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Abstract In this paper, we consider the iterative system of singular Rimean-Liouville fractional-
order boundary value problems with Riemann-Stieltjes integral boundary conditions
involving increasing homeomorphism and positive homomorphism operator(IHPHO).

By using Krasnoselskiis cone fixed point theorem in a Banach space, we derive suf-
ficient conditions for the existence of an infinite number of nonnegative solutions.
The sufficient conditions are also derived for the existence of a unique nonnegative

solution to the addressed problem by fixed point theorem in complete metric space.
As an application, we present an example to illustrate the main results.
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1. Introduction

In recent times, the application of fractional calculus become an essential part of
the mathematical background needed for researchers and scientists. fractional differ-
ential equations have gained its popularity and significance due to its distinguished
applications in different areas of applied different areas such as fluid flows, electrical
networks, rheology, biology chemical physics, [2, 12, 14, 24, 28, 29]. In 1983, Leiben-
son [15] introduced the p-Laplacian equation,

d

dt

(
φp(ϖ

′)
)
= g(t,ϖ,ϖ′),

in order to study the turbulent flow through porous media. For p > 1, the operator
φp(ϖ) = |ϖ|p−2ϖ is invertible and its inverse is ϕq, where q = p/(p− 1).
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The recent works on the existence of positive solutions for fractional order bound-
ary value problems involving p-Laplacian operator, see [9,16–18,20,30,32]. However,
in this paper we use new operator φ called increasing homeomorphism and positive ho-
momorphism operator(IHPHO), which improves and generates classical p-Laplacian
operator φp for some p > 1. For recent works on fractional order boundary value
problems with IHPHO, see [8, 21,27,33].

On the other hand, in the papers of Heymans and Podlubny [11], Agarwal et al. [1],
Baleanu et al. [3], it was shown that RiemannLiouville fractional differential equations
are useful in physics to model viscoelasticity and have different properties from the
Caputo derivative. As the RiemannLiouville fractional derivative has a singularity at
zero, the mathematical analysis to RiemannLiouville fractional differential equations
is more complicated [13]. In [23], Padhi, Graef and Pati considered the following
fractional order boundary value problem with Riemann-Stieltjes integral boundary
conditions,

Dς0+ϖ(t) + q(t)f(t,ϖ(t)) = 0, 0 < t < 1,

ϖ(0) = ϖ′(0) = · · · = ϖ(n−2)(0) = 0,

Dσ0+ϖ(1) =

∫ 1

0

h(τ, ϖ(τ))dA(τ),

where n > 2, n − 1 < ς ≤ n,σ ∈ [1, ς − 1], D⋆0+ is a Riemann-Liouville fractional
derivative of order ⋆ ∈ {ς,σ} and established existence of positive solutions by various
fixed point theorems on a Banach space. In [25], Prasad, Krushna and Wesen studied
the solvability of iterative system of fractional order boundary value problem

D
q1
0+ϖi(t)

)
+ λipi(t)gi(ϖi+1(t)) = 0, 0 < t < 1, i = 1, 2, · · · , n,

ϖi+1(t) = ϖ1(t), 0 < t < 1,

ϖi(0) = D
q2
0+xi(0) = 0, ϖ′

i(1)− ζϖ′
i(ξ1) = ϑϖ′

i(ξ2), i = 1, 2, · · · , n,

where 2 < q1 ≤ 3, 0 < q1 ≤ 1, 0 < ξ1 < ξ2 < 1, ζ, ϑ are positive constants and D⋆0+ is a
Riemann-Liouville fractional derivative of order ⋆ ∈ {q1, q2}, by Krasnoselskii’s cone
fixed point theorem on a Banach space. Recently, Prasad, Khuddush and Rashmita
[26] established denumerably many positive solutions for the following problem,

φ
[
CDσ0+ϖj(t)

]
+ψ(t)gj(ϖj+1(t)) = 0, 0 < t < 1, j = 1, 2, · · · , ℓ,
ϖℓ+1(t) = ϖ1(t), 0 < t < 1,

satisfying integral boundary conditions

ϖj(0)− aϖ′
j(0) = Iα

0+ϖj(1),

ϖj(1) + bϖ′
j(1) = Iβ

0+ϖj(1),

where CDσ0+ denote Caputo fractional derivatives with 1 < σ ≤ 2, Iα
0+ , I

β

0+ denote
Riemann-Liouville fractional integrals, a, b ∈ R, α,β > 0,
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Motivated by the aforementioned works, in this paper we consider the following
singular Rimean-Liouville fractional order boundary value problem with Riemann-
Stieltjes integral boundary conditions involving IHPHO,{

φ
(
Dς0+ϖj(t)

)
+Υ(t)fj(ϖj+1(t)

)
= 0, t ∈ (0, 1),

ϖℓ+1(t) = ϖ1(t), j = 1, 2, · · ·, ℓ, (1.1)

{
ϖ

(r)
j (0) = 0, r = 0, 1, 2, · · · , m− 2, j = 1, 2, 3, · · · , ℓ,

Dσ0+ϖj(1) =
∫ 1

0
ϖj(τ)dχ(τ), j = 1, 2, 3, · · · , ℓ,

(1.2)

where ℓ ∈ N, m ≥ 2, m − 1 < ς ≤ m,σ ∈ [1, ς) and D⋆0+ is a Riemann-Liouville

fractional derivative of order ⋆ ∈ {ς,σ},
∫ 1

0
ϖj(τ)dχ(τ) denotes Riemann-Stieltjes

integral, Υ =
∏n

i=1 Υi(t) and each Υi : [0, 1] → [0,∞) has a singularity in (0, 1
2 ).

fj(t) : [0, 1] → [0,+∞) are continuous functions and φ−1(Υ) ∈ Lp[0, 1] for some
p ≥ 1 and φ : R → R is an IHPHO satisfying φ(0) = 0.

