − ∆t2

2
un+1
xx = Ψn(x), (3.2)

where

Ψn(x) = 2un +
(
α∆t− β2∆t2

2
− 1

)
un−1 +

∆t2

2
un−1
xx +∆t2f(xn, tn). (3.3)

Substituting the approximate solution U for u and putting the values of the mid
values U , its derivatives using Eqs. (2.2)-(2.4) at the knots in Eq. (3.2) yields the
following difference equation with the variables ci , i = −1, 0, . . . , N,

ácn+1
i−1 + b́cn+1

i + ácn+1
i+1 = h2Ψn(xi) , i = 0, 1, ..., N − 1, (3.4)

where

á =
h2

4

(
1 + α∆t+

β2∆t2

2

)
−∆t2, b́ =

3h2

2

(
1 + α∆t+

β2∆t2

2

)
+ 2∆t2.

(3.5)

The system (3.4) consists ofN linear equations inN+2 unknowns {c−1, c0 , ..., cN−1

, cN}. To obtain a unique solution, we must use the boundary conditions. From the
boundary conditions and Table 2, we can write

cn+1
−1 = g0(tn+1)− cn+1

0 , (3.6)

cn+1
N = g1(tn+1)− cn+1

N−1, (3.7)

by putting i = 0, N − 1 in (3.4) and using Eqs. (3.5)-(3.7) we get the results as(
b́− á

)
cn+1
0 + ácn+1

1 = h2
(
Ψ(x0)−

ág0(tn+1)

h2

)
, (3.8)

ácn+1
N−2 + (b́− á)cn+1

N−1 = h2
(
Ψ(xN−1)−

ág1(tn+1)

h2

)
. (3.9)

Associating (3.8) and (3.9) with (3.4), we obtain an N×N system of equations in the
following form

AC = h2Q, (3.10)
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where

A =


b́− á á 0 . . . 0

á b́ á . . . 0
...

. . .
. . .

...

0 . . . á b́ á

0 . . . 0 á b́− á

 , (3.11)

C =
(
cn+1
0 , . . . , cn+1

N−2, c
n+1
N−1

)T

,

Q =
(
Ψn(x0)−

ág0(tn+1)

h2
,Ψn(x1), . . . ,Ψ

n(xN−2),Ψ
n(xN−1)−

ág1(tn+1)

h2

)T

.

This system can be solved by the Thomas algorithm. To start any computation, it is
necessary to know u(x,∆t). By Taylor series, we can write

u(x,∆t) = f0(x) + ∆tf1(x) +
∆t2

2

(
f(x, 0)− β2f0(x)− 2αf1(x)

+
d2f0(x)

dx2

)
+O(∆t3). (3.12)

Based on the discussion in this section, we can say that |b́| > 2|á|. Then for matrix

A, we have |ai,i| = |b́| > 2|á| =
∑

j ̸=i ai,j for all i so matrix A is a strictly diagonally
dominant matrix. The summary of the proposed method can be written as the fol-
lowing algorithm.

Proposed method algorithm
1- Consider α, β, a, b,N,∆t as input value;
2- Define h = (b− a)/n, {zi} = {a+ ih}, {xi} = {(zi+1 + zi)/2};
3- Define A as (3.11);
4- If t = ∆t, consider u(x, t) as (3.12);
5- Else , by using Eq. (3.10) obtain C;

6- Consider u(x, t) =
∑N

i=−1 ciBi(x);

4. Convergence analysis

Now we discuss the convergence of the collocation method has been given in Sec-
tion 3.

