- [1] L. Alvarez, P. L. Lions, and J. M. Morel, Image selective smoothing and edge detection by nonlinear diffusion II∗, SIAM J. Numer. Anal., 29(3) (1992), 845–866. DOI: 10.1137/0729052
- [2] L. Alvarez and L. Mazorra, Signal and image restoration using shock filters and anisotropic diffusion, SIAM J. Numer. Anal., 31(2) (1994), 590–605. DOI: 10.2307/2158018
- [3] T. Barbu, Additive Noise Removal using a Nonlinear Hyperbolic PDE-based Model, 14th Inter- national Conference on Development and application systems, Suceava, Romania, May 24-26, 2018. DOI: 10.1109/DAAS.2018.8396061
- [4] Y. Cao, J. Yin, Q. Liu, and M. Li, A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlinear Analysis: Real World Applications, 11 (2010), 253-261. DOI: 10.1016/j.nonrwa.2008.11.004
- [5] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, Two deterministic half-quadratic regularization algorithms for computed imaging, in Proceedings of IEEE International Confer- ence on Image Processing, 2 (1994), 168–172. DOI: 10.1109/ICIP.1994.413553
- [6] T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20(6) (1999), 1964–1977. DOI: 10.1137/S1064827596299767
- [7] F. Catte, P. L. Lions, J. M. Morel, and T. Coll, Image selective smoothing and edge detection by nonliear diffusion⋆, SIAM J. Numer. Anal., 29(1) (1992), 182–193. DOI: 10.1137/0729052
- [8] Q. Chang and Chern I-Liang, Acceleration methods for total variation-based image denoising, SIAM J. Sci. Comput., 25(3) (2003), 982–994. DOI: 10.1137/S106482750241534X
- [9] T.F. Chan, A. Marquina, and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput.,22(2) (2000) 503–516. DOI: 10.1137/S1064827598344169
- [10] Q. Chang and Z. Hcrang, Efficient algebraic multigrid algorithms and their convergence, SIAM J. Sci. Comput., 24 (2004) 597–618. DOI: 10.1137/S1064827501389850
- [11] K. Chen, Introduction to variational image-processing models and applications, International Journal of Computer Mathematics, 90 (2013), 1–8. DOI: 10.1080/00207160.2012.757073
- [12] K. Chen, Adaptive smoothing via contextual and local discontinuities, IEEE Trans- actions Pattern Analysis and Machine Intelligence, 27(10) (2005) 1552–1567. DOI: 10.1109/TPAMI.2005.190
- [13] B. Ghanbari, L. Rada, and K. Chen, A restarted iterative homotopy analysis method for two nonlinear models from image processing, International Journal of Computer Mathematics, 91 (2014), 661–687. DOI: 10.1080/00207160.2013.807340
- [14] G. Gilboa, N. Sochen, and Y. Y. Zeevi, Image enhancement and denoising by complex dif- fusion process, IEEE Trans. Pattern Anal. Machine Intell., 26(8) (2004), 1020–1036. DOI: 10.1109/TPAMI.2004.47
- [15] Z. Guo, J. Sun, D. Zhang, and B. Wu, Adaptive Perona-Malik model based on the variable exponent for image denoising, IEEE Transactions on Image Processing, 21(3) (2012), 58–67. DOI: 10.1109/TIP.2011.2169272
- [16] M. Hajiaboli, M. Ahmad, and C. Wang, An edge-adapting Laplacian kernel for nonlin- ear diffusion filters, IEEE Transactions on Image Processing, 21(4) (2012), 1561-1572. DOI: 10.1109/TIP.2011.2172803
- [17] K. Krissian, C. F. Westin, R. Kikinis, and K. Vosburgh, Oriented speckle reducing anisotropic diffusion, IEEE Transactions on Image Processing, 16(5) (2007), 1412-24. DOI: 10.1109/TIP.2007.891803
- [18] S. Kim and K. Joo, PDE-based image restoration: a hybrid model and color image denoising, IEEE Transactions on Image Processing, 15 (2006), 1163–1170. DOI: 10.1109/TIP.2005.864184
- [19] S. Kumar and M. K. Ahmad, A time-dependent model for image denoising, Journal of Signal and Information Processing, 6 (2015), 28-38. DOI: 10.4236/jsip.2015.61003
- [20] S. Kumar, M. Sarfaraz, and M. K. Ahmad, An efficient PDE-based nonlinear anisotropic dif- fusion model for image denoising, Neural, Parallel and Scientific Computations, 24 (2016), 305–315.
- [21] S. Kumar, M. Sarfaraz, and M. K. Ahmad, Denoising method based on wavelet coefficients via diffusion equation, Iranian Journal of Science and Technology, Transactions A: Science, 42 (2018), 721–726. DOI: 10.1007/s40995-017-0228-7
- [22] L. Lapidus and G. F. Pinder, Numerical solution of partial differential equations in science and engineering, SIAM Review, 25(4) (1983), 581–582.
- [23] M. Lysaker, A. Lundervold, and X. C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Tran. Image Process., 12(12) (2003), 1579–1590. DOI: 10.1109/TIP.2003.819229
- [24] A. Marquina and S. Osher, A new time dependent model based on level set motion for nonlin- ear deblurring and noise removal. Scale-Space Theories in Computer Vision, Lecture Notes in Computer Science, 1682 (1999), 429-434.
- [25] P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7) (1990), 629–639. DOI: 10.1109/34.56205
- [26] Q. Qiang, Z. A. Yao, and Y. Y. Ke, Entropy solutions for a fourth-order nonlinear de- generate problem for noise removal, Nonlinear Anal. TMA, 67(6) (2007), 1908–1918. DOI: 10.1016/j.na.2006.08.016
- [27] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259–268. DOI: 10.1016/0167-2789(92)90242-F
- [28] V. Ratner and Y. Y. Zeevi, Image enhancement using elastic manifolds, 14th International Con- ference on Image Analysis and Processing, 2007, 769–774. DOI: 10.1109/ICIAP.2007.4362869
- [29] J. Sun, J. Yang, and L. Sun, A class of hyperbolic-parabolic coupled systems applied to image restoration, Boundary Value Problems, 187 (2016). DOI: 10.1186/s13661-016-0696-2
- [30] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17(1) (1996), 227–238. DOI: 10.1137/0917016
- [31] M. Welk, D. Theis, T. Brox, and J. Weickert, PDE-based deconvolution with fordward-backward diffusivities and diffusion tensors. In scale space, LNCS, Springer Berlin, (2005) 585–597. DOI: 10.1007/114080315
- [32] J. Weickert, A Review of nonlinear diffusion filtering, In Scale Space, LNCS, Springer Berlin, 1252 (1997), 1–28. DOI: 10.1007/3-540-63167-437
|