The following assumptions hold throughout the paper:

(H1) fj : [0,+∞) → [0,+∞) are continuous,
(H2) there is a sequence {tk}∞k=1 such that

0 < tk+1 < tk <
1

2
, lim
k→∞

tk = t∗ <
1

2
, lim
t→tk

Υi(t) = +∞, k ∈ N,

i = 1, 2, · · · , n and Υi(t) does not vanish identically on any subinterval of
[0, 1]. Moreover, thereexists λi > 0 such that

λi < φ−1(Υi(t)) < ∞ for 0 ≤ t ≤ 1, i = 1, 2, · · · , n.
(H3) χ be nondecreasing and of bounded variation function such that 0 < η < 1

where

η =
Γ(ς − σ)
Γ(ς)

∫ 1

0

τς−1dχ(τ).

The rest of the paper is organized in the following fashion. In section 2, we construct
the kernel for the homogeneous problem corresponding to (1.1)-(1.2), estimate bounds
for the kernel, and some lemmas which are needed in establishing our main results are
provided. In section 3, we establish a criteria for the existence of infinite number of
nonnegative solutions for the boundary value problem (1.1)-(1.2) by applying Hölder’s
inequality and Krasnoselskiis cone fixed point theorem in a Banch space. Also we
derive sufficient conditions for the existence of unique nonnegative solution to the
problem by an application of fixed point theorem in a complete metric space. Finally,
we provide an example to illustrate the main results of the paper.

2. Preliminaries, Kernel and Its Bounds

In this section, we list some definitions and lemmas which are useful for our later
discussions. Next, we constructed kernel to the homogeneous BVP corresponding to
(1.1)-(1.2), and established certain lemmas for the bounds of the kernel.
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Definition 2.1. [14] The Riemann-Liouville fractional integral of order γ > 0 for a
function f : (0,∞) → R is defined as

I
γ
0+f(t) =

1

Γ(γ)

∫ t

0

(t− s)γ−1f(s)ds,

provided that the right side is pointwise defined on (0,∞).

Definition 2.2. [14] The Riemann-Liouville fractional derivative of order γ > 0 for
a continuous function f : (0,∞) → R is defined as

D
γ
0+f(t) =

1

Γ(m− γ)

(
d

dt

)m ∫ t

0

f(s)

(t− s)γ−m−1
ds,

where m = [γ] + 1, provided that the right side is pointwise defined on (0,∞).

Lemma 2.1. [14] The general solution to D
γ
0+y(t) = 0 with γ ∈ (m − 1,m] and

m > 1 is the function

y(t) = c1t
γ−1 + c2t

γ−2 + · · ·+ cmtγ−m, ci ∈ R, i = 1, 2, · · · ,m.

Lemma 2.2. [14] Let γ > 0. Then the following equality holds for y(t) :

D
−γ
0+ D

γ
0+y(t) = y(t) + c1t

γ−1 + c2t
γ−2 + · · ·+ cmtγ−m, ci ∈ R, i = 1, 2, · · · ,m

and m is the smallest integer greater than or equal to γ.

Lemma 2.3. Let Q ∈ C[0, 1]. Then the unique solution of FBVP

φ
(
Dς0+ϖ1(t)

)
+ Q(t) = 0, 0 < t < 1, (2.1)

{
ϖ

(r)
1 (0) = 0, r = 0, 1, 2, · · · , m− 2,

Dσ0+ϖ1(1) =
∫ 1

0
ϖ1(τ)dχ(τ),

(2.2)

is given by

ϖ1(t) =

∫ 1

0

ℵ(t, τ)φ−1
(
Q(τ)

)
dτ, (2.3)

where

ℵ(t, τ) = ℵ0(t, τ) +
Γ(ς − σ)

Γ(ς)(1− η)
tς−1gχ(τ),

ℵ0(t, τ) =
1

Γ(ς)

{
tς−1(1− τ)ς−σ−1 − (t− τ)ς−1, τ ≤ t,

tς−1(1− τ)ς−σ−1, t ≤ τ,

and

gχ(τ) =

∫ 1

0

ℵ0(τ1, τ)dχ(τ1).
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Proof. From Lemmas 2.1 and 2.2, the equation (2.1) reduces to the fractional integral
equation

ϖ1(t) = c1t
ς−1 + c2t

ς−2 + · · ·+ cnt
ς−n −

∫ t

0

(t− τ)ς−1

Γ(ς)
φ−1

(
Q(τ)

)
dτ.

By using boundary conditions (2.2), we determined c2 = c3 = · · · = cn = 0 and

c1 =
1

Γ(ς)

∫ 1

0

(1− τ)ς−σ−1φ−1
(
Q(τ)

)
dτ+

Γ(ς − σ)
Γ(ς)

∫ 1

0

ϖ1(τ)dχ(τ).

So, we get

ϖ1(t) =

∫ 1

0

ℵ0(t, τ)φ
−1

(
Q(τ)

)
dτ+

Γ(ς − σ)
Γ(ς)

tς−1

∫ 1

0

ϖ1(τ)dχ(τ). (2.4)

After certain computations, we receive∫ 1

0

ϖ1(τ)dχ(τ) =
1

1− η

∫ 1

0

gχ(τ)φ
−1

(
Q(τ)

)
dτ.

Substituting into (2.4), we get (2.3). This completes the proof. □

Lemma 2.4. The function ℵ0(t, τ) satisfies below properties:

(i) ℵ0(t, τ) is nonnegative and continuous on [0, 1]× [0, 1],
(ii) ℵ0(t, τ) ≤ ℵ0(1, τ) for t, τ ∈ [0, 1],
(iii) there is some δ ∈ (0, 1

2 ) such that δς−1ℵ0(1, τ) ≤ ℵ0(t, τ) for t ∈ [δ, 1−δ], τ ∈
[0, 1].

