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1. Introduction

The main purpose of this paper is to study semi-discrete and full-discrete finite vol-
ume element method (FVE) for convection-diffusion-reaction equations with memory
of the form

ut −∇.(A (x)∇u) +∇. (bu) + cu−
∫ t

0

∇.(B (x, t, s)∇u(s))ds

= f (x, t) , in Ω× (0, T ], (1.1){
u = 0, on ∂Ω× (0, T ],
u (·, 0) = u0, in Ω,

where Ω is a bounded domain in Rd, d = 2, 3, with smooth boundary ∂Ω and T <∞.
Here A = A (x) is a symmetric and uniformly positive definite dispersion-diffusion
matrix in Ω, the parameter b is the divergence free groundwater velocity and c is
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the constant reaction parameter and B (t, s) an arbitrary second order linear partial
differential operator, A, B both with coefficients depending smoothly on x. The
nonhomogeneous term f = f (x, t) and u0(x) are known functions, which are assumed
to be smooth and satisfy certain compatibility conditions for x ∈ Ω and t = 0.
Problem (1.1) occurs in nonlocal reactive flows in porous media, viscoelasticity and
heat conduction through materials with memory.

The finite volume method is an important numerical tool for solving partial differ-
ential equations. It has been widely used in several engineering fields, such as fluid
mechanics, heat and mass transfer and petroleum engineering. The method can be
formulated in the finite difference framework or in the Petrov-Galerkin framework.
Usually, the former one is called finite volume method[3], MAC (marker and cell)
method [9] or cell-centered method[4], and the latter one is called finite volume ele-
ment method (FVE) [6, 12, 13, 14], covolume method[8] or vertex-centered method
[2, 10]. We refer to the monographs [15, 23] for the general presentation of these
methods. The most important property of the FVE method is that it can preserve
the conservation laws (mass, momentum, and heat flux) on each control volume. This
important property, combined with adequate accuracy and ease of implementation,
has attracted more people to do research in this field.

Recently Bahaj and Rachid [1] studied the FVE method for Self-Adjoint Parabolic
Integrodifferential Equations and have obtained an optimal-order estimate in the L2

and H1 -norms. Ewing, Lin and Lin in [14] and Jianguo and Shitong in [17] elaborate
the FVE method for general self adjoint elliptic problems. Ma, Shu and Zho in [19]
presented and analyzed the semi-discrete and full discrete symmetric finite volume
schemes for a class of parabolic problems. In [12, 13] the authors have studied the
FVE method for one and two-dimensional parabolic integrodifferential equations and
have obtained an optimal-order estimate in the L2-norm. The regularity required on
the exact solution u is W 3,p for p > 1 which is higher when compared that for finite
element methods.

The new contribution of this work is to extend the results from [1] to the finite
volume discretization for time-dependent convection-diffusion-reaction equations with
memory (1.1). Both spatially discrete scheme and discrete-in-time scheme are ana-
lyzed and optimal error estimates in L2 and H1 norms are proved using only energy
method. We also explore and generalize that idea to develop the lumped mass mod-
ification and W 1,p estimates, 2 ≤ p < ∞. Our analysis avoid the use of semigroup
theory and the regularity requirement on the solution is the same as that of finite
element method. Further, based on the Crank-Nicolson method the fully discrete
scheme is analyzed and related optimal error estimates are established.

This paper is organized as follows. In section 2, we introduce some notations and
present some preliminary materials to be used later. The Ritz-Volterra projection to
finite volume element spaces is introduced and related estimates are carried out in
section 3. In section 4 we estimate the error of the finite volume element approxi-
mations derived in the previous section. In section 5 the lumped mass are presented
and optimal estimates in L2 and H1 norms are obtained Finally, The Crank-Nicolson
scheme is studied in section 6.
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2. Finite volume element scheme

In this section, we introduce some material which will be used repeatedly below.
Throughout this paper, C (with or without index) denotes a generic positive constant
which does not depend on the spatial and time discretization parameters h and k,
respectively.

2.1. Notations. We will use ∥ · ∥m and | · |m (resp.∥ · ∥m,p and | · |m,p) to denote
the norm and semi-norm of the Sobolev space Hm(Ω) (resp.Wm,p(Ω)). The scalar
product and norm in L2(Ω) are denoted by (·, ·) and ∥ · ∥, respectively. Let H1

0 (Ω) be
the standard Sobolev subspace of H1(Ω) of functions vanishing on ∂Ω.

The weak form of (1.1) is to find u (·, t) : [0, T ] → H1
0 (Ω) , such that

(ut, v) +A (u, v) +

∫ t

0

B (t, s;u (s) , v) ds = (f, v) , ∀v ∈ H1
0 (Ω) , (2.1)

u (·, 0) = u0,

where

A (u, v) =

∫
Ω

(A (x)∇u.∇v − bu∇v + cuv) dx,

B (t, s;u (s) , v) =

∫
Ω

B (x, t, s)∇u (s) .∇v dx.

Note that the bilinear form A (., .) may not be coercive but it can be made coercive
by adding a sufficiently large constant λ ∈ R times the L2-inner product. That is, it
satisfies Gärding’s type inequality

A (v, v) + λ ∥v∥2 ≥ α

2
∥v∥21 ∀ v ∈ H1

0 (Ω).

Introducing the transformation u = e−λtu as a new dependent variable, we rewrite
(1.1) as

ut −∇.(A (x)∇u) +∇. (bu) −
∫ t

0

∇. (B (x, t, s)∇u(s)) ds

+ (λ+ c)u = f (x, t) , in Ω× (0, T ],

u (0) = u0.

The new bilinear form A (., .) is given

A (u, v) =

∫
Ω

A (x, t)∇u.∇v − bu∇v +
∫
Ω

(λ+ c)uv dx.

Let Th be a decomposition of Ω into triangles (for the 2-D case) or tetrahedral (for
the 3-D case) with h = maxhK , where hK is the diameter of the element K ∈ Th.

