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Abstract One of the aims of this article is to investigate the solvability and unsolvability
conditions for fractional cohomological equation ψαf = g, on Tn. We prove that

if f is not analytic, then fractional integro-differential equation I1−α
t Dα

xu(x, t) +

iI1−α
x Dα

t u(x, t) = f(t) has no solution in C1(B) with 0 < α ≤ 1. We also obtain
solutions for the space-time fractional heat equations on S1 and Tn. At the end
of this article, there are examples of fractional partial differential equations and a
fractional integral equation together with their solutions.
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1. Introduction

In recent years fractional differential equations (or FDE) has been a fruitful field
of research in science and engineering. In fact, many scientific areas are currently
paying attention to the FDE concepts. We can refer to its adoption in modeling and
identification, electromagnetism, chaos and fractals, heat transfer, physics, chem-
istry, biology, electronics, signal processing, robotics, system identification, traffic
systems, genetic algorithms, telecommunications, irreversibility, control systems as
well as economy, finance, etc [8, 13, 17, 18, 19, 21, 22].
There are equations in dynamical systems that are known as cohomological equations.
These equations first introduced by Livšic [10, 11]. First, we introduce the symbols
which we will need.
The subset Sm = {x ∈ Rm+1 : |x| = 1} ⊆ Rm+1 of (m + 1)-Euclidean space Rm+1

is a m-dimensional smooth manifold that is called m-sphere. Let Tl = S1 × · · · ×
S1 (l times). Product manifold Tl is called an l-dimensional torus.
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A lie group (topological group) G is a smooth manifold (topological space) that also
is a group such that the multiplication map m : G × G −→ G and inversion map
i : G −→ G

m(g1, g2) = g1g2, i(g) = g−1, g, g1, g2 ∈ G,

are both smooth (continuous) maps. Let M be an n-dimensional closed Riemannian
manifold, let G be a group and let Γ be a complete metric space and topological group
with identity element e such that G acts smoothly on M . Map f : M × G −→ Γ is
cocycle if

f(x, g1)f(xg1, g2) = f(x, g1g2), x ∈M, g1, g2 ∈ G·

Two cocycles f, h are cohomologous, if for some continuous function
φ :M −→ Γ,

f(x, g) = φ−1(x)h(x, g)φ(xg), x ∈M, g ∈ G·

The cocycle f is called coboundary if and only if f be cohomologous to the trivial
cocycle g = e. If f be coboundary, then there exists continuous function φ :M −→ Γ
such that

f(x, y) = φ−1(x)φ(xg), x ∈M, g ∈ G· (1.1)

Eq. (1.1) is said to be a cohomological equation where φ : M −→ Γ is an unknown
function.
Consider a smooth flow ϕt :M −→M as a dynamical system generated by the vector
field ψ. The following equation

ψ(h) = k, (1.2)

is a cohomological equation where k is a known function and h is an unknown function.
The reader interested in further details concerning the cohomology for dynamical
systems is referred to [5, 7].

In this article, the cohomological equation associated to the fractional-order dy-
namical system is investigated.
Let (U,Φ = (x1, · · · , xn)) be a coordinate chart of M . Consider the following
fractional-order dynamical system [23]

dαx1
dtα

= v1(x1, · · · , xn),

...
dαxn
dtα

= vn(x1, · · · , xn), 0 < α ∈ R,

where for every 1 ≤ i ≤ n,

dαxi
dtα

=
1

Γ(L− α)
(
d

dt
)L

∫ t

−∞

xi(s) ds

(t− s)α−L+1
, L− 1 ≤ α < L,

is Liouville fractional derivative of xi of order α ∈ R with respect to t. Associated
with this fractional-order dynamical system, a fractional-order vector field is defined



CMDE Vol. 9, No. 4, 2021, pp. 959-976 961

as follows

ψα =
n∑

i=1

vi(x1, · · · , xn)
∂α

∂xαi
· (1.3)