Proof. It is easy to establish the results (i) and (ii). We prove (iii).
Let V(t, τ) = tς−1(1− τ)ς−σ−1 − (t− τ)ς−1 for 0 ≤ τ ≤ t ≤ 1. Then for δ ∈ (0, 1

2 ), we
have

V(t, τ) = tς−1(1− τ)ς−σ−1 − (t− τ)ς−1

= tς−1
[
(1− τ)ς−σ−1 −

(
1− s

t

)ς−1]
≥ tς−1[(1− τ)ς−σ−1 − (1− τ)ς−1]

≥ δς−1ℵ0(1, τ).

Other case is trivial and hence proof of the theorem completes. □

Lemma 2.5. Let g∗χ(τ) = ℵ0(1, τ) +
Γ(ς−σ)

Γ(ς)(1−η)gχ(τ). The kernel ℵ(t, τ) has the fol-

lowing properties:

(i) ℵ(t, τ) is nonnegative and continuous on [0, 1]× [0, 1],
(ii) ℵ(t, τ) ≤ g∗χ(τ) for t, τ ∈ [0, 1],

(iii) there exists δ ∈ (0, 1
2 ) such that δς−1g∗χ(τ) ≤ ℵ(t, τ) for t ∈ [δ, 1−δ], τ ∈ [0, 1].
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Proof. (i) and (ii) are obvious. To prove (iii), let δ ∈ (0, 1
2 ) and τ ∈ [0, 1]. Then from

Lemma 2.4, we have

ℵ(t, τ) =ℵ0(t, τ) +
Γ(ς − σ)

Γ(ς)(1− η)
tς−1gχ(τ)

≥ δς−1ℵ0(1, τ) +
Γ(ς − σ)

Γ(ς)(1− η)
δς−1gχ(τ) = δ

ς−1g∗χ(τ).

□

We note that an ℓ−tuple (ϖ1(t), ϖ2(t), ϖ3(t), ···, ϖℓ(t)) is a solution of the iterative
system (1.1)–(1.2) if

ϖj(t) =

∫ 1

0

ℵ(t, τ)φ−1
[
Υ(τ)fj(ϖj+1(τ)

)]
dτ, 1 ≤ j ≤ ℓ,

ϖℓ+1(t) = ϖ1(t), 0 < t < 1,

i.e.,

ϖ1(t) =

∫ 1

0

ℵ(t, τ1)φ−1

[
Υ(τ1)f1

(∫ 1

0

ℵ(τ1, τ2)φ−1

[
Υ(τ2)f2

(∫ 1

0

ℵ(τ2, τ3)

× φ−1

[
Υ(τ3)f3

(∫ 1

0

ℵ(τ3, τ4) · ··

× fℓ−1

(∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

)
· · · dτ3

]
dτ2

]
dτ1.

Let B denotes the Banach space C([0, 1],R) with the norm ∥ϖ∥ = max
t∈[0,1]

|ϖ(t)|.

For δ ∈ (0, 1
2 ), define the cone Pδ ⊂ B by

Pδ =
{
ϖ ∈ B : ϖ(t) ≥ 0 and min

t∈[δ, 1−δ]
ϖ(t) ≥ δς−1∥ϖ(t)∥

}
.

For ϖ1 ∈ Pδ, define an operator Ω : Pδ → B by

(Ωϖ1)(t) =

∫ 1

0

ℵ(t, τ1)φ−1

[
Υ(τ1)f1

(∫ 1

0

ℵ(τ1, τ2)φ−1

[
Υ(τ2)f2

(∫ 1

0

ℵ(τ2, τ3)

× φ−1

[
Υ(τ3)f3

(∫ 1

0

ℵ(τ3, τ4) · ··

× fℓ−1

(∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

)
· · · dτ3

]
dτ2

]
dτ1.

Lemma 2.6. Suppose (H1), (H2) and (H3) hold. Then Ω(Pδ) ⊂ Pδ and Ω : Pδ → Pδ

is completely continuous for each δ ∈ (0, 1
2 ).

Proof. Fix δ ∈ (0, 1
2 ). It is clear that fj(ϖ1(t)) ≥ 0 for all t ∈ [0, 1], and ϖ1 ∈ Pδ.
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Now, by Lemma 2.5, we have

(Ωϖ1)(t) =

∫ 1

0

ℵ(t, τ1)φ−1

[
Υ(τ1)f1

(∫ 1

0

ℵ(τ1, τ2)φ−1

[
Υ(τ2)f2

(∫ 1

0

ℵ(τ2, τ3)

× φ−1

[
Υ(τ3)f3

(∫ 1

0

ℵ(τ3, τ4) · ··

× fℓ−1

(∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

)
· · · dτ3

]
dτ2

]
dτ1

≤
∫ 1

0

g∗χ(τ1)φ
−1

[
Υ(τ1)f1

(∫ 1

0

ℵ(τ1, τ2)φ−1

[
Υ(τ2)f2

(∫ 1

0

ℵ(τ2, τ3)

× φ−1

[
Υ(τ3)f3

(∫ 1

0

ℵ(τ3, τ4) · ··

× fℓ−1

(∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

)
· · · dτ3

]
dτ2

]
dτ1

and

min
t∈[δ,1−δ]

(Ωϖ1)(t) = min
t∈[δ,1−δ]

{∫ 1

0

ℵ(t, τ1)φ−1

[
Υ(τ1)f1

(∫ 1

0

ℵ(τ1, τ2)