In order to describe the FVEM for solving the problem (1.1), we shall introduce
a dual partition T ∗

h based upon the original partition Th whose elements are called
control volumes. We construct the control volumes in the same way as in [13, 16].
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Figure 1. Left-hand side: A sample region with blue lines indicating
the corresponding control volume Vz. Right-hand side: A triangle K
partitioned into three subregions Kz

Let zK be a point of K ∈ Th. In the 2-D case, on each edge e of K a point qe is
selected, then we connect zK with line segments to qe. Thus partitioning K into three
quadrilaterals Kz, z ∈ Zh(K), where Zh(K) are the vertices of K. Then with each
vertex z ∈ Zh = ∪K∈Th

Zh(K) we associate a control volume Vz, which consists of the
union of the subregions Kz, sharing the vertex z. (see Figure 1)

Similarly, in 3-D case, on each two faces S1 and S2 of K sharing an edge e, a point
qSi is selected, then we connect qSi with an arbitrary point qe of e and with zK by
line segments. Thus partitioning K into twelve (12) tetrahedron Kz, z ∈ Zh(K).
(see,Figure 2). Then for z ∈ Zh, the control volume Vz consists of the union of the
subregionsKz, sharing the vertex z. Thus we finally obtain a group of control volumes
covering the domain Ω, which is called the dual partition T ∗

h of the triangulation Th.
We denote by Z0

h the set of interior vertices and Nh = #Z0
h. For a vertex zi ∈ Z0

h,
let Π(i) be the index set of those vertices that, along with zi; are in some element of
Th. (Figure 2)

There are various ways to introduce a regular dual partition T ∗
h . In this paper, we

shall also use the construction of the control volumes in which zK be the barycenter
of K ∈ Th. In the 2-D case, we choose qe to be the midpoint of the edge e (Figure 3).

In the 3-D case, we choose, qe to be the midpoint of the edge e and qSi to be the
medi center of the face Si(Figure 4).

We call the partition T ∗
h regular or quasi-uniform, if there exists a positive C > 0

such that

C−1h2 ≤ meas (Vi) ≤ Ch2, ∀Vi ∈ T ∗
h .
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Figure 2. A tetrahedron K partitioned into twelve subregions Kz

Figure 3. zK is the barycenter of K, qe to be the midpoint of the
edge e

The barycenter-type dual partition can be introduced for any finite element trian-
gulation Th and leads to relatively simple calculations. Besides, if the finite element
triangulation Th is quasi-uniform, i.e., there exists a positive C > 0 such that

C−1h2 ≤ meas (K) ≤ Ch2, ∀K ∈ Th,

then the dual partition T ∗
h is also quasi-uniform.

Based on the triangulation Th, let Sh be the standard conforming finite element
space of piecewise linear functions, defined on the triangulation Th,

Sh = {v ∈ C (Ω) : v|K is linear ∀K ∈ Th, and v|Γ = 0} .

Let Ih : C (Ω) → Sh be the standard interpolation operators,



982 A. RACHID, M. BAHAJ, AND R. FAKHAR

Figure 4. qe is the midpoint of the edge e, qSi is the medi center of
the face Si

Ihu =
∑
z∈Z0

h

vz(t)φz (x) , ∀v ∈ Sh,

where {φz}z∈Z0
h
are the standard nodal basis functions of Sh and vz(t) = v(t; z).

2.2. Construction of the FVE scheme. We formulate the FVE for the problem
(1.1) as follows: Given a z ∈ Z0

h and K ∈ Th, integrating (1.1) over the associated
control volume Vz and applying Green’s formula, we obtain an integral conservation
form

∫
Vz

ut −
∫
∂Vz

(A (x)∇u− bu) .nds −
∫
∂Vz

∫ t

0

B (x, t, s)∇u.nds

+

∫
Vz

(λ+ c)u =

∫
Vz

f (x, t) , (2.2)

where n denotes the unit outer normal vector to ∂Vz.
Let I∗h : C (Ω) → S∗

h be the transfer operator defined by

I∗hv =
∑
z∈Z0

h

v(z)χz, ∀v ∈ Sh,

where

S∗
h = {v ∈ L2(Ω) : vi|Vz is constant, ∀z ∈ Z0

h},

and χz is the characteristic function of the control volume Vz.
Now for t > 0 and for an arbitrary I∗hv, we multiply (2.2) by v(z) and sum over all

z ∈ Z0
h . Then the semi discrete FVE approximation uh of (1.1) is a solution to the
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problem: find uh (t) ∈ Sh for t > 0 such that

(uht, vh) +A (uh, vh) +

∫ t

0

B (t, s;uh (s) , vh) ds = (f, vh) , vh ∈ S∗
h, (2.3)

uh (0) = u0h ∈ Sh.

Here the bilinear forms A (t;u, v) and B (t, s;u, v) are defined by

A (u, v) =
−
∑

z∈Z0
h

vz
∫
∂V z

(A (x)∇u− bu) · nds+ vz
∫
V z

(λ+ c)u dx,

(u, v) ∈
((
H1

0 ∩H2
)
∪ Sh

)
× S∗

h∫
Ω
A (x)∇u.∇vdx− bu∇v +

∫
Ω
(λ+ c)uv dx, (u, v) ∈ H1

0 ×H1
0

and

B (t, s;u, v) = −
∑

z∈Z0
h

vz
∫
∂V z

B (x, t, s)∇u.nds, (u, v) ∈
((
H1

0 ∩H2
)
∪ Sh

)
× S∗

h,∫
Ω
B (x, t, s)∇u.∇vdx, (u, v) ∈ H1

0 ×H1
0 .

Let

uh =

Nh∑
j=1

αz (t)φz (x) , and α (t) = (α1 (t) , α2 (t) , ..., αNh
(t))

T
.

Then we can rewrite the scheme (2.3) as systems of ordinary differential equations

Mhα
′ (t) +Ahα (t) +

∫ t

0

Bh (t, s)α (s) ds = Fh (t) . (2.4)

Here Fh (t) = (f1 (t) , f2 (t) , ..., fNh
(t))

T
, the mass matrixMh =

{
Mhij

}
= {(φi, χj)}

is tridiagonal and that both Ah = {A (φi, χj)} and Bh (t, s) = {B (t, s;φi, χj)} are
positive definite.

In order to describe features of the bilinear forms defined in (2.3) we introduce
some discrete norms on Sh in the same way as in [13],

∥vh∥20,h = (vh, vh)0,h = (I∗hvh, I
∗
hvh) ,

|vh|21,h =
∑

xi∈Z0
h

∑
xj∈Π(i)

meas (Vi) ((vhi − vhj)/dij)
2
, with vhi = vh(xi)

∥vh∥21,h = ∥vh∥20,h + |vh|21,h , |||vh|||2 = (vh, I
∗
hvh) ,

where dij = d (xi, xj) is the distance between xi and xj . Obviously, these norms are
well defined for vh ∈ S∗

h as well and ∥vh∥0,h = |||vh||| .
Below, we state the equivalence of discrete norms ∥.∥0,h and ∥.∥1,h with usual

norms ∥.∥ and ∥.∥1, respectively on Sh.
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Lemma 2.1 ([13]). There exist two positive constants C0 and C1 such that for all
vh ∈ Sh, we have

C0 ∥vh∥0,h ≤ ∥vh∥ ≤ C1 ∥vh∥0,h , ∀ vh ∈ Sh,

C0 |||vh||| ≤ ∥vh∥ ≤ C1 |||vh||| , ∀ vh ∈ Sh,

C0 ∥vh∥1,h ≤ ∥vh∥1 ≤ C1 ∥vh∥1,h , ∀ vh ∈ Sh.

