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1. INTRODUCTION

The main purpose of this paper is to study semi-discrete and full-discrete finite vol-
ume element method (FVE) for convection-diffusion-reaction equations with memory
of the form

ur — V.(A(x) Vu) + V. (bu) + cu — /0 V.(B(z,t,s) Vu(s))ds
= f(z,t), inQx(0,T], (1.1)

u =0, on 99 x (0,7,

’LL(,O) = Uo, in Q,
where € is a bounded domain in R?, d = 2, 3, with smooth boundary 99 and T < co.
Here A = A(z) is a symmetric and uniformly positive definite dispersion-diffusion
matrix in €2, the parameter b is the divergence free groundwater velocity and c is
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the constant reaction parameter and B (¢, s) an arbitrary second order linear partial
differential operator, A, B both with coefficients depending smoothly on x. The
nonhomogeneous term f = f (z,t) and ug(x) are known functions, which are assumed
to be smooth and satisfy certain compatibility conditions for x € Q and t = 0.
Problem (1.1) occurs in nonlocal reactive flows in porous media, viscoelasticity and
heat conduction through materials with memory.

The finite volume method is an important numerical tool for solving partial differ-
ential equations. It has been widely used in several engineering fields, such as fluid
mechanics, heat and mass transfer and petroleum engineering. The method can be
formulated in the finite difference framework or in the Petrov-Galerkin framework.
Usually, the former one is called finite volume method[3], MAC (marker and cell)
method [9] or cell-centered method[4], and the latter one is called finite volume ele-
ment method (FVE) [6, 12, 13, 14], covolume method[8] or vertex-centered method
[2, 10]. We refer to the monographs [15, 23] for the general presentation of these
methods. The most important property of the FVE method is that it can preserve
the conservation laws (mass, momentum, and heat flux) on each control volume. This
important property, combined with adequate accuracy and ease of implementation,
has attracted more people to do research in this field.

Recently Bahaj and Rachid [1] studied the FVE method for Self-Adjoint Parabolic
Integrodifferential Equations and have obtained an optimal-order estimate in the L?
and H' -norms. Ewing, Lin and Lin in [14] and Jianguo and Shitong in [17] elaborate
the FVE method for general self adjoint elliptic problems. Ma, Shu and Zho in [19]
presented and analyzed the semi-discrete and full discrete symmetric finite volume
schemes for a class of parabolic problems. In [12, 13] the authors have studied the
FVE method for one and two-dimensional parabolic integrodifferential equations and
have obtained an optimal-order estimate in the L?-norm. The regularity required on
the exact solution w is WP for p > 1 which is higher when compared that for finite
element methods.

The new contribution of this work is to extend the results from [1] to the finite
volume discretization for time-dependent convection-diffusion-reaction equations with
memory (1.1). Both spatially discrete scheme and discrete-in-time scheme are ana-
lyzed and optimal error estimates in L? and H' norms are proved using only energy
method. We also explore and generalize that idea to develop the lumped mass mod-
ification and WP estimates, 2 < p < oco. Our analysis avoid the use of semigroup
theory and the regularity requirement on the solution is the same as that of finite
element method. Further, based on the Crank-Nicolson method the fully discrete
scheme is analyzed and related optimal error estimates are established.

This paper is organized as follows. In section 2, we introduce some notations and
present some preliminary materials to be used later. The Ritz-Volterra projection to
finite volume element spaces is introduced and related estimates are carried out in
section 3. In section 4 we estimate the error of the finite volume element approxi-
mations derived in the previous section. In section 5 the lumped mass are presented
and optimal estimates in L? and H! norms are obtained Finally, The Crank-Nicolson
scheme is studied in section 6.
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2. FINITE VOLUME ELEMENT SCHEME

In this section, we introduce some material which will be used repeatedly below.
Throughout this paper, C' (with or without index) denotes a generic positive constant
which does not depend on the spatial and time discretization parameters h and k,
respectively.

2.1. Notations. We will use || - ||, and |- |, (vesp.|| - [|m,p and | - |m,p) to denote
the norm and semi-norm of the Sobolev space H™ () (resp.W™P(Q2)). The scalar
product and norm in L?(Q) are denoted by (-,-) and || - ||, respectively. Let Hg () be
the standard Sobolev subspace of H!(f2) of functions vanishing on 5.

The weak form of (1.1) is to find u (-, ¢) : [0,T] — H{ (Q), such that

(ug,v) + A (u,v) —l—/o B (t,s;u(s),v)ds = (f,v), Yve H)(Q), (2.1)
u (+,0) = ug,
where
A(u,v) = /(A (x) Vu.Vo — buVu + cuv) de,
Q
B (t,s;u(s),v) = /Q B (z,t,s) Vu(s).Vo dz.

Note that the bilinear form A (.,.) may not be coercive but it can be made coercive
by adding a sufficiently large constant A\ € R times the L?-inner product. That is, it
satisfies Garding’s type inequality

A0+ Al = S} Vv e H(@).