× φ−1

[
Υ(τ2)f2

(∫ 1

0

ℵ(τ2, τ3) · ··

× fℓ−1

(∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

)
· · · dτ3

]
dτ2

]
dτ1

}

≥ δς−1

{∫ 1

0

g∗χ(τ1)φ
−1

[
Υ(τ1)f1

(∫ 1

0

ℵ(τ1, τ2)φ−1

[
Υ(τ2)f2

(∫ 1

0

ℵ(τ2, τ3)

× φ−1

[
Υ(τ3)f3

(∫ 1

0

ℵ(τ3, τ4) · ··

× fℓ−1

(∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

)
· · · dτ3

]
dτ2

]
dτ1

}
≥ δς−1(Ωϖ1)(t),

for all t ∈ [0, 1]. Thus Ω(Pδ) ⊂ Pδ. Furthermore, by an application of the ArzelaAscoli
theorem, the operator Ω is completely continuous. □

3. Main results

By utilizing following theorems, in this section we establish the existence of infinite
number of nonnegative solutions for the iterative system (1.1)–(1.2).
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Theorem 3.1 (Krasnosellski). Let P be a cone in B and let Λ1,Λ2 be open open
subsets of B with 0 ∈ Λ1,Λ1 ⊂ Λ2. Then the operator Ω has a fixed point in P ∩
(Λ2\Λ1). If Ω : P∩ (Λ2\Λ1) → P be a completely continuous operator such that either

(1) ∥Ωϖ∥ ≤ ∥ϖ∥, ϖ ∈ P ∩ ∂Λ1, and ∥Ωϖ∥ ≥ ∥ϖ∥, ϖ ∈ P ∩ ∂Λ2, or
(2) ∥Ωϖ∥ ≥ ∥ϖ∥, ϖ ∈ P ∩ ∂Λ1, and ∥Ωϖ∥ ≤ ∥ϖ∥, ϖ ∈ P ∩ ∂Λ2.

Theorem 3.2 (Hölder’s Inequality). Let f ∈ Lpi [0, 1] with pi > 1, for i = 1, 2, · · · , n

and
n∑

i=1

1

pi
= 1. Then

n∏
i=1

fi ∈ L1[0, 1] and ∥
∏n

i=1 fi∥1 ≤
∏n

i=1 ∥fi∥pi . Further, if

f ∈ L1[0, 1] and g ∈ L∞[0, 1]. Then fg ∈ L1[0, 1] and

∥fg∥1 ≤ ∥f∥1∥g∥∞.

Consider the following three possible cases for ω ∈ Lpi [0, 1] :

n∑
i=1

1

pi
< 1,

n∑
i=1

1

pi
= 1,

n∑
i=1

1

pi
> 1.

Firstly, we seek denumerably many positive solutions for the case
n∑

i=1

1

pi
< 1.

Theorem 3.3. Suppose (H1), (H2) and (H3) hold and let {δk}∞k=1 be such that tk+1 <
δk < tk, k = 1, 2, 3, · · · . Let {Rk}∞k=1 and {Sk}∞k=1 be two sequences satisfies the
relation

Rk+1 < δς−1
k Sk < θSk < Rk, k ∈ N,

where

θ = max


[
δς−1
1

n∏
i=1

λi

∫ 1−δ1

δ1

g∗χ(τℓ)dτℓ

]−1

, 1

 .

Further, assume that fj satisfies

(A1) fj(ϖ(t)) ≤ φ(N1Rk) for all t ∈ [0, 1], 0 ≤ ϖ ≤ Rk,

where N1 <

[∥∥g∗χ∥∥q n∏
i=1

∥∥φ−1(Υi)
∥∥
pi

]−1

.

(A2) fj(ϖ(t)) ≥ φ(θSk) for all t ∈ [δk, 1− δk], δς−1
k Sk ≤ ϖ ≤ Sk.

Then the iterative system (1.1)–(1.2) has infinite number of solutions {(ϖ[k]
1 , ϖ

[k]
2 , · ·

·, ϖ[k]
ℓ )}∞k=1 such that ϖ

[k]
j (t) ≥ 0 on (0, 1), j = 1, 2, · · ·, ℓ and k ∈ N.

Proof. Let {Λ1,k}∞k=1 and {Λ2,k}∞k=1 be any two sequences in B such that

Λ1,k = {ϖ ∈ B : ∥ϖ∥ < Rk}, Λ2,k = {ϖ ∈ B : ∥ϖ∥ < Sk}.

Then {Λ1,k}∞k=1 and {Λ2,k}∞k=1 are open. Let {δk}∞k=1 be a sequence as mentioned in
the hypothesis. Then t∗ < tk+1 < δk < tk < 1

2 , for all k ∈ N. Define a cone Pδk
by

Pδk
=

{
ϖ ∈ B : ϖ(t) ≥ 0 and min

t∈[δk, 1−δk]
ϖ(t) ≥ δς−1

k ∥ϖ(t)∥
}
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, for each k ∈ N. Let ϖ1 ∈ Pδk
∩ ∂Λ1,k. Then, ϖ1(τ) ≤ Rk = ∥ϖ1∥ for all τ ∈ [0, 1].

By (A1) and 0 < τℓ−1 < 1, we have

∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ ≤

∫ 1

0

g∗χ(τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

≤ N1Rk

∫ 1

0

g∗χ(τℓ)φ
−1

[ n∏
i=1

Υi(τℓ)

]
dτℓ

≤ N1Rk

∫ 1

0

g∗χ(τℓ)
n∏

i=1

φ−1(Υi(τℓ))dτℓ.