Next, we recall some properties of the bilinear forms (see [13, 20]).

Lemma 2.2 ([13]). There exist two positive constants C and C0 such that for all
uh, vh ∈ Sh, we have

A (uh, I
∗
hvh) ≤ C ∥uh∥1 ∥vh∥1 , ∀ uh, vh ∈ Sh,

A (vh, I
∗
hvh) ≥ C0 ∥vh∥21 , ∀ vh ∈ Sh.

The following Lemmas is proved in [4, 13], which gives the key feature of the
bilinear forms in the FVE method.

Lemma 2.3 ([4]). Assume that φ ∈W 1,p
0 . Then we have

A (φ, vh)−A (φ, I∗hvh) =
∑
K∈τh

∫
∂K

((A (x)∇φ− bφ) .n) (vh − I∗hvh) ds

−
∑
K∈τh

∫
K

(∇.(A (x)∇φ− bφ) + (λ+ c)φ) (vh − I∗hvh) ds, ∀vh ∈ Sh.

The above identity holds true when A (., .) is replaced by B (t, s; ., .) .

Introduce

ϵh (f, vh) = (f, vh)− (f, I∗hvh) , ∀ vh ∈ Sh,

and

ϵA (uh, vh) = A (uh, vh)−Ah (uh, I
∗
hvh) , ∀ uh, vh ∈ Sh.

The bounds for ϵh, ϵA can be given as follows

Lemma 2.4 ([5],pp 317). There exists positive constants C independent of h,such
that for vh ∈ Sh,

|ϵh (f, vh)| ≤ Chi+j ∥f∥i ∥vh∥j , ∀ f ∈ Hi, i, j = 0, 1,

|ϵA (Vhu, vh)| ≤ Chi+j
(
∥u∥i+1 +

∫ t

0
∥u∥i+1

)
∥vh∥j , ∀ u ∈ Hi+1 ∩H1

0 , i, j = 0, 1

and
|ϵA (uh, vh)| ≤ Ch ∥u∥1 ∥vh∥1 , ∀ vh ∈ Sh.

Lemma 2.5 ([4]). Assume that φ ∈ Sh. Then we have

A (φ, χ)−A (φ, I∗hχ) ≤ Ch |φ|1,p |χ|1,q .

Further for φ ∈W 1,p
0 ∩W 2,p, we have

A (φ, χ)−A (φ, I∗hχ) ≤ Ch ∥φ∥2,p ∥χ∥1,q .
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3. Ritz-Volterra projection and related estimates

Following [7, 13], define the Ritz-Volterra projection Vh (t) : H
1
0 → Sh

A (u− Vhu, I
∗
hvh)

+

∫ t

0

B (t, s;u (s)− Vhu (s) , I
∗
hvh) ds = 0, t > 0, ∀vh ∈ Sh. (3.1)

This Vh(t) is an elliptic projection with memory of u into S∗
h. It is easy to see that

(3.1) is actually a system of integral equations of Volterra type. In fact if Vh(t)u =
Nh∑
j=1

αj (t)φj (x) , then (3.1) can be rewritten as

Ahα (t) +

∫ t

0

Bh (t, s)α (s) ds = Fh (t) (3.2)

where Ah, Bh (t, s) are matrices and α(t), Fh (t) are vectors, defined via

α (t) = (α1 (t) , α2 (t) , ..., αNh
(t))

T

Fhk (t) = A (u, χk) +

∫ t

0

B (t, s;u (s) , χk) ds, k = 1, 2, ..., Nh,

Ah = A (φk (x) , χl) , Bh (t, s) = B (t, s;φk (x) , χl) .

From the positivity of A (Lemma 2.2) and the linearity of (3.2) we see that the
system (3.2) possesses a unique solution α (t) . Consequently Vh(t)u in (3.1) is well
defined.

Set ρ = u−Vh (t)u. In [13] the following lemma was proved, which shows the H1

error estimate for ρ and its temporal derivative.

Lemma 3.1 ([13]). Assume that Dn
t u ∈ L∞(H1

0 ∩H2) for all 0 ≤ n ≤ k, for some
integer k ≥ 0.Then for T > 0 fixed there is a constant C = C(T ; k) > 0, independent
of h and u, such that for all 0 ≤ n ≤ k and 0 < t < T ,

∥ρ (t)∥1 ≤ Ch

(
∥u∥2 +

∫ t

0

∥u∥2 ds
)
,

and

∥Dn
t ρ (t)∥1 ≤ Ch

(
n∑

i=0

∥∥Di
tu
∥∥
2
+

∫ t

0

∥u∥2 ds

)
.

Now we establish L2 error estimate for ρ and its temporal derivative which im-
proves the Theorem 2.2 in [13]. This estimate is optimal with respect to the order of
convergence and the regularity of the solution.

Lemma 3.2. Assume that f ∈ H−1(Ω) and for some integer k ≥ 0, Dn+1
t u ∈

L∞(H1
0 ∩ H2) for all 0 ≤ n ≤ k. Then for fixed T > 0, there is a constant C =



986 A. RACHID, M. BAHAJ, AND R. FAKHAR

C(f ;T ; k) > 0, independent of h and u, such that for all 0 ≤ n ≤ k and 0 < t < T ,

∥ρ (t)∥ ≤ Ch2
(
∥f∥1 + ∥ut∥1 + ∥u∥2 +

∫ t

0

∥u∥2 ds
)

and

∥Dn
t ρ (t)∥ ≤ Ch2

(
n∑

i=0

∥∥Di
tf
∥∥
1
+

n+1∑
i=0

∥∥Di
tu
∥∥
1
+

n∑
i=0

∥∥Di
tu
∥∥
2
+

∫ t

0

∥u∥2 ds

)

≤ Ch2

(
n∑

i=0

∥∥Di
tf
∥∥
1
+
∥∥Dn+1

t u
∥∥
1
+

n∑
i=0

∥∥Di
tu
∥∥
2
+

∫ t

0

∥u∥2 ds

)
.

Proof. The proof will proceed by duality argument. Let ψ ∈ H2 (Ω) ∩H1
0 (Ω) be the

solution of

A∗ψ = ρ in Ω

ψ = 0 on ∂Ω.