At

Introducing the transformation w = e™*"u as a new dependent variable, we rewrite

(1.1) as

U — V.(A(2) Va) + V. (ba) ——‘AIV(B(LtJ)Vﬂ@»ds

+ (A+oua=TF(xt),in Qx0T
(O) = Uup.

is given

gl

~—

The new bilinear form A (.,.

A (u,v) = / A(z,t) Vu.Vv — buVu + / (A ) uv dz.
Q Q

Let T}, be a decomposition of  into triangles (for the 2-D case) or tetrahedral (for
the 3-D case) with h = max hg, where hg is the diameter of the element K € Tp,.

In order to describe the FVEM for solving the problem (1.1), we shall introduce
a dual partition 7;" based upon the original partition 7, whose elements are called
control volumes. We construct the control volumes in the same way as in [13, 16].

(el
BE
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FIGURE 1. Left-hand side: A sample region with blue lines indicating
the corresponding control volume V.. Right-hand side: A triangle K
partitioned into three subregions K,

Let zx be a point of K € T,. In the 2-D case, on each edge e of K a point ¢, is
selected, then we connect zx with line segments to g.. Thus partitioning K into three
quadrilaterals K., z € Z,(K), where Z,(K) are the vertices of K. Then with each
vertex z € Zp = UkeT, Zn(K) we associate a control volume V,, which consists of the
union of the subregions K, sharing the vertex z. (see Figure 1)

Similarly, in 3-D case, on each two faces S7 and Sy of K sharing an edge e, a point
qs, is selected, then we connect gg, with an arbitrary point ¢. of e and with zx by
line segments. Thus partitioning K into twelve (12) tetrahedron K, z € Z,(K).
(see,Figure 2). Then for z € Z, the control volume V, consists of the union of the
subregions K., sharing the vertex z. Thus we finally obtain a group of control volumes
covering the domain €, which is called the dual partition 7,* of the triangulation 7p,.
We denote by Z,g the set of interior vertices and Nj, = #Z,?. For a vertex z; € Z}?,
let TI(7) be the index set of those vertices that, along with z;; are in some element of
T,. (Figure 2)

There are various ways to introduce a regular dual partition 7,". In this paper, we
shall also use the construction of the control volumes in which zx be the barycenter
of K € Tp. In the 2-D case, we choose ¢, to be the midpoint of the edge e (Figure 3).

In the 3-D case, we choose, g. to be the midpoint of the edge e and gg, to be the
medi center of the face S;(Figure 4).

We call the partition 7} regular or quasi-uniform, if there exists a positive C' > 0
such that

C™'h? < meas (V;) < Ch?, VV; € Ty.

(<)
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FIGURE 2. A tetrahedron K partitioned into twelve subregions K,

=

FIGURE 3. zf is the barycenter of K, ¢, to be the midpoint of the
edge e

The barycenter-type dual partition can be introduced for any finite element trian-
gulation T}, and leads to relatively simple calculations. Besides, if the finite element
triangulation T}, is quasi-uniform, i.e., there exists a positive C' > 0 such that

C~'h? < meas (K) < Ch?, VK €Ty,

then the dual partition 7} is also quasi-uniform.
Based on the triangulation T}, let S, be the standard conforming finite element
space of piecewise linear functions, defined on the triangulation T},

Sp={veC(N): v|y is linear VK € Tj,, and v| =0}.
Let I}, : C(2) — Sp, be the standard interpolation operators,
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FIGURE 4. ¢. is the midpoint of the edge e, ¢g, is the medi center of
the face S;

Ihu = Z v (t). (), Vv € Sh,

2€Z)

where {‘Pz}zezg are the standard nodal basis functions of S}, and v, (t) = v(t; 2).

2.2. Construction of the FVE scheme. We formulate the FVE for the problem
(1.1) as follows: Given a z € Z)) and K € Ty, integrating (1.1) over the associated

control volume V, and applying Green’s formula, we obtain an integral conservation
form

/Vzut/avz(A(x)Vubu).nds — /{)VZ/OtB(UU,t,S)VU.nds
+/V()\+C)u/vzf(:z:,t), (2.2)

where n denotes the unit outer normal vector to 0V.
Let I} : C (©2) — S} be the transfer operator defined by

ITv = Z v(2)xz, Y € S,
2€Z)
where
Sy = {v € L*(Q) : v;|v. is constant, Vz € Z}},

and x, is the characteristic function of the control volume V.