There exists a q > 1 such that
1

q
+

n∑
i=1

1

pi
= 1. So,

∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ ≤ N1Rk

∥∥∥g∗χ∥∥∥
q

∥∥∥∥∥
n∏

i=1

φ−1(Υi)

∥∥∥∥∥
pi

≤ N1Rk

∥∥∥g∗χ∥∥∥
q

n∏
i=1

∥∥φ−1(Υi)
∥∥
pi

≤ Rk.

It follows in similar manner (for 0 < τℓ−2 < 1) that

∫ 1

0

ℵ(τℓ−2, τℓ−1)φ
−1

[
Υ(τℓ−1)fℓ−1

(∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϑ1(τℓ))

]
dτℓ

)]
dτℓ−1

≤
∫ 1

0

ℵ(τℓ−2, τℓ−1)φ
−1

[
Υ(τℓ−1)fℓ−1(Rk)

]
dτℓ−1

≤
∫ 1

0

g∗χ(τℓ−1)φ
−1

[
Υ(τℓ−1)fℓ−1(Rk)

]
dτℓ−1

≤ N1Rk

∫ 1

0

g∗χ(τℓ−1)φ
−1

[
Υ(τℓ−1)

]
dτℓ−1

≤ N1Rk

∫ 1

0

g∗χ(τℓ−1)φ
−1

[ n∏
i=1

Υi(τℓ−1)

]
dτℓ−1

≤ N1Rk

∫ 1

0

g∗χ(τℓ−1)
n∏

i=1

φ−1(Υi(τℓ−1))dτℓ−1

≤ N1Rk∥g∗χ∥q
n∏

i=1

∥∥φ−1(Υi)
∥∥
pi

≤ Rk.
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Proceeding with this bootstrapping argument, we get

(Ωϖ1)(t) =

∫ 1

0

ℵ(t, τ1)φ−1

[
Υ(τ1)f1

(∫ 1

0

ℵ(τ1, τ2)φ−1

[
Υ(τ2)f2

(∫ 1

0

ℵ(τ2, τ3)

× φ−1

[
Υ(τ3)f3

(∫ 1

0

ℵ(τ3, τ4) · ··

× fℓ−1

(∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

)
· · · dτ3

]
dτ2

]
dτ1

≤Rk.

Since Rk = ∥ϖ1∥ for ϖ1 ∈ Pδk
∩ ∂Λ1,k, we get

∥Ωϖ1∥ ≤ ∥ϖ1∥. (3.1)

Let t ∈ [δk, 1− δk]. Then,
rk = ∥ϖ1∥ ≥ ϖ1(t) ≥ min

t∈[δk,1−δk]
ϖ1(t) ≥ δς−1

k ∥ϖ1∥ ≥ δς−1
k rk.

By (A2) and for τℓ−1 ∈ [δk, 1− δk], we have∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

≥ δς−1
k

∫ 1−δk

δk

g∗χ(τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

≥ δς−1
k θSk

∫ 1−δk

δk

g∗χ(τℓ)φ
−1(Υ(τℓ))dτℓ

≥ δς−1
k θSk

∫ 1−δk

δk

g∗χ(τℓ)
n∏

i=1

φ−1(Υi(τℓ))dτℓ

≥ δς−1
1 θSk

n∏
i=1

λi

∫ 1−δ1

δ1

g∗χ(τℓ)dτℓ

≥ Sk.

Proceeding with bootstrapping argument, we get

(Ωϖ1)(t) =

∫ 1

0

ℵ(t, τ1)φ−1

[
Υ(τ1)f1

(∫ 1

0

ℵ(τ1, τ2)φ−1

[
Υ(τ2)f2

(∫ 1

0

ℵ(τ2, τ3)

× φ−1

[
Υ(τ3)f3

(∫ 1

0

ℵ(τ3, τ4) · ··

× fℓ−1

(∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

)
· · · dτ3

]
dτ2

]
dτ1

≥Sk.

Thus, if ϖ1 ∈ Pδk
∩ ∂Λ2,k, then

∥Ωϖ1∥ ≥ ∥ϖ1∥. (3.2)
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It is evident that 0 ∈ Λ2,k ⊂ Λ2,k ⊂ Λ1,k. It follows from (3.1), (3.2) and Theorem 3.1

that the operator Ω has a fixed point ϖ
[k]
1 ∈ Pδk

∩
(
Λ1,k\Λ2,k

)
such that ϖ

[k]
1 (t) ≥ 0

on (0, 1), and k ∈ N. Next setting ϖℓ+1 = ϖ1, we obtain an infinite number of

nonnegative solutions {(ϖ[k]
1 , ϖ

[k]
2 , · · ·, ϖ[k]

ℓ )}∞k=1 of (1.1)-(1.2) given iteratively by

ϖj(t) =

∫ 1

0

ℵ(t, τ)φ−1
[
Υ(τ)fj(ϖj+1(τ))

]
dτ, t ∈ (0, 1), j = ℓ, ℓ− 1, · · ·, 1.

The proof is completed. □

For
n∑

i=1

1

pi
= 1, we have the following theorem.

Theorem 3.4. Suppose (H1), (H2) and (H3) hold and let {δk}∞k=1 be such that tk+1 <
δk < tk, k = 1, 2, 3, · · · . Let {Rk}∞k=1 and {Sk}∞k=1 be two sequences satisfies the
relation

Rk+1 < δς−1
k Sk < θSk < Rk, k ∈ N.

where θ is defined in Theorem 3.3. Further, assume that fj satisfies (A2) and
(A3) fj(ϖ(t)) ≤ φ(N2Rk) for all t ∈ [0, 1], 0 ≤ ϖ ≤ Rk,

where N2 <


[∥∥g∗χ∥∥∞ n∏

i=1

∥∥φ−1(Υi)
∥∥
pi

]−1

,θ

.