The solution ψ ∈ H2 (Ω) ∩H1
0 (Ω) satisfies the following regularity estimate

∥ψ∥2 ≤ C ∥ρ∥ . (3.3)

Recalling the Ritz projection, [7, 13], Rh : H1
0 ∩H2 → Sh associated with a bilinear

form A (., .) ; that is,

A (Rhu− u, vh) = 0, vh ∈ Sh.

Multiplying equation 3.3 by ρ and then taking L2 inner-product over Ω, we obtain

∥ρ∥2 = A (ρ, ψ) = A (ρ, ψ −Rhψ) +A (ρ,Rhψ − I∗h (Rhψ))

−
∫ t

0

B (t, s; ρ (s) , I∗hRhψ −Rhψ) ds−
∫ t

0

B (t, s; ρ (s) , Rhψ − ψ) ds

−
∫ t

0

B (t, s; ρ (s) , ψ) ds = I1 + I2 + I3 + I4 + I5.

We have

|I1|+ |I4| ≤ Ch2
(
∥u∥2 +

∫ t

0

∥u∥2 ds
)
∥ψ∥2 .

Applying lemma 2.4, we obtain

A (ρ,Rhψ − I∗h (Rhψ))−
∫ t

0

B (t, s; ρ (s) , I∗hRhψ −Rhψ) ds

= A (u,Rhψ − I∗h (Rhψ)) +

∫ t

0

B (t, s;u (s) , Rhψ − I∗hRhψ) ds

−A (Vhu,Rhψ − I∗h (Rhψ)) +

∫ t

0

B (t, s;Vhu (s) , I
∗
hRhψ −Rhψ) ds

= (f − ut, Rhψ − I∗h (Rhψ))− ϵA (Vhu,Rhψ) +

∫ t

0

ϵB(t,s;.,.) (Vhu (s) , Rhψ) ds
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|I2 + I3| ≤ Ch2
(
∥f∥1 + ∥ut∥1 + ∥u∥2 +

∫ t

0

∥u∥2 ds
)
∥ψ∥1 .

Finally, we have

|I5| ≤
∫ t

0

(ρ (s) , B∗ (t, s)ψ) ds ≤ C

(∫ t

0

∥ρ∥ ds
)
∥ψ∥2 ,

then we have

∥ρ∥ ≤ Ch2
(
∥f∥1 + ∥ut∥1 + ∥u∥2 +

∫ t

0

∥u∥2 ds
)
+ C

(∫ t

0

∥ρ∥ ds
)
.

Finally, an application of Grönwall’s lemma yields the first estimate.
The second inequality follows in a similar fashion. □

Lemma 3.3. There exists a constant C independent of h such that

∥ρ∥1,p ≤ Ch2
(
∥u∥2,p +

∫ t

0

∥u∥2,p ds
)
.

Proof. Let ρx be an arbitrary component of ∇ρ with pand qconjugate indices, we
have

∥ρx∥p = sup
{
(ρx, φ) ;φ ∈ C∞

0 (Ω) , ∥φ∥q = 1
}
.

For any such φ, let ψ be the solution of

A∗ (ψ, v) = − (φx, v) ∀ v ∈ H1
0 (Ω) ,

ψ = 0 on ∂Ω.

It follows from the regularity theory for the elliptic problem that

∥ψ∥1,q ≤ Cp ∥φ∥q = Cp.

We then have by application of (3.1) that

(ρx, φ) = A (ρ, ψ) = A (ρ, ψ −Rhψ) +A (ρ,Rhψ − I∗h (Rhψ))

+

∫ t

0

B (t, s; ρ (s) , I∗h (Rhψ)) ds

= I1 + I2 + I3,

A (ρ, ψ −Rhψ) = A (Rhu− u, ψ) = − ((Rhu− u)x , φ) ≤ Ch ∥u∥2,p .
Applying lemma 4, we have

I2 = A (u,Rhψ − I∗h (Rhψ))−A (Vhu,Rhψ − I∗h (Rhψ)) ≤ Ch ∥u∥2,p .

Finally, I3 is estimated as

I3 =

∫ t

0

B (t, s; ρ (s) , I∗h (Rhψ)) ds ≤ Cp

∫ t

0

∥ρ∥1,p ds.

Combining these estimates we get

∥ρ∥1,p ≤ Ch ∥u∥2,p + Cp

∫ t

0

∥ρ∥1,p ds
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whence by Grönwall’s lemma

∥ρ∥1,p ≤ Ch

(
∥u∥2,p +

∫ t

0

∥u∥2,p ds
)
.

□

4. Error estimates for semi-discrete approximations

We split the error e(t) = u(t)− uh(t) as follows

e(t) = (u(t)− Vhu(t)) + (Vhu(t)− uh(t)) = ρ+ θ.

It is easy to see that θ = Vhu(t)− uh(t) ∈ Sh satisfies an error equation of the form

(θt, I
∗
hvh) +A(θ, I∗hvh) +

∫ t

0

B (t, s; θ (s) , I∗hvh) ds = − (ρt, I
∗
hvh) , vh ∈ Sh.

(4.1)

Since the estimates of ρ are already known, it is enough to have estimates for θ.
We shall prove a sequence of lemmas which lead to the following result.

Lemma 4.1. There is a positive constant C independent of h such that

|||θ (t)||| ≤ C

(
|||θ (0)|||2 +

∫ t

0

∥ρt∥ ds
)
.

Proof. Since θ ∈ Sh, we may take vh = θ in (4.1) to obtain

1

2

d

dt
|||θ (t)|||2 + c ∥θ∥21 ≤ ∥ρt∥ ∥θ∥+ C

∫ t

0

∥θ∥1 ds ∥θ∥1

≤ ∥ρt∥ ∥θ∥+
1

2
c ∥θ∥21 + C

∫ t

0

∥θ∥21 ds

and hence by integration, we have

||θ (t)||2 +
∫ t

0

∥θ∥21 ds ≤ C

(
|||θ (0)|||2 +

∫ t

0

∥ρt∥ ∥θ∥ ds+
∫ t

0

∫ s

0

∥θ (τ)∥21 dτds
)
.

Grönwall’s lemma now implies

|||θ (t)|||2 +
∫ t

0

∥θ∥21 ds ≤ C

(
|||θ (0)|||2 +

∫ t

0

∥ρt∥ ∥θ∥ ds
)

≤ C |||θ (0)|||2 + 1

2
sup
s≤t

∥θ (s)∥2 +
(∫ t

0

∥ρt∥ ds
)2

.

Since this holds for all t, we may conclude that

||θ (t)|| ≤ C

(
|||θ (0)|||+

∫ t

0

∥ρt∥ ds
)
.