Theorem 4.1. The time discretization process (3.1) is of the first order convergence.
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Proof. Suppose that εi = u(ti)− ui be the local truncation error for (3.1) at the ith
level of time where ui the approximate solution and u(ti) be the exact solution of the
problem (1.1). By using the truncation error in temporal direction, we can write

| εi |≤ ϱi∆t2 , i ≥ 2. (4.1)

Also for i = 1 with help of (3.12), we have

| ε1 |≤ ϱ1∆t3. (4.2)

To continue we assume that En+1 be the global error in time discretizing process
and ϱ = max{ϱ1, ..., ϱn}. We can write the following global error estimate at n+1
level
En+1 =

∑n
i=1 εi, (∆t ≤ T/n),

with the help of (4.1) and (4.2) we can write

| En+1 |=|
n∑

i=1

εi |≤ ϱ1∆t3 +
n∑

i=2

ϱi∆t2 ≤ nϱ∆t2 ≤ nϱ
T

n
∆t = ρ∆t,

where ρ = ϱT. Hence this proves the theorem. □

We assume that û(x) be the exact solution of Eq. (3.2) with boundary conditions

(1.2) and (1.3), also S(x) =
∑N

i=−1 ci(t)Bi(x) be the B-spline approximation to û(x).

Due to round off errors in computations, we assume that S∗(x) =
∑N

i=−1 c
∗
i (t)Bi(x)

be the computed spline approximation to S. In order to derive a bound for ∥ û(x)−
S(x) ∥∞, we need to estimate the ∥ û(x) − S∗(x) ∥∞ and ∥ S∗(x) − S(x) ∥∞. Now
we substitute S∗(x) in Eq. (3.10) and get the following result

AC∗ = h2Q∗, (4.3)

where

C∗ =
(
c∗n+1
0 , . . . , c∗n+1

N−2 , c
∗n+1
N−1

)T
,

Q∗ =
(
Ψn∗(x0)−

ág0(tn+1)

h2
,Ψn∗(x1), . . . ,Ψ

n∗(xN−2),Ψ
n∗(xN−1)

− ág1(tn+1)

h2

)T
.

Considering (3.10) and (4.3), we can write

A(C∗ − C) = h2(Q∗ −Q). (4.4)

For our purpose, we need the following Theorem.

Theorem 4.2. Consider ∆ as an equally spaced partition of interval [a, b] given
by ∆ = {a = x0 < x1, . . . < xN = b}, h = |xj − xj−1|. Besides, assume that

f(x) ∈ C4[a, b] such that ∀x ∈ [a, b], |f (4)(x)| ≤ L and S(x) be the unique spline
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interpolation function of f(x) at the knots
(
xj , f(xj)

)
. Then, there exists a constant

λj such that:

∥ f (j) − S(j) ∥≤ λjLh
4−j , j = 0, 1, 2, 3.

Proof. For the proof see [11, 15, 19]. □

By using (3.3), we get the result as

|Ψ∗(xi)−Ψ(xi)| ≤ | (1 + α∆t+
β2∆t2

2
)(S∗(xi)− S(xi)) |

+
∆t2

2
| (S∗′′

(xi)− S
′′
(xi)) | . (4.5)

From the Eq. (4.5) and using Theorem 4.2, we can get

∥ Q∗ −Q ∥≤| 1 + α∆t+
β2∆t2

2
| λ0Lh

4 +
∆t2

2
λ2Lh

2, (4.6)

and thus

∥ Q∗ −Q ∥≤ M1h
2,

where M1 = (1 + α∆t+ β2∆t2

2 )λ0Lh
2 + ∆t2

2 λ2L.

Lemma 4.3. For the B-splines {B−1, · · · , BN}, we have the following inequality:

|
N∑

i=−1

Bi(x)| ≤
7

2
, (a ≤ x ≤ b). (4.7)

