- [1] J.X. Cao, C.P. Li, and Y.Q. Chen, High-order approximation to Caputo derivatives and Caputo- type advection-diffusion equations (II), Fract. Calc. Appl. Anal., 18 (2015), 735–761.
- [2] P. Castillo, B. Cockburn, D. Sch¨otzau, and C. Schwab, Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comput., 71 (2002), 455–478.
- [3] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
- [4] Y. Du, Y. Liu, H. Li, Z. Fang, and S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 344 (2017), 108– 126.
- [5] V. J. Ervin, T. Fu¨hrer, N. Heuer, and M. Karkulik, DPG method with optimal test functions for a fractional advection diffusion equation, J. Sci. Comput., 72(2) (2017), 568–585.
- [6] G. H. Gao and Z. Z. Sun, Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions, J. Comput. Phys., 298 (2015), 520–538.
- [7] X. M. Gu, T. Z. Huang, C. C. Ji, B. Carpentieri, and A. Alikhanov, Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation, J. Sci. Comput., 72 (2017), 957–985.
- [8] C. Huang, M. Stynes, and N. An, Optimal L∞(L2) error analysis of a direct discontinuous Galerkin method for a time-fractional reaction-diffusion problem, BIT Numer. Math., 58 (2018), 661–690.
- [9] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Dif- ferential Equations, Elsevier, Netherlands, 2006.
- [10] C. P. Li and M. Cai, Theory and Numerical Approximations of Fractional Integrals and Deriva- tives, SIAM, Philadelphia, 2019.
- [11] C. P. Li and Z. Wang, The discontinuous Galerkin finite element method for Caputo- type nonlinear conservation law, Math. Comput. Simulat., 169 (2020), 51–73.
- [12] C. P. Li, Q. Yi, and J. Kurths, Fractional convection, J. Comput. Nonlinear Dyn., 13(1) (2018), 011004.
- [13] C. P. Li and Q. Yi, Finite difference method for two-dimensional nonlinear time-fractional subdiffusion equation, Fract. Calc. Appl. Anal., 21(4) (2018), 1046–1072.
- [14] C. P. Li and Q. Yi, Modeling and computing of fractional convection equation, Commun. Appl. Math. Comput., 1 (2019), 565–595.
- [15] D. Li, C. Wu, and Z. Zhang, Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419.
- [16] H. L. Liao, D. Li, and J. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56(2) (2018), 1112–1133.
- [17] R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, 2006.
- [18] K. Mustapha and W. McLean, Discontinuous Galerkin method for an evolution equation with a memory term of positive type, Math. Comput., 78(268) (2009), 1975–1995.
- [19] B. Rivi`ere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: The- ory and Implementation, SIAM, Philadelphia, 2008.
- [20] M. Stynes, E. O’Riordan, and J. L. Gracia, Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079.
- [21] L. L. Wei and Y. N. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model., 38(4) (2014), 1511–1522.
- [22] Y. Yan, M. Khan, and N. J. Ford, An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data, SIAM J. Numer. Anal., 56 (2018), 210–227.
- [23] Y. Y. Zheng and Z. G. Zhao, The discontinuous Galerkin finite element method for fractional cable equation, Appl. Numer. Math., 115 (2017), 32–41.
|