□
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Lemma 4.2. There is a positive constant C independent of h such that∫ t

0

∥θt∥2 ds+ ∥θ∥21 ≤ C

(
∥θ (0)∥21 +

∫ t

0

∥ρt∥2 ds
)
.

Proof. Set vh = θt in (4.1) to get

|∥θt∥|2 +
1

2

d

dt
A (θ, I∗hθ) = − (ρt, I

∗
hθt)−

∫ t

0

B (t, s; θ (s) , I∗hθt (t)) ds

+
1

2
[A (θt, I

∗
hθ)−A (θ, I∗hθt)]

≤ 1

2
∥ρt∥2 +

1

2
|||θt|||2

+
1

2
[A (θt, I

∗
hθ)−A (θ, I∗hθt)]

− d

dt

∫ t

0

B (t, s; θ (s) , I∗hθ (t)) ds

+B (t, t; θ (t) , I∗hθ (t))

+

∫ t

0

Bt (t, s; θ (s) , I
∗
hθ (t)) ds.

∥θt∥2 +
d

dt
A (θ, I∗hθ) ≤ ∥ρt∥2 − 2

d

dt

∫ t

0

B (t, s; θ (s) , I∗hθ) ds

+ C

(
∥θ∥21 +

∫ t

0

∥θ (s)∥21 ds
)

+ [A (θt, I
∗
hθ)−A (θ, I∗hθt)] .

In addition, recall that

A (uh, I
∗
hvh)−A (vh, I

∗
huh) ≤ Ch ∥uh∥1 ∥vh∥1 , ∀ uh, vh ∈ Sh,

then applying an inverse inequality and using kickback argument, we obtain

[A (θt, I
∗
hθ)−A (θ, I∗hθt)] ≤ Ch ∥θt∥1 ∥θ∥1 ≤ C ∥θt∥ ∥θ∥1

≤ ε ∥θt∥2 + C ∥θ∥21 .

Combining these estimates, we derive

∥θt∥2 +
d

dt
A (θ, I∗hθ) ≤ ∥ρt∥2 − 2

d

dt

∫ t

0

B (t, s; θ (s) , I∗hθ) ds

+ C

(
∥θ∥21 +

∫ t

0

∥θ (s)∥21 ds
)
.
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So after integration in time and using the weak coercivity of A (θ, I∗hθ) we get∫ t

0

∥θt∥2 ds+ c0 ∥θ∥21 ≤ c0 ∥θ (0)∥21 +
∫ t

0

∥ρt∥2 ds

− 2

∫ t

0

B (t, s; θ (s) , I∗hθ) ds+ C

∫ t

0

∥θ (s)∥21 ds

≤ c0 ∥θ (0)∥21 +
c

2
∥θ∥21 + C

(∫ t

0

∥ρt∥2 + ∥θ (s)∥21 ds
)

and by Grönwall’s lemma,∫ t

0

∥θt∥2 ds+ c ∥θ∥21 ≤ C

(
∥θ (0)∥21 +

∫ t

0

∥ρt∥2 ds
)
.

□

Theorem 4.3. ([1])[Error estimates in L2 and H1-norms ] Let u, uh be the solutions
of (2.2) and (2.4) respectively. Assume that u ∈ L∞(H1

0 ∩H2), ut ∈ L∞(H2).
(a) Let u0h be chosen so that ∥u0h − u0∥ ≤ Ch2 ∥u0∥2 and assume that utt ∈

L∞(H1) and f, ft ∈ L∞(H1). Then for fixed T > 0, there is a constant C = C (T )
independent of h, such that for all 0 < t < T,

∥uh (t)− u (t)∥ ≤ Ch2
(
∥f (0)∥1 + ∥u0∥2 + ∥ut∥1 +

∫ t

0

∥ft∥1 + ∥ut∥2 + ∥utt∥1 ds
)

(b) Let u0h be chosen so that ∥u0h − u0∥1 ≤ Ch ∥u0∥2 . Then for fixed T > 0, there
is a constant C = C (T ) independent of h, such that for all 0 < t < T,

∥uh (t)− u (t))∥1 ≤ Ch

(
∥u0∥2 +

∫ t

0

∥ut∥2 ds
)
.

Now, we prove the error estimate for FVE approximation in W 1,p-norm.

Theorem 4.4. Let u, uh be the solution of (2.2) and (2.4), respectively. Assume that
u, ut ∈ L∞(H1

0 ∩W 2,p). In addition, for dimension d = 2, we have for h sufficiently
small

∥u− uh∥1,p ≤ Ch

(
∥u0∥2 + ∥u∥2,p +

∫ t

0

∥ut∥2 ds
)
.

Proof. Given φ ∈ C∞
0 (Ω) , find ψ ∈ H1

0 (Ω) such that

A∗ψ = −φx in Ω

ψ = 0 on ∂Ω,

and

∥ψ∥1,q ≤ ∥φ∥0,q .
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We have

((u− uh)x , φ) = A (u− uh, ψ) = A(u− uh, ψ −Rhψ)

+A (u− uh, Rhψ − I∗hRhψ)

−
∫ t

0

B (t, s; (u− uh) (s) , I
∗
hRhψ) ds

− ((u− uh)t , I
∗
hRhψ)

= I1 + I2 + I3 + I4.

|I1| ≤ |A(u−Rhu, ψ)| ≤ C ∥u−Rhu∥1,p ∥ψ∥1,q ≤ Ch ∥u∥2,p ∥ψ∥1,q .
By lemma 2.1, p.468 in [11]

|I2| ≤ A (u− uh, Rhψ − I∗hRhψ) ≤ Ch
(
|u− uh|1,p + |u|2,p

)
∥ψ∥1,q .

|I3| ≤
∫ t

0

∥u− uh∥1,p ds ∥ψ∥1,q

|I4| ≤ (∥u− uh∥) ∥ψ∥ ≤ Ch2
(
∥u0∥2 +

∫ t

0

∥ut∥2 ds
)
∥ψ∥1,q ,

where we have used the fact ∥ψ∥ ≤ ∥ψ∥1,r , r > 1. Combining these estimates we get

|((u− uh)x , φ)| ≤ Ch

(
∥u0∥2 + ∥u∥2,p +

∫ t

0

∥ut∥2 ds
)
∥ψ∥1,q ,

∥(u− uh)x∥0,p = sup
((u− uh)x , φ)

∥φ∥0,q

≤ Ch |u− uh|1,p + Ch

(
∥u0∥2 + ∥u∥2,p +

∫ t

0

∥ut∥2 ds
)
.