Proof. From the real analysis we have |
∑N

i=−1 Bi(x)| ≤
∑N

i=−1 |Bi(x)|,

if x = xi, i = 1, . . . , N, then, we have

|
∑N

i=−1 Bi(x)| = 2 ≤ 7
2 ,

and if xi−1 ≤ x ≤ xi, then, we can write

|
∑N

i=−1 Bi(x)| ≤| Bi−2(x) | + | Bi−1(x) | + | Bi(x) | + | Bi+1(x) |
≤ 1

4 + 3
2 + 3

2 + 1
4 ≤ 7

2 . □

The matrix A in Eq. (3.10) is a tridiagonal matrix and strictly diagonally dominant
matrix and thus from theory of matrices we can say that the matrix A is nonsingular.
Hence from (4.4) we can write

(C∗ − C) = h2A−1(Q∗ −Q). (4.8)
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By taking the infinity norm from (4.8) and applying (4.6), we get

∥ C∗ − C ∥≤ h2 ∥ A−1 ∥∥ Q∗ −Q ∥≤ M1h
4 ∥ A−1 ∥ . (4.9)

Let ηi, (1 ≤ i ≤ N) be the summation of the ith row of the matrix A, therefore we
get

η1 = ηN =
3h2

2

(
1 + α∆t+

β2∆t2

2

)
+ 2∆t2,

ηi = 2h2
(
1 + α∆t+

β2∆t2

2

)
, i = 2(1)N − 1.

From the theory of matrices, we know that

N∑
i=1

a−1
ki ηi = 1,

where a−1
ki are the elements of A−1. As a result, we can write

∥A−1∥ =
N∑
i=1

|a−1
ki | ≤

1

min1≤i≤N ηi
=

1

h2ηι
, (4.10)

where l is some index between 1 and N . Following result is obtained by substituting
(4.10) into (4.9),

∥ C∗ − C ∥≤ M1h
4

h2ηι
≤ M2h

2, (4.11)

where M2 = M1

ηι
is constant.

Theorem 4.4. Let û(x) be the exact solution of Eq. (3.1) and let S(x) be the B-spline
approximation to û(x) then

∥ û(x)− S(x) ∥≤ ϖh2.

where ϖ is constant.

Proof. Considering the B-spline collocation approximation and the computed spline
approximation, we can write:

S∗(x)− S(x) =

N∑
i=−1

(c∗i − ci)Bi(x),

thus taking norm and using (4.7) and (4.11), we obtain

∥ S∗(x)− S(x) ∥=∥
N∑

i=−1

(c∗i − ci)Bi(x) ∥ ≤|
N∑

i=−1

Bi(x) |∥ C∗ − C ∥

≤ 7M2h
2

2
. (4.12)
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Table 3. L∞, L2 and RMS error for Example 5.1 at different times.

Time 1 2 3 4 5

L∞ 4.280E-006 4.627E-006 2.279E-006 5.277E-007 7.732E-007
L2 5.610E-005 7.753E-005 3.961E-005 6.998E-006 1.323E-005

RMS 1.984E-006 2.741E-006 1.401E-006 2.474E-007 4.677E-007

Also from Theorem 4.2, we can write

| û− S∗(x) |≤ λ0Lh
4, (4.13)

and therefore with helping (4.12) and (4.13), we get

∥ û− S(x) ∥≤∥ û− S∗(x) ∥ + ∥ S∗(x)− S(x) ∥≤ λ0Lh
4 +

7M2h
2

2
= ϖh2,

where ϖ = λ0Lh
2 + 7M2

2 . □
From the above discussions, we can say that, if u(x, t) be the exact solution of (1.1)

and U(x, t) be the numerical approximation by our methods, then we can write

∥ u(x, t)− U(x, t) ∥≤ Υ(h2 +∆t),

where Υ is a constant.

5. Numerical examples

In this section, we obtain the numerical solutions of the one-dimensional hy-
perbolic telegraph equation for four problems. To show the efficiency of the present
method for our problem in comparison with the exact solution, we report L∞, L2 and
RMS error by the following formulae

L∞ = max
i

| U(xi, t)− u(xi, t) |, L2 = (
∑
i

| U(xi, t)− u(xi, t) |2)
1
2 ,

RMS =
(
∑

i | U(xi, t)− u(xi, t) |2)
1
2

√
N

,

where U is numerical solution and u denotes analytical solution.