Now for ¢ > 0 and for an arbitrary I}v, we multiply (2.2) by v(z) and sum over all
z € Z) . Then the semi discrete FVE approximation uj, of (1.1) is a solution to the
(<)
EE
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problem: find uy, (t) € Sy, for ¢ > 0 such that

t
(upt,vn) + A (up, vg) +/ B (t,s;up (s),vp)ds = (fyon), wvn €S, (2.3)
0
Up, (0) = ugp, € Sh.
Here the bilinear forms A (¢;u,v) and B (¢, s;u, v) are defined by

A (u,v) =
—szfav z) Vu — bu) - nds—i—vzfv A+ ¢)u dz,
z€Z)
Jo A(z) Vu. Vodr bqu—i—fQ (A + ¢) wv dz, (u,v) € H} x H}

and
B (t,s;u,v) =
— Zovz faVZB (z,t,8) Vu.nds, (u,v) € ((H& N H2) U Sh) x S,
o fQB (z,t,8) Vu.Vodz, (u,v) € H& X H&,
Let
Uh = Zaz ¢-(z) , and ()= (a1 (t),az (1), .. an, (1)"

Then we can rewrite the scheme (2.3) as systems of ordinary differential equations
t
Mpo! (t) + Apa (t) + / By (t,8) a(s)ds = Fy, (1) . (2.4)
0

Here Fp, (t) = (f1 (t), f2 (1), ..., fn, (t))", the mass matrix M; = {Mp,,} ={(ei, x5)}
is tridiagonal and that both A, = {A (¢:,x;)} and By (t,s) = {B(t,s;¢:,X;)} are
positive definite.

In order to describe features of the bilinear forms defined in (2.3) we introduce
some discrete norms on Sj, in the same way as in [13],

2
lvnllo,n = (Vnsvn)o p = (Tpvn, Iyvn)

|vh|ih = Z Z meas (V;) (vp; — vhj)/dij)Q, with vp; = vp(z;)

ZiEZOI]‘GH(-)

2
= Jonllo +lonlin.  lloalll® = (vn, Lion)

where d;; = d (:ci, x;) is the distance between z; and ;. Obviously, these norms are
well defined for v, € S}, as well and |lvpl|g ;, = |[|val|]-
Below, we state the equivalence of discrete norms ||.[,, and |.[[; , with usual
norms ||.|| and ||.||;, respectively on Sj,.
B
BE
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Lemma 2.1 ([13]). There exist two positive constants Cy and C1 such that for all
vp € Sp, we have

Collonllon < llonll < Cullonllon, ¥ vn € S,
Colllvnlll < l[onll < Culfonlll, ¥ vn € Sh,
Collonlly s < llonlly < Crllonllyp, ¥ vn € She
Next, we recall some properties of the bilinear forms (see [13, 20]).

Lemma 2.2 ([13]). There exist two positive constants C' and Cy such that for all
Up, vy € Sy, we have

A (un, Iyon) < Cllunlly [Joally, V' un, vn € Sh,
A(Uh,fzvh) > Cy ||rUh||§a Y v, €8

The following Lemmas is proved in [4, 13], which gives the key feature of the
bilinear forms in the FVE method.

Lemma 2.3 ([4]). Assume that o € W', Then we have
Alpoon) = Al i) = Y [ (A(@) Vo= b)) (o — Lun) ds
oK

Kery,

- Z /K (V.(A (@) Vo —=bp) + (A4 ¢)p) (vp, — T;vp) ds, Yoy, € Sh.
Kery,

The above identity holds true when A (.,.) is replaced by B (t,s;.,.).

Introduce

€h(fvvh):(favh)_(fvl;;vh)7 v UhESh;

and

€a (un,vn) = A(up,vn) — Ap (un, Iyop) .V up, vy € Sh.
The bounds for €,,e4 can be given as follows

Lemma 2.4 ([5],pp 317). There exists positive constants C' independent of h,such
that for vy, € S,
len (fson)l < CRF | fll; llunlly, ¥V f € HY, 4,5 =0,1,

lea (Viou,vp)| < ChiHI (H“”z+1 + fot Hu||z+1) ||vh||j7 Vue HTMNHE, i,j=0,1

and
lea (un, o) < Ch lully lvnlly, YV vn € S

Lemma 2.5 ([4]). Assume that ¢ € Sy. Then we have
A, x) = Ale, Inx) < Chlply , x|y, -
Further for ¢ € Wol’p NW?2P, we have
A(p,x) = Alp, Ipx) < Chllgllyp, x4 -
(c]m)]
ga
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3. RITZ-VOLTERRA PROJECTION AND RELATED ESTIMATES
Following [7, 13], define the Ritz-Volterra projection Vj, (t) : Hi — S,
A (u— Vyu, Ifop)

/ B (t,s;u(s) = Vau(s),Lyvp)ds =0, t >0, Yoy, € S),. (3.1)

This V},(¢) is an elliptic projection with memory of « into Sj. It is easy to see that
(3.1) is actually a system of integral equations of Volterra type. In fact if V3 (¢t)u =

Np
> a; (t) @ (z) , then (3.1) can be rewritten as
j=1

Apa (t) + /Ot By (t,8) a(s)ds = Fy (t) (3.2)
where Ay, By (t,s) are matrices and «(t), Fp (t) are vectors, defined via
a(t) = (a1 (t), 0 (t),...an, )"
Fri (t) = A(u, x) + /Ot B (t,s;u(s), xx)ds, k=1,2,..,Np,

Ap = A(pr (z),x1) 5 By (t,s) = B(t,s;91 (), x1) -

From the positivity of A (Lemma 2.2) and the linearity of (3.2) we see that the
system (3.2) possesses a unique solution « (¢). Consequently V4 (¢t)u in (3.1) is well
defined.