Hence using the Poincaré inequality, we have for h sufficiently small

∥u− uh∥1,p ≤ Ch

(
∥u0∥2 + ∥u∥2,p +

∫ t

0

∥ut∥2 ds
)
.

□
We compare the relationship between covolume solution and the Galerkin finite

element solution.

Corollary 4.5. Let ũh be the finite element solution to (2.2) , i.e.,

(ũht, vh) +A (ũh, vh) +

∫ t

0

B (t, s; ũh (s) , vh) ds = (f, vh) , vh ∈ Sh, (4.2)

ũh (0) = Rhu0.

Suppose that d = 2. Then for sufficiently small h > 0, one may conclude

∥(ũh − uh)∥1,p ≤ C

(
h ∥u− uh∥1,p + ∥(u− uh)t∥+ ∥(ũh − u)t∥

+
∫ t

0

(
∥(u− uh) (s)∥1,p + ∥(u− ũh) (s)∥1,p

)
ds

)
≤ C (u)h.
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Proof. By (2.2) and (4.2) ,

((ũh − u)t , vh)+A (ũh − u, vh)+

∫ t

0

B (t, s; (ũh − u) (s) , vh) ds = 0, vh ∈ Sh.

Consider the following auxiliary problem. For any such φ, let ψ be the solution of

A∗ψ = −φx in Ω

ψ = 0 on ∂Ω,

with

∥ψ∥1,q ≤ ∥φ∥0,q

((ũh − uh)x , φ) = A (ũh − uh, ψ)

= A (ũh − uh, ψ −Rhψ) +A (u− uh, Rhψ)

−A (u− uh, I
∗
hRhψ)− ((u− uh)t , I

∗
hRhψ)

−
∫ t

0

B (t, s; (u− uh) (s) , I
∗
hRhψ) ds+A (ũh − u,Rhψ)

= [A (u− uh, Rhψ)−A (u− uh, I
∗
hRhψ)]

− ((u− uh)t , I
∗
hRhψ)− ((ũh − u)t , Rhψ)

−
∫ t

0

B (t, s; (u− uh) (s) , I
∗
hRhψ) ds

−
∫ t

0

B (t, s; (ũh − u) (s) , Rhψ) ds

= I1 + I2 + I3.

On the other hand,

|I1| ≤ Ch ∥u− uh∥1,p ∥ψ∥1,q
|I2| ≤ C (∥(u− uh)t∥+ ∥(ũh − u)t∥) ∥ψ∥

≤ C (∥(u− uh)t∥+ ∥(ũh − u)t∥) ∥ψ∥1,q

where we have used the fact ∥ψ∥ ≤ ∥ψ∥1,r , r > 1

|I3| ≤
∫ t

0

(
∥(u− uh) (s)∥1,p + ∥(u− ũh) (s)∥1,p

)
ds ∥ψ∥1,q

∥(ũh − uh)x∥0,p = sup
φ∈C∞

0

((ũh − uh)x , φ)

∥φ∥0,q

≤ C

(
h ∥u− uh∥1,p + ∥(u− uh)t∥+ ∥(ũh − u)t∥

+
∫ t

0

(
∥(u− uh) (s)∥1,p + ∥(u− ũh) (s)∥1,p

)
ds

)
.

We deduce the result from the known finite element estimates. □



CMDE Vol. 9, No. 4, 2021, pp. 977-1000 993

Remark 4.6. In order to estimate ∥(u− uh)t∥ , by differentiating (4.1) with respect
to t we obtain

(θtt, I
∗
hvh) +A (θt, I

∗
hvh) +B (t, t; θ, I∗hvh) +

∫ t

0

Bt (t, s; θ (s) , I
∗
hvh) ds

= − (ρtt, I
∗
hvh) .

Setting vh = θt, we obtain

1

2

d

dt
|∥θt∥|2 + c ∥θt∥21

≤ ∥ρtt∥ ∥θt∥+
1

2
c ∥θt∥21 + C ∥θ∥21 +

∫ t

0

∥θ∥21 ds

≤ ∥ρtt∥ ∥θt∥+
1

2
c ∥θt∥21 + C

∫ t

0

∥θt∥21 ds.

Using kickback argument, integrating and applying Grönwall’s lemma, we deduce

∥θt∥ ≤ C

(
∥θt (0)∥+

∫ t

0

∥ρtt∥ ds
)
.

5. The lumped mass finite volume element method

In this section, we restrict our study to the case 2-D. A simple way to define the
lumped mass scheme is to replace the mass matrixMh in (2.5) by the diagonal matrix

Mh obtained by taking for its diagonal elements the numbers Mhii =
Nh∑
j=1

Mhij , or by

lumping all masses in one row into the diagonal entry. This makes the inversion of
the matrix in front of α′ (t) a triviality.

We shall thus study the matrix problem

Mhα
′ (t) +Ahα (t) +

∫ t

0

Bh (t, s)α (s) ds = Fh (t) . (5.1)

We know that the lumped mass method defined by (5.1) above is equivalent to

(I∗huht, I
∗
hvh) +A(uh, I

∗
hvh) +

∫ t

0

B (t, s;uh (s) , I
∗
hvh) ds = (f, I∗hvh) , vh ∈ Sh.

(5.2)

Our alternative interpretation of this procedure will be to think of (5.1) as being
obtained by evaluating the first term in (5.2) by numerical quadrature. Let K be a
triangle of the triangulation Th, let xj , j = 1, 2, 3, be its vertices, and consider the
quadrature formula

QK,h (f) =
1

3
area K

3∑
j=1

f (xj) ≃
∫
K

f dx.
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We may then define the associated bilinear form in Sh × S∗
h, using the quadrature

scheme, by

(vh, ηh)h =
∑

K∈Th

QK,h (vhηh)

=
∑

xi∈N à
h

vh (xi) ηh (xi) |Vxi | , ∀vh ∈ Sh, ηh ∈ S∗
h.

We note that ∥vh∥2h = (vh, I
∗
hvh)h is a norm in Sh which is equivalent with the

L2−norm uniformly in h, i.e there exist two positive constants C1 and C2 such that
for all vh ∈ Sh, we have

C0 ∥vh∥ ≤ ∥vh∥h ≤ C1 ∥vh∥ , ∀ vh ∈ Sh.

We note that the above definition (vh, ηh)h may be used also for ηh ∈ Sh,, and that
(vh, wh)h = (vh, I

∗
hwh)h for vh, wh ∈ Sh.

The lumped mass method defined by (5.2) above is equivalent to

(uht, I
∗
hvh)h+A(uh, I

∗
hvh)+

∫ t

0

B (t, s;uh (s) , I
∗
hvh) ds = (f, I∗hvh) , vh ∈ Sh.