Example 5.1. We consider the second-order hyperbolic telegraph equation with α = 1
2

and β = 1, in the interval 0 ≤ x ≤ 4, the analytical solution is given in [13] as
u(x, t) = exp(x − t). In this case f(x, t) = 0. The initial conditions and boundary
conditions are taken from the exact solution. The L∞, L2 and Root-Mean-Square
(RMS) of errors are obtained in Table 3 for t = 1, 2, 3, 4, and 5 with ∆t = 0.001 and
h = 0.005. Table 4 gives a comparisons between numerical and analytical solutions
for different partitions. Figure 1 shows that the solution obtained by our method is
close to the exact solution.
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Figure 1. Comparisons between numerical and exact solution of
Example 5.1 for different values of time with ∆t = 0.001 and h =
0.005.

Table 4. Numerical results for Example 5.1.

Partitions ∆t = 0.01, h = 0.05 ∆t = 0.01, h = 0.01 ∆t = 0.001, h = 0.01
Time RMS L∞ RMS L∞ RMS L∞
0.5 3.997E-005 1.353E-004 9.393E-005 2.255E-004 4.637E-006 1.087E-005
1 1.911E-004 4.167E-004 1.042E-004 2.299E-004 1.119E-005 2.243E-005
1.5 2.743E-004 5.142E-004 8.177E-005 1.766E-004 1.377E-005 2.456E-005
2 2.716E-004 4.602E-004 5.287E-005 1.214E-004 1.259E-005 2.067E-005
2.5 2.157E-004 3.476E-004 2.986E-005 7.477E-005 9.382E-006 1.489E-005
3 1.407E-004 2.293E-004 1.984E-005 4.228E-005 5.682E-006 9.345E-006
3.5 7.158E-005 1.321E-004 1.962E-005 3.083E-005 2.528E-006 4.957E-006
4 2.542E-005 5.503E-005 2.127E-005 3.263E-005 1.004E-006 1.531E-006
4.5 3.379E-005 5.027E-005 1.788E-005 3.368E-005 1.949E-006 2.773E-006
5 4.628E-005 7.655E-005 8.149E-006 1.877E-005 2.164E-006 3.592E-006

Example 5.2. In this example, we consider the hyperbolic telegraph (1.1) with α =
4 and β = 2, in the interval 0 ≤ x ≤ 2π, the exact solution is given in [3] as
u(x, t) = exp(−t) sin(x). In this case f(x, t) = (2 − 2α + β2) exp(−t) sin(x). The
initial conditions and boundary conditions are taken from the exact solution. In order
to compare the solutions with [3], we have taken ∆t = 0.01, h = 0.05, h = 0.02 and
h = 0.01. Table 5 shows a comparison between the RMS error found by our method
and by DRBIE method in [3] at time t = 3. Figure 2 shows absolute error for different
values of time and Figure 3 shows that the solution obtained by our method is close
to the exact solution. From Figure 4, we can see that the numerical solution shows
the same behavior as the exact solution.
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Figure 3. Comparisons between numerical and exact solution of
Example 5.2 for different values of time with ∆t = 0.01 and h =
0.005.

Table 5.

h Our method Cubic RBF:1 + r2 TPS RBF:r4 log(r) Linear RBF:1 + r

0.05 5.616E-006 7.125E-005 9.017E-005 3.010E-004
0.02 3.394E-006 1.712E-005 2.943E-005 7.128E-005
0.01 3.077E-006 8.218E-006 8.991E-006 4.320E-005

Example 5.3. We consider the hyperbolic telegraph (1.1) with α = π and β =
π, in the interval 0 ≤ x ≤ 1, the analytical solution is given in [4] as u(x, t) =
sin(πx) sin(πt). In this case f(x, t) = π2 sin(πx)

(
sin(πt) + 2 cos(πt)

)
. The initial
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Figure 4. Exact solution (left) and numerical solution (right) with
∆t = 0.01 and h = 200, of Example 5.2

Table 6. L∞, L2 and RMS error for Example 5.3 at different
times with ∆t = 0.01, h = 0.005.