Set p = u— Vj, (t) u. In [13] the following lemma was proved, which shows the H*
error estimate for p and its temporal derivative.

Lemma 3.1 ([13]). Assume that Du € L>®°(H} N H?) for all 0 < n < k, for some
integer k > 0.Then for T > 0 fized there is a constant C = C(T; k) > 0, independent
of h and u, such that for all0 <n <k and 0 <t <T,

t
lo ()], < Ch (||u||2 + / ||u||2ds) ,

n t
o0l < 0n (3 il + [ 1oty a).
=0

Now we establish L? error estimate for p and its temporal derivative which im-
proves the Theorem 2.2 in [13]. This estimate is optimal with respect to the order of
convergence and the regularity of the solution.

and

Lemma 3.2. Assume that f € H™Y(Q) and for some integer k > 0, D'y €

L>®(HE N H?) for all0 < n < k. Then for fized T > 0, there is a constant C =
(el
BE
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C(f;T;k) > 0, independent of h and u, such that for all0 <n <k and 0 <t <T,

t
lp (1)l < Ch? <||f||1 + lluelly + [lully +/O [l dS)

and
n+1

n n t
oo < 0 (321l + 3 ot + 3 il + 1ot
=0 =0 1=0
n n t
< ot (S otsl, = orehl + 321l [ ).
=0

=0

Proof. The proof will proceed by duality argument. Let ¢ € H? () N Hg () be the
solution of

A*p=p inQ
=0 on0f.
The solution ¢ € H? (2) N Hg () satisfies the following regularity estimate

¥l < Cllpll- (3:3)

Recalling the Ritz projection, [7, 13], R, : Hi N H? — S}, associated with a bilinear
form A (.,.); that is,

A(Rpu — u,vp) =0, vp, € Sh.
Multiplying equation 3.3 by p and then taking L? inner-product over €2, we obtain
ol = A(p, ) = A(p, ) — Rutp) + A(p, Ratp — Ij; (Rn))

t t

7/ B(t,s;p<s>,f,tRh¢wa>dsf/ B(t,s:p(s), Rt — ) ds
0 0
t

—/ B(t,s;p(s),¢)ds=]1+IQ+13+I4+I5.
0

We have
t
L]+ ] < CR? (|u||2 «/ ||u||2ds) e

Applying lemma 2.4, we obtain

t
Alp, Rt — It (Ri)) — / B (t,5:p(s), I; Rtp — Ryb) ds

t
Au, Rup — T (Ruth)) + / B(t,siu(s), Ruto — I} Ru) ds

t
—A (th, Rh'l/) - I;; (Rh’L/))) + / B (t, S th (8) 5 I;Rhw - Rh’L/)) ds
0

t
(f —us, Rptp — I, (Rp))) — €a (Viu, Rpap) + / €B(t,s5.,.) (Vhu(s), Rpa) ds
0

=
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t
|12 + Is] < OB <f||1 + lJully + [lully +/0 [l dS) 11l -

Finally, we have

15| < / (p(s),B" () ) ds < C (/ ||p||ds) ol

then we have

t t
ol < Cn? <||f1+||ut||1+IIUI2+ / |u||2ds)+0( / ||p||ds).

Finally, an application of Gronwall’s lemma yields the first estimate.
The second inequality follows in a similar fashion. O

Lemma 3.3. There exists a constant C' independent of h such that

t
lolly, < Ch? (lulllp +/O ull,,, ds) .

Proof. Let p, be an arbitrary component of Vp with pand gconjugate indices, we
have

lpall, = sup { (b2, )39 € C ().l = 1}
For any such ¢, let ¥ be the solution of
A" ($,v) = = (pz,v) Ve Hy (Q),
P =0 on 0f.
It follows from the regularity theory for the elliptic problem that

101114 < Crllell, = Gy
We then have by application of (3.1) that

(pz, ) = A(p, ) = A(p, v — Rp)) + A(p, Rptp — Ij;, (Rpt)))
t
+ [ Btsin(s) 1 (Ruo) ds
0
=1+ I>+ I,

A(p, o — Bnp) = A(Rpu —u,¥) = = (Rhu —u),, ) < Chllull,,, .
Applying lemma 4, we have

Iy = A(u, Ry — I, (Rpy)) — A (Viu, Rptp — Iy (Rpt))) < Chllull,,, -
Finally, I3 is estimated as

t t
I = / B(t.s:p(s) . I} (Rnib)) ds < C, / lolly, ds.
0 0

Combining these estimates we get

t
lolly, < Chllul,, +Cp / loll,, ds
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whence by Grénwall’s lemma

t
lolly, < Ch (IIuQ,p +/O ull,,, ds> .