(5.3)

We introduce the quadrature error

εh (vh, wh) = (vh, wh)h − (vh, wh) ,

Lemma 5.1 ([22]). Let vh, wh ∈ Sh. Then

|εh (vh, wh)| ≤ Ch2 ∥∇vh∥ ∥∇wh∥ .

Theorem 5.2. Let uh and u be the solutions of (5.3) and (2.2) respectively, Assume
that u ∈ L∞(H1

0 ∩H2), ut ∈ L∞(H2), utt ∈ L∞(H1), f, ft ∈ L∞(H1) and uh (0) =
Rhu0. Then we have for the error in the lumped mass semi discrete method, for t ≥ 0,

∥uh (t)− u (t)∥ ≤ Ch2
(∫ t

0

(∥f∥1 + ∥ft∥1 + ∥u∥2 + ∥ut∥2 + ∥utt∥1) ds
)
.

Proof. In order to estimate ∥θ∥ , we write

(θt, I
∗
hvh)h +A (θ, I∗hvh) +

∫ t

0

B (t, s; θ (s) , I∗hvh) ds

= (uht, I
∗
hvh)h +A (uh, I

∗
hvh) +

∫ t

0

B (t, s;uh (s) , I
∗
hvh) ds

− ((Vhu)t , I
∗
hvh)h −A (Vhu, I

∗
hvh)−

∫ t

0

B (t, s;Vhu (s) , I
∗
hvh) ds

= (f, I∗hvh)− ((Vhu)t , I
∗
hvh)h −A (u, I∗hvh)−

∫ t

0

B (t, s;u (s) , I∗hvh)

= (ut, I
∗
hvh)− ((Vhu)t , I

∗
hvh)h

= − (ρt, I
∗
hvh)− ((Vhu)t , I

∗
hvh)h + ((Vhu)t , I

∗
hvh) .
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We rewrite

((Vhu)t , I
∗
hvh)h − ((Vhu)t , I

∗
hvh) = ((Vhu)t , I

∗
hvh)h − ((Vhu)t , vh)

+ ((Vhu)t , vh)− ((Vhu)t , I
∗
hvh)

= εh ((Vhu)t , vh) + ((Vhu)t , vh)

− ((Vhu)t , I
∗
hvh) .

(θt, I
∗
hvh)h +A (θ, I∗hvh) +

∫ t

0

B (t, s; θ (s) , I∗hvh) ds (5.4)

= − (ρt, I
∗
hvh) + εh ((Vhu)t , vh) + ((Vhu)t , vh)− ((Vhu)t , I

∗
hvh) . (5.4)

Setting vh = θ in (5.4), we obtain

1

2

d

dt
∥θ∥2h + c0 ∥θ∥21

≤ ∥ρt∥ ∥θ∥+
1

2
c0 ∥θ∥21 + C

∫ t

0

∥θ∥21 ds

+ εh ((Vhu)t , θ) + ((Vhu)t , θ)− ((Vhu)t , I
∗
hθ) .

And, using lemma 10 and the inverse estimate, we get

|εh ((Vhu)t , θ)| ≤ Ch2 ∥∇ (Vhu)t∥ ∥∇θ∥
≤ Ch2 (∥ρt∥1 + ∥ut∥1) ∥∇θ∥
≤ Ch (∥ρt∥1 + ∥ut∥1) ∥θ∥

we have

|((Vhu)t , θ)− ((Vhu)t , I
∗
hθ)| ≤ Ch (∥ρt∥1 + ∥ut∥1) ∥θ∥ .

Using Young’s inequality and Grönwall lemma to eliminate ∥θ∥1 on the right hand
side it becomes

1

2

d

dt
∥θ∥2h + c ∥θ∥1 ≤ ∥ρt∥ ∥θ∥+ Ch (∥ρt∥1 + ∥ut∥1) ∥θ∥ .

Using Young’s inequality to eliminate ∥θ∥ on the right hand side it becomes.
Using integration in t, we get the result. □

We will now show that the H1−norm error bound of theorem remains valid for the
Lumped mass method (5.3).

Theorem 5.3. Let uh and u be the solutions of (5.3) and (2.2), respectively, under
the assumptions of theorem and assume

uh (0) = Rhu0, ∥u1h (0)− u1∥ ≤ Ch2 ∥u1∥2 .

Then we have for the error in the lumped mass semi discrete method, for t ≥ 0,

∥uh (t)− u (t)∥1 ≤ Ch

(
∥u0∥2 + ∥u1∥2 +

∫ t

0

∥f∥1 + ∥ft∥1 + ∥utt∥2 ds
)
.
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Proof. Setting vh = θt in(5.4) we obtain

∥θt∥2h +
1

2

d

dt
A (θ, I∗hθ)

=
1

2
[A (θt, I

∗
hθ)−A (θ, I∗hθt)]

B (t, t; θ (t) , I∗hθ (t)) +

∫ t

0

Bt (t, s; θ (s) , I
∗
hθ (t)) ds

− d

dt

∫ t

0

B (t, s; θ (s) , I∗hθ (t)) ds− (ρt, I
∗
hθt)

− εh ((Vhu)t , θt) + ((Vhu)t, θ)− ((Vhu)t, I
∗
hθ) .

It follows thus that and using integration in t and Grönwall lemma, we have∫ t

0

∥θt∥2h + ∥θ∥21 ≤ C ∥∇θ (0)∥2 + C

∫ t

0

∥ρt∥2 + ∥θt∥+ ∥θ∥ ds

+Ch (∥ρt∥1 + ∥ut∥1) ∥θ∥ .

This completes the proof. □

6. Full Discretization

Let ∂Un =
(
Un − Un−1

)
/k be the backward difference quotient of Un, assume that

Ah = PhA is a discrete analogue of A (similarly Bh = PhB), where Ph : L2 (Ω) → S∗
h

the L2 projection defined by

(Phv, I
∗
hvh) = (v, I∗hvh) , v ∈ L2 (Ω) , vh ∈ Sh.

In order to define fully-discrete approximation of (2.3), we discretize the time by
taking tn = nk, k > 0, n = 1, 2, ... and use numerical quadrature∫ t

n− 1
2

0

g (s) ds

n∑
k−1

ωn,kg
(
tk−1/2

)
, tn− 1

2
=

(
n− 1

2

)
k.

Here {ωn,k} are the integration weights and we assume that the following error
estimate is valid

qn (g) =

∫ t
n− 1

2

0

g (s) ds−
n∑

k=1

ωn,kg
(
tk−1/2

)
≤ Ck2

∫ tn

0

(|g′|+ |g”|) ds.