∆t = 0.01, h = 0.01
Time 0.4 0.6 0.8 1
L∞ 2.654E-004 3.829E-004 3.935E-004 2.676E-004
L2 1.877E-003 2.708E-003 2.782E-003 1.893E-003

RMS 1.877E-004 2.708E-004 2.782E-004 1.893E-004

∆t = 0.001, h = 0.01
Time 0.4 0.6 0.8 1
L∞ 3.692E-006 9.357E-006 1.334E-005 1.290E-005
L2 2.611E-005 6.617E-005 9.437E-005 9.125E-005

RMS 2.611E-006 6.617E-006 9.437E-006 9.125E-006

∆t = 0.001, h = 0.005
Time 0.4 0.6 0.8 1
L∞ 1.115E-006 6.320E-007 2.549E-007 1.102E-006
L2 1.116E-005 6.320E-006 2.550E-006 1.102E-005

RMS 7.889E-007 4.469E-007 1.803E-007 7.790E-007

conditions and boundary conditions are taken from the exact solution. The estimated-
exact solution graph, for some different times is presented in Figure 5. Absolute error
between the analytical and our method is depicted at different times in Figure 5. Also
we compute L∞, L2 and RMS error for different values of time and different partitions
in Table 6.

Example 5.4. As a last study we consider here a numerical solution of the hyper-
bolic telegraph (1.1) with different values of α and β, in the interval 0 ≤ x ≤ 4 and
f(x, t) = −2α sin(x) sin(t) + β2 cos(t) sin(x), the exact solution u(x, t) = cos(t) sin(x)
[4]. The initial conditions and boundary conditions are taken from the exact solution.
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Figure 5. Comparisons between numerical and exact solution of
Example 5.3 for different values of time with ∆t = 0.001 and h =
0.01.
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Figure 6. Absolute error graph of Example 5.3 for different times
with ∆t = 0.001 and h = 0.01.

The L∞, L2 and (RMS) are obtained in Table 7 for different values of α, β and dif-
ferent partitions.

Example 5.5. Consider the one-dimensional hyperbolic telegraph equation with the
following properties:

α = β = b = 1, a = 0, f(x, t) = f1(x) = g1(x) = g2(x) = 0,

f0(x) =

{
0, 0 ≤ x ≤ 1

2 ,
1, 1

2 ≤ x ≤ 1.
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Table 7. L∞, L2 and RMS error for Example 5.4 at different
times with different values of α, β.

α = 3, β = 2, ∆t = 0.01, h = 0.01
Time 0.5 1 1.5 2
L∞ 1.088E-005 1.715E-005 1.230E-005 3.885E-006
L2 1.398E-004 2.166E-004 1.544E-004 2.914E-005

RMS 6.990E-006 1.083E-005 7.722E-006 1.457E-006
Time 2.5 3 3.5 4
L∞ 1.557E-005 2.883E-005 3.607E-005 3.513E-005
L2 1.995E-004 3.638E-004 4.539E-004 4.423E-004

RMS 9.975E-006 1.819E-005 2.270E-005 2.212E-005

α = 10, β = 3, ∆t = 0.001, h = 0.01
Time 0.5 1 1.5 2
L∞ 1.777E-009 3.650E-008 9.205E-008 1.474E-007
L2 1.328E-008 4.733E-007 1.184E-006 1.887E-006

RMS 6.642E-0010 2.366E-008 5.922E-008 9.432E-008
Time 2.5 3 3.5 4
L∞ 1.839E-007 1.887E-007 1.577E-007 9.606E-008
L2 2.343E-006 2.394E-006 1.991E-006 1.206E-006