4. ERROR ESTIMATES FOR SEMI-DISCRETE APPROXIMATIONS
We split the error e(t) = u(t) — up(t) as follows
e(t) = (u(t) — Vau(t)) + (Vhu(t) — un(t)) = p + 0.
It is easy to see that 6 = Viyu(t) — up(t) € Sp, satisfies an error equation of the form
(0, Iron) + A6, Ion) + /t B (t,s;0(s), Ipvn) ds = — (pe, Iyvn) s v € S
’ (4.1)

Since the estimates of p are already known, it is enough to have estimates for 6.
We shall prove a sequence of lemmas which lead to the following result.

Lemma 4.1. There is a positive constant C' independent of h such that

HCAGII|S C(Il9(0)|ll2+/o HptdS)'

Proof. Since 6 € Sp,, we may take v, =6 in (4.1) to obtain

1d ¢
10O+ cllof < llpel ||9H+C/ 0[], ds (|61l

1 t
<lpll10]+ 5elol? +C [ 1ol ds

and hence by integration, we have

t t t s
10 OI7+ [ 01T ds < C (0O + [ el 10 ds + 16 (713 drds ) .
0 0 0 JO

Gronwall’s lemma now implies

t t
\|\9(t)|||2+/0 |9||fd«9SC(IIIF)(O)IIIQ+/0 ira ||9||d8>

1 ‘ 2
<O|MMW+2me@P+(/nme.
s<t 0

Since this holds for all ¢, we may conclude that

wwnsc@W@H+AanQ.

(<)
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Lemma 4.2. There is a positive constant C' independent of h such that

t t
Anwﬁw+wﬁchW@ﬁ+A|mﬁw)

Proof. Set vy, =0, in (4.1) to get

1d i
\me+2dAwaw=—@ummwi/B@»w@»m@u»w
0

[A (9t,fh9) A0, 1,0:)]

\)—l[\.’)\)—‘

=
<5 leell® + IH oI

+ 5 [A (0, 1,0) — A0, 1;,0,)]

N | =

_% B(t,s;0(s), 110 (1)) ds
+B(t,1:0(t),1;0 (1)

+ /0 By (t,s;0(s),I50(t))ds.

d d [?
1607 + 54O 1i6) < ol =25 [ B(t.5:0(5). 1i6) ds
0
t
+cowﬁ+énwgﬁ@)

+[A(6:,1;0) — A0, I;0:)] .

In addition, recall that
A (un, Invn) — A(vn, Iun) < Chfluslly lonlly ;¥ un, va € Sh,

then applying an inverse inequality and using kickback argument, we obtain

[A (0, 1;,0) — A (0, 1;0,)] < Ch|6:|, 16, < C 1641111l
<c)6:)* + Cllel-

Combining these estimates, we derive

d
||9t||2+£A(9,Ih ) < llpell® — 2= /B t,5;0(s), ;) ds

+cQw%+A|m@ﬁm)
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So after integration in time and using the weak coercivity of A (0, I;0) we get
! 2 2 2 ! 2
/0 166117 ds + o 101y < co[l€ (0)I]Y +/0 lp:l|” ds
t t
_2/ B(t,s;G(s),I;:H)ds—i—C/ 16 (s)|| ds
0 0

c t
< calBO)F+ 5 161+ € ([ ol + 10 1 a5

and by Gronwall’s lemma,

t t
/0 16,12 ds+c||e||§§c(||a<o>||?+ / pt||2ds).
]

Theorem 4.3. ([1])/Error estimates in L? and H'-norms | Let u, uy, be the solutions
of (2.2) and (2.4) respectively. Assume that u € L= (H} N H?), u; € L= (H?).

(a) Let ugp be chosen so that |lugn — uol| < Ch?||uoll, and assume that uy €
L>®(HY) and f, fy € L>°(H"Y). Then for fived T > 0, there is a constant C = C (T)
independent of h, such that for all 0 <t < T,

t
lur, () = u ()] < Ch? (If Oy + lluolly + lluelly +/O 1Felly 4 lluelly + [l dS)

(b) Let uop, be chosen so that ||uon — uoll; < Ch||ugll,. Then for fized T > 0, there
is a constant C' = C (T) independent of h, such that for all 0 <t < T,

[un (8) —u ()], < Ch (IIUoIIQ +/0 [l d5> :

Now, we prove the error estimate for FVE approximation in W'P-norm.