Now define our complete discrete finite volume element approximation of (2.3) by:
Find Un ∈ Sh for n = 1, 2, .., such that for all vh ∈ Sh(

∂Un, I∗hvh
)
+A

(
Un− 1

2 , I∗hvh

)
+

n∑
k=1

ωn,kB
(
tn− 1

2
, tk−1/2, U

k−1/2, I∗hvh

)
(6.1)

=
(
fn−

1
2 , I∗hvh

)
, U0 ∈ Sh

where Un− 1
2 =

(
Un + Un−1

)
/2 .
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Theorem 6.1. Let u (t) and Un be the solutions of problem (2.2) and its complete
discrete scheme (6.1) respectively. Then for any T > 0 there exists a positive constant
C = C (T ) > 0, independent of h, such that for 0 < tn ≤ T

∥u (tn)− Un∥ ≤ Ch2
(
∥u0∥2 +

∫ tn

0

∥ut∥2 ds
)

+ Ck2
(∫ tn

0

(∥ft∥1 + ∥u∥2 + ∥ut∥2 + ∥utt∥2 + ∥uttt∥) ds
)
.

Proof. Let us split the error into two parts: u (tn) − Un = ρn + θn, where ρn =
u (tn) − Vhu (tn) and θn = Vhu (tn) − Un and let W = Vhu (t) ∈ Sh be the Ritz-
Volterra projection of u. Then from (2.2) and (6.1) we have for all vh ∈ Sh(

∂θn, I∗hvh
)
+A

(
θn−1/2, I∗hvh

)
+

n∑
k=1

ωn,kB
(
tn− 1

2
, tk−1/2, θ

k−1/2, I∗hvh

)
(6.2)

= − (rn, I
∗
hvh) , vh ∈ Sh

where

rn = r1n + r2n + r3n + r4n,

and

r1n = ∂ρn,

r2n = ∂u (tn)− ut

(
tn− 1

2

)
,

r3n = A
(
(u (tn) + u (tn−1)) /2− u

(
tn− 1

2

)
, I∗hvh

)
,

r4n = qn (BhW )

=
n∑

k=1

ωn,kBh

(
tn− 1

2
, tk−1/2,W

k−1/2, I∗hvh

)
−
∫ t

n− 1
2

0

B (tn, s,W (s) , I∗hvh) ds.

In fact, by Taylor expansion,

un+1 = un + ku′ (tn) +

∫ tn+1

tn

u” (s) (tn+1 − s) ds

= un + ku′ (tn) +
k2

2
u” (tn) +

k3

6
u(3) (tn)

+
1

6

∫ tn+1

tn

u(4) (s) (tn+1 − s)
3
ds

we have∥∥r1n∥∥ =
∥∥∂ρn∥∥ ≤ 1

k

∫ tn

tn−1

∥ρt∥ ds ≤ C
h2

k

∫ tn

tn−1

(∥ft∥1 + ∥utt∥2) ds
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∥∥r2n∥∥ =
∥∥∥∂u (tn)− ut

(
tn− 1

2

)∥∥∥
=

1

k

∥∥∥∥∥
∫ tn

tn−1

(ut(s)− ut

(
tn− 1

2

)
)ds

∥∥∥∥∥ ≤ Ck

∫ tn

tn−1

∥∥∥u(3) (s)∥∥∥ ds

and ∥∥r3n∥∥ =

∥∥∥∥A(u (tn) + u (tn−1)

2
− u

(
tn− 1

2

)
, I∗hvh

)∥∥∥∥
≤ Ck

∫ tn

tn−1

∥Autt (s)∥ ds ≤ Ck

∫ tn

tn−1

∥utt∥2 ds.

In addition, the quadrature error satisfies∥∥r4n∥∥ = qn−
1
2 (BhW )

=
n∑

k=1

ωn,kB
(
tn− 1

2
, tk−1/2,W

k−1/2, I∗hvh

)
−
∫ t

n− 1
2

0

B (tn, s,W (s) , I∗hvh) ds

≤ Ck2
∫ tn

0

∥(BhW )ss∥ ds

≤ Ck2
∫ tn

0

(∥u∥2 + ∥ut∥2 + ∥utt∥2) ds.

k

N∑
n=1

∥rn∥ ≤ Ch2
∫ tn

0

∥utt∥2 ds

+ Ck2
∫ tn

0

(
∥u∥2 + ∥ut∥2 + ∥utt∥2 +

∥∥∥u(3)∥∥∥) ds.

Taking vh = θn−1/2 in (6.2) and noting that
(
∂θn, I∗hθ

n−1/2
)
= 1

2∂ |||θ
n|||2 there is

|||θn|||2 −
∣∣∣∣∣∣θn−1

∣∣∣∣∣∣2 + 2kc
∣∣∣∣∣∣∣∣∣θn−1/2

∣∣∣∣∣∣∣∣∣2
1

≤ Ck2
n∑

k=1

∥∥∥θk−1/2
∥∥∥
1

∥∥∥θn−1/2
∥∥∥
1
+ Ck ∥rn∥

∥∥∥θn−1/2
∥∥∥

≤ kc
∣∣∣∣∣∣∣∣∣θn−1/2

∣∣∣∣∣∣∣∣∣2
1
+ Ck2

n∑
k=1

∥∥∥θk−1/2
∥∥∥2
1
+ Ck ∥rn∥

∥∥∥θn−1/2
∥∥∥ .

Summing from n = 1 to N , and then, after cancelling the common factor and using
Grönwall lemma, we obtain

∣∣∣∣∣∣θN ∣∣∣∣∣∣2 ≤ C
∣∣∣∣∣∣θ0∣∣∣∣∣∣2 + Ck

N∑
k=1

∥rn∥
(∥∥θk∥∥+ ∥∥∥θk−1/2

∥∥∥)
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and then∣∣∣∣∣∣θN ∣∣∣∣∣∣ ≤ C
∣∣∣∣∣∣θ0∣∣∣∣∣∣+ Ck

N∑
n=1

∥rn∥ .

The theorem follows from the estimates of ρn and rn. □

7. Conclusion

In this work, our main aim is to construct and analyze the FVE scheme for solv-
ing for convection-diffusion-reaction equations with memory by using the transfer
operator. We give the detailed construction for the semi-discrete, modified lumped
mass, and fully discrete schemes. For the spatially discrete and modified lumped
mass schemes, we obtain optimal order error estimates in L2, H1, and W 1,p norms
for 2 ≤ p < ∞. Based on the Crank-Nicolson method, a fully discrete scheme is
discussed, and related error estimates are derived.
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