Then the iterative system (1.1)-(1.2) has an infinite number of solutions {(ϖ[k]
1 , ϖ

[k]
2 , ··

·, ϖ[k]
ℓ )}∞k=1 such that ϖ

[k]
j (t) ≥ 0 on (0, 1), j = 1, 2, · · ·, ℓ and k ∈ N.

Proof. For a fixed k, let Λ1,k be as in the proof of Theorem 3.3 and let ϖ1 ∈ Pδk
∩

∂Λ2,k. Then, we have ϖ1(τ) ≤ Rk = ∥ϖ1∥, for all τ ∈ (0, 1). By (A3) and for
τℓ−1 ∈ (0, 1), we have∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ ≤

∫ 1

0

g∗χ(τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

≤ N2Rk

∫ 1

0

g∗χ(τℓ)φ
−1

[
Υ(τℓ)

]
dτℓ

≤ N2Rk

∫ 1

0

g∗χ(τℓ)φ
−1

[ n∏
i=1

Υi(τℓ)

]
dτℓ

≤ N2Rk

∫ 1

0

g∗χ(τℓ)
n∏

i=1

φ−1(Υi(τℓ))dτℓ

≤ N2Rk

∥∥∥g∗χ∥∥∥∞
∥∥∥∥∥

n∏
i=1

φ−1(Υi)

∥∥∥∥∥
pi

≤ N2Rk

∥∥∥g∗χ∥∥∥∞
n∏

i=1

∥∥φ−1(Υi)
∥∥
pi

≤ Rk.
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It follows in similar manner (for 0 < τℓ−2 < 1) that∫ 1

0

ℵ(τℓ−2, τℓ−1)φ
−1

[
Υ(τℓ−1)fℓ−1

(∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϑ1(τℓ))

]
dτℓ

)]
dτℓ−1

≤
∫ 1

0

ℵ(τℓ−2, τℓ−1)φ
−1

[
Υ(τℓ−1)fℓ−1(Rk)

]
dτℓ−1

≤
∫ 1

0

g∗χ(τℓ−1)φ
−1

[
Υ(τℓ−1)fℓ−1(Rk)

]
dτℓ−1

≤ N2Rk

∫ 1

0

g∗χ(τℓ−1)φ
−1

[
Υ(τℓ−1)

]
dτℓ−1

≤ N2Rk

∫ 1

0

g∗χ(τℓ−1)φ
−1

[ n∏
i=1

Υi(τℓ−1)

]
dτℓ−1

≤ N2Rk

∫ 1

0

g∗χ(τℓ−1)
n∏

i=1

φ−1(Υi(τℓ−1))dτℓ−1

≤ N2Rk∥g∗χ∥q
n∏

i=1

∥∥φ−1(Υi)
∥∥
pi

≤ Rk.

Continuing with this bootstrapping argument, we get

(Ωϖ1)(t) =

∫ 1

0

ℵ(t, τ1)φ−1

[
Υ(τ1)f1

(∫ 1

0

ℵ(τ1, τ2)φ−1

[
Υ(τ2)f2

(∫ 1

0

ℵ(τ2, τ3)

× φ−1

[
Υ(τ3)f3

(∫ 1

0

ℵ(τ3, τ4) · ··

× fℓ−1

(∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
Υ(τℓ)fℓ(ϖ1(τℓ))

]
dτℓ

)
· · · dτ3

]
dτ2

]
dτ1

≤Rk.

Since Rk = ∥ϖ1∥ for ϖ1 ∈ Pδk
∩ ∂Λ1,k, we get

∥Ωϖ1∥ ≤ ∥ϖ1∥. (3.3)

Rest of the proof is similar to the proof of Theorem 3.3. Hence, the theorem. □

Lastly, the case
n∑

i=1

1

pi
> 1.

Theorem 3.5. Assume that (H1) − (H3) hold and let {δk}∞k=1 be such that tk+1 <
δk < tk, k = 1, 2, 3, · · · . Let {Rk}∞k=1 and {Sk}∞k=1 be two sequences satisfies the
relation

Rk+1 < δς−1
k Sk < θSk < Rk, k ∈ N.

where θ is defined in Theorem 3.3. Further, assume that fj satisfies (A2) and
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(A4) fj(ϖ(t)) ≤ φ(N3Rk) for all t ∈ [0, 1], 0 ≤ ϖ ≤ Rk,

where N3 <


[∥∥g∗χ∥∥∞ n∏

i=1

∥∥φ−1(Υi)
∥∥
1

]−1

, θ

.

Then the iterative system (1.1)–(1.2) has an infinite number of solutions {(ϖ[k]
1 ,

ϖ
[k]
2 , · · ·, ϖ[k]

ℓ )}∞k=1 such that ϖ
[k]
j (t) ≥ 0 on (0, 1), j = 1, 2, · · ·, ℓ and k ∈ N.

Proof. The proof of the present theorem is similar to the proofs of Theorem 3.3 and
Theorem 3.4. So, we omit details here. □

4. Uniqueness of Positive Solution

In this section, we establish the existence of a unique positive solution of the
problem (1.1)–(1.2) by using fixed point theorem. In this regard, by Q we denote the
class of functions Θ : (0,∞) → R satisfying the following conditions:

(i) Θ is strictly increasing;
(ii) For each sequence {tn} ⊂ (0,+∞),

lim
n→∞

tn = 0 ⇐⇒ lim
n→∞

Θ(tn) = −∞;

(iii) There exists α ∈ (0, 1) such that

lim
t→0+

tαΘ(t) = 0.

Examples of such functions are Θ(t) = − 1√
t
, Θ(t) = ln t, Θ(t) = ln t+ t, etc.