Theorem 4.4. Letu, up, be the solution of (2.2) and (2.4), respectively. Assume that
u,uy € L®(HE NW?2P). In addition, for dimension d = 2, we have for h sufficiently
small

t
lu— unlly , < Ch <||U0|2 +lull, + | ||ut||2ds) .
0

Proof. Given ¢ € C§° (2), find ¥ € Hi () such that
A =—p, inQ
=0 on 012,

and

[9ll1,q < llelloq -
(c]m)]
ga
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We have

((U - uh)w aSD) = A(U' - Uha¢) = A(u - Uhﬂ? - Rhw)
+ A(u—up, Ry — I Rpp)

/B t,s;(u—wup)(s), I} Rpy) ds

= ((w—un)y, Iy Rno)
=L+1L+ I3+ 1.
L] < [A(u — Rpu, ¥)| < Cllu — Rpully, 4],
By lemma 2.1, p.468 in [11]

1] < A(u—wn, R — i Rut)) < Ch (Ju—unly, +luly, ) |

1q S Chllullg, 191, -

l,g°

t
L) < / lu = unlly, ds 91,

t
Ll < (lu = un) 1] < C? (IIUOIIQ +/0 [l d8> 101114

where we have used the fact ||| <[4, . ,r > 1. Combining these estimates we get

t
((u = un), )| < Ch <||U0||2 + llully,, +/O [l d8> 191145

((u—un), , )

I(u—=un)ylly, = sup
v 1l

< Chlu=unl, +Cn (Jual, + o

t
ot |ut||2ds) |

Hence using the Poincaré inequality, we have for h sufficiently small

t
lu = unlly, < Ch <||Uo|2 + llully, +/O el d5> :
O

We compare the relationship between covolume solution and the Galerkin finite
element solution.

Corollary 4.5. Let uy, be the finite element solution to (2.2), i.e

Gines o) + A (iin, o) +/ B(t,s:7in (5), o) ds = (f,vn),on € Sny (4.2)
0

up (0) = Rpup.
Suppose that d = 2. Then for sufficiently small h > 0, one may conclude
c hllw = unlly p, + [ (w =), |+ | (@ — ), ||
+ Jo (I =) (), + lw =) ()]],) d
C (u) h.

[(@n —uwn)lly, <

IN

C
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Proof. By (2.2) and (4.2),

t
((ap, —u),, vn)+A (up — u, vh)—l—/ B (t,s;(up —u)(s),vn)ds =0, v € Sp.
0

Consider the following auxiliary problem. For any such ¢, let 1 be the solution of

A*p=—p, in§

Y =0 on 09,
with
¥l < llello
((@n, —un), o) = A(Un — up, )
= A(up — un, — Rptp) + A (u — up, Rpa))
A(u Uh,Ithw) ((u—uh)t,Ithd))

SN

/ B (t,s;(u—up) (s), I Rpyp) ds + A (up — u, Rptp)
0

= [A(u—un, Rpt)) — A (u — un, [ Rp))]
— ((u—un), , I Rpp) — ((Un — u), , Rptp)

B (t,s; (u—wup) (s), I} Rpab) ds
t

B (t,s; (un —u) (s), Rpy) ds
=1 + Ir + Is.

SN

S— —

On the other hand,
(1] < Chflu—unlly , 141,
(2] < C ([(w = un),ll + [[(@n — w), ) 4]
< C(I(w = un)ll + [[(@n = w), D 11l 4

where we have used the fact ||| < |||, ,., 7 >1

1< [ (=) @)+ D= ) 0l,) ds

- ((un —un), @)
| (n — un),| = sup ——————"——
eh0p peCse ”90”0,(1

B e P O R [N
+ Jy (I =) (), + =) ()], ) s

We deduce the result from the known finite element estimates. O

(<)
EE

IN
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Remark 4.6. In order to estimate ||(u — uy),||, by differentiating (4.1) with respect
to t we obtain

t
(Oee, Iivp) + A (0, Iyvp) + B (t,t;0,Ivy)  + / By (t,s;0(s), Irvn)ds
0

= —(put, Ihvn) -
Setting v, = 6;, we obtain
1d
2 dt
1 2 2 b
< llpeel 16ell + e llOelly + C 10N + ; 60117 ds

2 2
I[16¢]]] +C||9t||1

1 2 K 2
< llpeell 19ell + e l16elly + C/O 1017 ds.

Using kickback argument, integrating and applying Gronwall’s lemma, we deduce

t
16, < ¢ (net O+ [ ol ds) |

5. THE LUMPED MASS FINITE VOLUME ELEMENT METHOD

In this section, we restrict our study to the case 2-D. A simple way to define the
lumped mass scheme is to replace the mass matrix M}, in (2.5) by the diagonal matrix
_ _ Np
M, obtained by taking for its diagonal elements the numbers M,;; = > Mjy;;, or by

j=1
lumping all masses in one row into the diagonal entry. This makes the inversion of
the matrix in front of o’ (t) a triviality.

We shall thus study the matrix problem

Mpd (t) —l—Aha(t)—l—/Ot By (t,s)a(s)ds = Fy (). (5.1)

We know that the lumped mass method defined by (5.1) above is equivalent to

t

(Iiupg, Livg) + Aup, Ifvp) —|—/ B (t,s;up (s), Iyop)ds = (f, Iyvp) , vn € Sh.
0

(5.2)

Our alternative interpretation of this procedure will be to think of (5.1) as being
obtained by evaluating the first term in (5.2) by numerical quadrature. Let K be a
triangle of the triangulation T, let x;,5 = 1,2,3, be its vertices, and consider the
quadrature formula

1 3
QK,h(f):§area Kj;f(xj):/Kf dx.
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We may then define the associated bilinear form in S5, x S}, using the quadrature
scheme, by

(O mn), = Y Qrn (vnmn)

KeTy,

— Z vp (x3) 0 (x4) ‘Vzi

:L’iGN}?