RMS 1.172E-007 1.197E-007 9.954E-008 6.033E-008

α = 5, β = 4, ∆t = 0.001, h = 0.005
Time 0.5 1 1.5 2
L∞ 2.139E-007 2.534E-007 1.376E-007 4.427E-008
L2 3.897E-006 4.555E-006 2.450E-006 8.814E-007

RMS 1.378E-007 1.610E-007 8.663E-008 3.116E-008
Time 2.5 3 3.5 4
L∞ 2.263E-007 3.566E-007 4.009E-007 3.474E-007
L2 4.112E-006 6.433E-006 7.206E-006 6.226E-006

RMS 1.454E-007 2.275E-007 2.548E-007 2.201E-007

α = 6, β = 1, ∆t = 0.001, h = 0.01
Time 0.5 1 1.5 2
L∞ 1.207E-007 2.623E-007 3.654E-007 4.025E-007
L2 1.558E-006 3.346E-006 4.628E-006 5.074E-006

RMS 7.790E-008 1.673E-007 2.314E-007 2.537E-007
Time 2.5 3 3.5 4
L∞ 3.628E-007 2.541E-007 1.015E-007 1.155E-007
L2 4.561E-006 3.214E-006 1.442E-006 1.120E-006

RMS 2.280E-007 1.607E-007 7.211E-008 5.600E-008

The Fourier solution of this problem based on the method of separation of variables
can be obtained as follows

u(x, t) =
∞∑
i=0

e−t sin(iπx)
(
di cos(iπt) +

di
iπ

sin(iπt)
)
,
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Table 8. L∞, L2 and RMS error for Example 5.5 at different times.

Time 16 17 18 19 20

L∞ 5.390E-008 1.957E-008 7.018E-009 2.489E-009 8.764E-010
L2 1.568E-007 5.481E-008 1.916E-008 6.616E-009 2.324E-009

RMS 2.217E-008 7.752E-009 2.710E-009 9.356E-010 3.287E-010

Table 9. Numerical results for Example 5.5.

Partitions ∆t = 0.01, h = 0.005 ∆t = 0.001, h = 0.01 ∆t = 0.01, h = 0.1
Time RMS L∞ RMS L∞ RMS L∞
15 1.215E-007 2.744E-007 9.247E-009 1.670E-008 1.057E-007 2.581E-007
16 4.651E-008 1.091E-007 3.868E-009 7.037E-009 3.238E-008 6.460E-008
17 1.617E-008 3.995E-008 1.602E-009 2.934E-009 1.511E-008 3.114E-008
18 5.584E-009 1.381E-008 6.590E-010 1.213E-009 6.007E-009 1.073E-008
19 2.141E-009 4.719E-009 2.688E-010 4.976E-010 3.405E-009 1.856E-009
20 8.695E-010 1.679E-009 1.090E-010 2.027E-010 1.178E-009 2.600E-009

where di = 2
(
cos(iπ/2)−cos(iπ)

)
/iπ. The numerical results for ∆t = 0.001, h = 0.02

have been given in Table 8. Also by using different partition on domains, obtained
numerical results have been tabulated in Table 9.

Conclusion

In conclusion, this paper is dedicated to use a collocation method based on qua-
dratic B-spline functions for one-dimensional hyperbolic telegraph equation. At first
step, hyperbolic telegraph is discretized to the time variable by finite difference scheme
and in the next step collocation method is used to space variable. In the last step, a
linear system of equations is created. This system is represented as a matrix equation
so that the coefficient matrix is a strictly diagonally dominant matrix. The conver-
gence analysis is studied and it is shown that the order of convergence is O(h2 +∆t).
Also the proposed method is studied on some problems and compared with exact so-
lutions and other paper. The obtained numerical experiments demonstrate the good
accuracy of the proposed scheme in this research.
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