Theorem 4.1. [31] Let (X, d) be a complete metric space and T : X → X a mapping
such that there exist λ > 0 and Θ ∈ Q satisfying for any ϖ,ϑ ∈ X with d(Tϖ, Tϑ) > 0,

λ+Θ
(
d(Tϖ, Tϑ)

)
≤ Θ

(
d(ϖ,ϑ)

)
.

Then T has a unique fixed point.

In the next theorem, we establish the existence of unique positive solution of the
problem (1.1)–(1.2). For this purpose, let us take gj(t,ϖ) = Υ(t)fj(ϖ) such that

lim
t→0+

gj(t, ·) = ∞.

Theorem 4.2. Let 0 < α < 1, gj : (0, 1] × [0,∞) be continuous and tαgj(t,ϖ) be
continuous function on [0, 1]× [0,∞). Assume that there exists a constant λ > 0 such
that for ϖ,ϑ ∈ [0,+∞) and t ∈ [0, 1],

(H4) |φ−1(ϑ)− φ−1(ϖ)| ≤ |ϑ−ϖ|.

(H5) tα|gj(t, ϑ)− gj(t,ϖ)| ≤ |ϑ−ϖ|

C
[
1 + λ

√
|ϑ−ϖ|

]2 , where C =
∫ 1

0
g∗χ(τ)τ

−αdτ.

Then Problem (1.1)–(1.2) has a unique positive solution.
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Proof. Consider the cone X = {ϑ ∈ C[0, 1] : ϑ ≥ 0}. Notice that X is a closed subset
of C[0, 1] and therefore, (X, d) is a complete metric space where

d(ϖ,ϑ) = sup
{
|ϖ(t)− ϑ(t)| : t ∈ [0, 1]

}
for ϖ,ϑ ∈ X.

Now, for ϖ1 ∈ X we define the operator T by

(Tϖ1)(t) =

∫ 1

0

ℵ(t, τ1)φ−1

[
g1

(
τ1,

∫ 1

0

ℵ(τ1, τ2)φ−1

[
g2

(
τ2,

∫ 1

0

ℵ(τ2, τ3)

× φ−1

[
g3

(
τ3,

∫ 1

0

ℵ(τ3, τ4) · ··

× gℓ−1

(
τℓ−1,

∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
fℓ(τℓ, ϖ1(τℓ))

]
dτℓ

)
· · · dτ3

]
dτ2

]
dτ1.

Since Υ(t)fj(ϖ1(τ)) ≥ 0 for all τ ∈ [0, 1], ϑ1 ∈ X and ℵ(t, τ) ≥ 0 for all t, τ ∈ [0, 1], it
follows that (Tϖ1)(t) ≥ 0 for all t ∈ [0, 1], ϖ1 ∈ X. Therefore, T applies X into itself.
For τℓ ∈ [0, 1], we have∣∣∣∣ ∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
gℓ(τℓ, ϖ1(τℓ))

]
dτℓ −

∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
gℓ(τℓ, ϑ1(τℓ))

]
dτℓ

∣∣∣∣
≤

∫ 1

0

ℵ(τℓ−1, τℓ)τ
−α
ℓ ταℓ |gℓ(τℓ, ϖ1(τℓ))− gℓ(τℓ, ϑ1(τℓ))| dτℓ

≤ C
|ϖ1 − ϑ1|

C[1 + λ
√
|ϖ1 − ϑ1|]2

=
d(ϖ1, ϑ1)

[1 + λ
√
d(ϖ1, ϑ1)]2

and note that [
1 + λ

√
d(ϖ1, ϑ1)

]2 ≥ [1 + λ · 0]2 = 1.

Similarly, for τℓ−1 ∈ [0, 1], we have∣∣∣∣ ∫ 1

0

ℵ(τℓ−2, τℓ−1)φ
−1

[
gℓ−1(τℓ−1,

∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
gℓ(τℓ, ϖ1(τℓ))

]
dτℓ)]dτℓ−1

−
∫ 1

0

ℵ(τℓ−2, τℓ−1)φ
−1

[
gℓ−1(τℓ−1,

∫ 1

0

ℵ(τℓ−1, τℓ)φ
−1

[
gℓ(τℓ, ϑ1(τℓ))

]
dτℓ)]dτℓ−1

∣∣∣∣
≤

∫ 1

0

ℵ(τℓ−2, τℓ−1)τ
−α
ℓ−1

[
d(ϖ1, ϑ1)

[1 + λ
√
d(ϖ1, ϑ1)]2

]/[
C(1 + λ · 0)2

]
dτℓ−1

≤
∫ 1

0

g∗χ(τℓ−1)τ
−α
ℓ−1dτℓ−1

d(ϖ1, ϑ1)

C[1 + λ
√
d(ϖ1, ϑ1)]2

=
d(ϖ1, ϑ1)

[1 + λ
√
d(ϖ1, ϑ1)]2

.
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Continuing in this way, finally we get

d(Tϖ1, Tϑ1) = max
t∈[0,1]

|(Tϖ1)(t)− (Tϑ1)(t)|

≤ d(ϖ1, ϑ1)

[1 + λ
√
d(ϖ1, ϑ1)]2

.