,V’Uh S Sh, Nh € S;

We note that ||vh||i = (vn, Ijvp), is a norm in Sy which is equivalent with the
L2 —norm uniformly in h, i.e there exist two positive constants C; and C5 such that
for all vy, € Sy, we have

Co llvnll < |lonll,, < Ct ||l V o € Sh.

We note that the above definition (v, 75 ), may be used also for 7, € Sy, and that
(n,wn), = (vn, Lwy), for vy, wy € Sh.
The lumped mass method defined by (5.2) above is equivalent to

(wnt, Inyvn),+A(un, I,”;vh)—i—/t B (t, s;up (s), Irvp) ds = (f, Ifvp) , vp, € Sh.
’ (5.3)
We introduce the quadrature error
en (Vn, wn) = (vn, wn)y, = (Vn, wh),
Lemma 5.1 ([22]). Let vp,wy, € Sy. Then
len (vn, wn)| < Ch? ||Vl [V -

Theorem 5.2. Let up, and u be the solutions of (5.3) and (2.2) respectively, Assume
that uw € L (H} N H?), uy € L®°(H?),uy € L>®°(H'), f, fr € L®(H') and uy, (0) =
Rpug. Then we have for the error in the lumped mass semi discrete method, fort > 0,

t
lur, (8) = u ()] < Ch? (/0 I A [1Felly + llelly A+ Nwelly A+ lweell,) d8> '

Proof. In order to estimate ||0], we write
(04, Iyvn), + A (0, Invs) + /Ot B (t,s;0(s),Ijvy) ds
= (unt, I vn)y, + A (un, Iyvp) + /Ot B (t, s;up (s), Irvp) ds
— ((Vau)y, Iyon),, — A (Vyu, Iyvp) — /Ot B (t,s;Vau(s), Ijvp) ds

= (f’ I;’Uh) - ((th)t ’I;;’Uh)h - A (U,I;:’Uh) - /O B (t7 S;U (S) ’I;;’Uh)

= (ug, Iyvn) — (Vaw),, Iyon),
= —(pt, Ihvn) — (Vau),  Lyon), + (Vaw),  Lon) -

(<)
EE
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We rewrite

(Viu)y . Invn)y, = (Vi) s Ivn) = (Vau), s Iyon), — (Vi) s vn)
+ ((Vaw), ,vn) — (Vaw), , Iyvn)
=en ((Vau)y,vn) + ((Vhu), ,vn)
= ((Vau), s Ihvn) -

t
(00, Tivn), + A (0, Ivn) +/ B(t,5:0(s), [vn) ds (5.4)
0
= —(p, Lyon) + en (Vauw), ,vn) + (Viw), s on) — (Vaw), , I5on) - (5.4)
Setting vy, = 0 in (5.4), we obtain
S 012 + co 012

ﬂmmw+iwwﬁ+CAwew8

+en (Vhu), ,0) + (Vau), ,0) — (Vau), , I1,0) .
And, using lemma 10 and the inverse estimate, we get

len (Vaw), , 0)] < CR? |V (Vau), |l |V

< CR? (lpelly + Iluell) 1V
< Ch(llpelly + lluelly) 161l

we have
[(Vau),,0) — (Vaw)y  1,0)] < Ch([lpelly + lluelly) [160]] -

Using Young’s inequality and Grénwall lemma to eliminate ||#||; on the right hand
side it becomes

1d
2 NOln +cliolly < llpell 101 + Ch(llpelly + lluell,) 1611
Using Young’s inequality to eliminate ||f|| on the right hand side it becomes.
Using integration in ¢, we get the result. 0

We will now show that the H! —norm error bound of theorem remains valid for the
Lumped mass method (5.3).

Theorem 5.3. Let up, and u be the solutions of (5.3) and (2.2), respectively, under
the assumptions of theorem and assume

up, (0) = Rpuo, [urn (0) — wr || < Ch? |luqll, -

Then we have for the error in the lumped mass semi discrete method, for t > 0,
t

l[un (t) —u ()], < Ch (IIUollg + [Juall +/ Al A W felly + Nlweells d5> -
0

(el
BE
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Proof. Setting v, = 6, in(5.4) we obtain

, 1d .
110113, + 5%14(971;19)
1
— LA 1i0) - AG.5i6,)
B(t,t:0(t /BttSQ JIH0 (1)) ds
d t

i | B0 50 0) ds — (o0, 1)
—en (Vi) . 00) + (Viw),0) — ((Viw)o, I36)

It follows thus that and using integration in ¢t and Gronwall lemma, we have

t t
/O||et||i+||0||§ < c\|ve<o>u2+c/0 loel® + 1162 + 11611 s
+Ch (lpel, + luelly) 6]
This completes the proof. O

6. FuLL DISCRETIZATION

Let OU™ = (U" - U”_l) /k be the backward difference quotient of U™, assume that
Ay, = Py A is a discrete analogue of A (similarly By, = P, B), where Py, : L? () — S;
the L? projection defined by

(Pyv, Iivg) = (v, Ifop), veL*(Q), v, €Sy

In order to define fully-discrete approximation of (2.3), we discretize the time by
taking t, = nk, k > 0, n=1,2,... and use numerical quadrature

tn—l 1
/ dsan kg (t_1/2) .t n—t = (n— 2) k.
0

k—1

Here {wn 1} are the integration weights and we assume that the following error
estimate is valid

t _1 tn
o= [ () ds > g (t11/2) <o [ g+l ds

k=1

Now define our complete discrete finite volume element approximation of (2.3) by:
Find U™ € Sy, for n = 1,2, .., such that for all vy, € S},

(BU™, Tiv,) + A (Un—%J;;vh) + warB (tn,%,tk,% k12, I;tvh)
k=1
(6.1)

= (4 5ion), U es,
where U2 = (Um+unt) /2.

(<)
EE
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Theorem 6.1. Let u(t) and U™ be the solutions of problem (2.2) and its complete
discrete scheme (6.1) respectively. Then for any T > 0 there exists a positive constant
C =C(T) > 0, independent of h, such that for 0 <t, <T

tn
(ta) — U™ < CR2 <||Uo|2 s [l ds)

tn
08 ([ A+l + ol + ol + ) )

Proof. Let us split the error into two parts: w(t,) — U™ = p™ + 6", where p" =
u(tn) — Vhu(ty,) and 6" = Vyu (t,) — U™ and let W = Vju(t) € Sp be the Ritz-
Volterra projection of w«. Then from (2.2) and (6.1) we have for all v, € Sy,

n
(@6, Lion) + A (0" L) + Y wniB (fae g b1y, 05712 i)

k=1
(6.2)
= — (rp, Ijvp) ,vn € Sh

where

T =T 1 T T
and

ry = 9p",

r2 = Ou (t,) — u (tn_%> ,

ri = A((lta) +u(ta-1) /2= u (g ) Tion)

rn =q" (ByW)

= Y Wn.k B (tn_%,tk_l/g,Wk’l/z,l;:vh>
k=1

[N

t,_
7/ B (tn,s, W (s),I}vp)ds.
0

In fact, by Taylor expansion,

tnt1
u"t = u™ k' (t,) + / u” (8) (tny1 — s) ds
tn
k2 kS
="+ ku' (t,) + 316” (tn) + EU(?’) (tn)
A
+ 5/ ul® (5) (tns1 — 5)° ds
t

n

we have

_ 1 [in B2 [tn
el =10l < 5 [ Noelids < B [ Ul + ol ds
tn—1 th—1

n
(el
BE
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= e . o)

1 /ttnl(ut(s) — (tn,%))ds

k

ul® (S)H ds

tn
<c [
tn—l

(205 () )

and

tn

tn
< C’k/ [[Auss (8)]| ds < Ck/ lwee |l ds.

tn—1 tn—1

In addition, the quadrature error satisfies

74| = ¢~ % (BLW)
= an,kB (trF%’t’“—l/27 Wk_1/2’Ith>
k=1
tn—l
_/ * B(tn,s,W (s), I;vp) ds
0
tn
< CR? / I(BaW), | ds
0

tn
<cn? / ully + lfuelly + ueelly) ds.

N tn
B lrall < O [ s
0

n=1
tn
08 [ (fully + el + el + [u]) ds.
0
Taking vs, = 6"~1/2 in (6.2) and noting that (96", I;0"~1/2) = %5|H9"|||2 there is

611 = 11"~ |I” + 2k |

o i
k=1

2 n 2
o=l + ex s o]+ k]
ot Z;: +Ch|rm]

en_mm?
1

0" 12|+ Ch |

-

< ke

enfl/QH )

Summing from n = 1 to N, and then, after cancelling the common factor and using
Gronwall lemma, we obtain

VI < € 0N + k3 Il (0] + 7))
k=1

(<)
EE
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and then

N
110711 < C6°l[] + xS lirall-

n=1

The theorem follows from the estimates of p™ and r™. O

7. CONCLUSION

In this work, our main aim is to construct and analyze the FVE scheme for solv-
ing for convection-diffusion-reaction equations with memory by using the transfer
operator. We give the detailed construction for the semi-discrete, modified lumped
mass, and fully discrete schemes. For the spatially discrete and modified lumped
mass schemes, we obtain optimal order error estimates in L2, H', and WP norms
for 2 < p < oo. Based on the Crank-Nicolson method, a fully discrete scheme is
discussed, and related error estimates are derived.
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