That is

λ− 1√
d(Tϖ1, Tϑ1)

≤ − 1√
d(ϖ1, ϑ1)

and the contractivity condition of the Theorem 4.1 is satisfied with the function
Θ(t) = − 1√

t
which belongs to the classQ. Consequently, by Theorem 4.1, the operator

T has a unique fixed point in X. This means that Problem (1.1)–(1.2) has a unique
positive solution in C[0, 1]. □

5. Examples

Example 5.1. Consider the following fractional order boundary value problem,

φ(D
5/2
0+ ϖj(t)) + Υ(t)fj(ϖj+1(t)) = 0, 0 < t < 1, j = 1, 2,

ϖj+1(t) = ϖ1(t), 0 < t < 1,

ϖj(0) = ϖ′
j(0) = 0, D

3/2
0+ ϖj(1) =

∫ 1

0

ϖj(τ) dχ(τ),

 (5.1)

where

φ(ϖ) =


ϖ3

1 +ϖ2
, ϖ ≤ 0,

ϖ2, ϖ > 0,

and
Υ(t) = Υ1(t) ·Υ2(t),

in which

Υ1(t) =
1

|t− 1
4 |

1
2

and Υ2(t) =
1

|t− 1
3 |

1
2

,

fj(ϖ) =



0.09× 10−16, ϖ ∈ (10−16,+∞),

15400×10−(16k+8)−0.09×10−16k

10−(16k+8)−10−16k (ϖ − 10−16k) + 0.09× 10−16k,

ϖ ∈
[
10−(16k+8), 10−16k

]
,

15400× 10−(16k+8), ϖ ∈
(

1

53/2
× 10−(16k+8), 10−(16k+8)

)
,

15400×10−(16k+8)−0.09×10−(16k+16)

1

53/2
×10−(16k+8)−10−(16k+16) (ϖ − 10−(16k+16)) + 0.09× 10−(16k+16),

ϖ ∈
(
10−(16k+16), 1

53/2
× 10−(16k+8)

]
,
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(5.2)

for j=1,2, and

χ(t) =


t, t ∈ [0, 1/2) ∪ [2/3, 5/6),

1
2 , t ∈ [1/2, 2/3),

5
6 , t ∈ [5/6, 1].

Let

tj =
31

64
−

j∑
r=1

1

4(r + 1)4
, δj =

1

2
(tj + tj+1), j = 1, 2, 3, · · · ,

then

δ1 =
15

32
− 1

648
<

15

32
and

tj+1 < δj < tj , δj >
1

5
.

Therefore,

δς−1
j >

1

53/2
, j = 1, 2, 3, · · · .

It is easy to see

t1 =
15

32
<

1

2
, tj − tj+1 =

1

4(j + 2)4
, j = 1, 2, 3, · · · .

Since

∞∑
j=1

1

j4
=

π4

90
and

∞∑
j=1

1

j2
=

π2

6
, it follows that

t∗ = lim
j→∞

tj =
31

64
−

∞∑
i=1

1

4(i+ 1)4
=

47

64
− π4

360
>

1

5
,

Υ1,Υ2 ∈ Lp[0, 1] for all 0 < p < 2, so λ1 = λ2 =
1√
3
.

η =
Γ(ς − σ)
Γ(ς)

∫ 1

0

τς−1dχ(τ)

=
4

3
√
π
× 0.2698528306 ≈ 0.203

δς−1
1

n∏
i=1

λi

∫ 1−δ1

δ1

g∗χ(τℓ)dτℓ =

(
15

32
− 1

648

)3/2

× 1

3

∫ 1− 15
32+

1
648

15
32−

1
648

1.786× ℵ0(1, τ)dτ

≈ 0.0080582873.

So, θ = max

{
1

0.0080582873
, 1

}
= 124.0958

∥g∗χ∥q =

[∫ 1

0

|g∗χ(τ)|qdτ
] 1

q

< 1.198085222 for q = 2.
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Next, let 0 < ε < 1 be fixed. Then Υ1,Υ2 ∈ L1+ε[0, 1]. It follows that

∥φ−1(Υ1)∥1+ε =

[
1

3− ε

(
3

3−ε
4 + 1

)
2

1+ε
2

] 1
1+ε

∥φ−1(Υ2)∥1+ε =

[
4

3− ε

(
2

3−ε
4 + 1

)
(1/3)

3−ε
4

] 1
1+ε

.

So, for 0 < ε < 1, we have

0.3024442806 ≤

[∥∥g∗χ∥∥q n∏
i=1

∥∥φ−1(Υi)
∥∥
pi

]−1

≤ 0.3441810494.

Taking M1 = 0.302. In addition if we take

Rk = 10−8k, rk = 10−(8k+4),

then

Rk+1 = 10−(8k+8) <
1

53/2
× 10−(8k+4) < δς−1

k rk

< rk = 10−(8k+4) < Rk = 10−8k,

θrk = 124.0958×10−(8k+4) < 0.302×10−8k = M1Rk, k = 1, 2, 3, · · · , and fj(j = 1, 2)
satisfies the following growth conditions:

fj(ϖ) ≤φ(K1Rk) = M2
1R

2
k = 0.091204× 10−16k, ϖ ∈

[
0, 10−16k

]
fj(ϖ) ≥φ(θrk) = θ

2r2k

=15399.56902× 10−(16k+8), ϖ ∈
[

1

53/2
× 10−(16k+8), 10−(16k+8)

]
.

Thus, all conditions of Theorem 3.3 are satisfied. Therefore, by Theorem 3.3, the

boundary value problem (5.1) has denumerably many positive solutions {ϖ[k]
j }∞k=1

such that 10−(8k+4) ≤ ∥ϖ[k]
j ∥ ≤ 10−8k for j = 1, 2, and k = 1, 2, 3, · · · .

6. Conclusion

The research of fractional order differential equations with integral boundary con-
ditions has become a new area of investigation. Moreover, our problem may have
singularities. By the use of cone fixed point theorem in a Banach space, we deived
the sufficient conditions for the existence of infinite number of nonnegative solutions
and by fixed point theorem in a complete metric spaces, uniqueness of nonnegative
solutions for the problem are acquired. An example is presented to illustrate the main
results. The conclusion obtained in this paper will be useful in the application point
of view. Also, we expect to find some applications in more nonlinear problems.
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