In Eq. (1.3), for every 1 ≤ i ≤ n, the operator
∂α

∂xαi
is defined by

∂α

∂xαi
: C∞∞(U) −→ R,

f 7−→ ∂αf

∂xαi
·

(1.4)

In Eq. (1.4),(
∂αf

∂xαi

)
(x) :=

1

Γ(L− α)

(
∂

∂xi

)L ∫ xi

−∞

f ◦ φ−1(x1, · · · , xi−1, t, xi+1, · · · , xn)dt
(xi − t)α−L+1

,

is the partial Liouville fractional derivative of real-valued smooth function
f : U −→ R of order α ∈ R with respect to xi where L − 1 ≤ α < L. For a
deeper discussion of fractional calculus, we refer the reader to [6, 9, 12, 14, 15, 16, 24].
Therefore, fractional cohomological equation (or FCE) is introduced as follows

ψα(f) = g, (1.5)

where g, f are a known function and an unknown function, respectively. The de-
termination of solvability and unsolvability of differential equations is of specific im-
portance. The solvability and unsolvability conditions already obtained for the co-
homological equation [1, 3]. Recent advances in FDE have aided our understanding
of FCE. In our study, we decide to investigate FCE ψαf = g on Tn where ψα is a
fractional-order vector field and 0 < α ∈ R.
Therefore, we have the following problem.

Problem 1.1. (The principal problem) Let g ∈ C∞(U) and let
ψα : C∞(U) −→ C∞(U) be a fractional-order vector field. Is there any f ∈ C∞(U)
such that ψα(f) = g?

This paper is organized in this way. In section 2, results on the FCE
ψα(f) = g is described, where ψα is a fractional-order area-preserving vector field
on Tn.
In the third section, we first restrict the discussion to solve the space-time fractional
heat equation on S1

(Dα
t +Dβ

θ )f(t, θ) = 0, 0 < α ≤ 1, 0 < β ≤ 2.

For solving this equation, we use Fourier decomposition

f(t, θ) =
∑
n∈Z

an(t)e
inθ,

for f(t, θ) where an(0) = an is the nth Fourier coefficient for f(t, θ). In the same
manner, we can see that the space-time fractional heat equation on Tn

(Dα
t +Dβ

Θ)f(t,Θ) = 0, 0 < α ≤ 1, 0 < β ≤ 2, Θ = (θ1, · · · , θn),
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is solvable.
Section 4 contains an example of unsolvable fractional nonlinear integro-differential

equation. Finally, in this section, we will give some solvable FDE and a solvable
fractional integral equation.

2. The FCE ψα(f) = g

In this section, all the objects are assumed to be smooth (of class C∞). A function
on Tn is just a real-valued function f : Rn −→ R which satisfies in the relation
f(x + L) = f(x) for every x ∈ Rn and every L ∈ Zn. The results of the FCE
ψα(f) = g will be described where ψα is a fractional-order area-preserving vector
field on Tn. Indeed by using the Diophantine and Liouville conditions, the solvability
and unsolvability conditions will be revealed. Our purpose in this section is to solve
the following problem.

Problem 2.1. Let g be a real-valued smooth function on Tn. Can we find a real-
valued smooth function f on Tn such that ψα(f) = g?

For solving this problem, we need to recall the definitions of Diophantine condition
and Liouville condition.

Definition 2.2. [20] Let V ∈ Rn be a vector. We say

(1) V ∈ Rn is Diophantine if there exist δ > 0 and η > 0 such that for every

L ∈ Zn − {0}, we have; |⟨V, L⟩| ≥ δ

|L|η
(Diophantine condition),

(2) V ∈ Rn is Liouville if there exists δ > 0 such that for every
η > 0 there exists an infinite series (Lη) in Zn − {0} which satisfies in

|⟨V,Lη⟩| ≤
δ

|Lη|η
(Liouville condition).

Let x = (x1, · · · , xn) ∈ Tn. For every L = (l1, · · · , ln) ∈ Zn, we denote EL(x) =
e2iπ⟨x,L⟩ where ⟨x, L⟩ = x1l1 + · · · + xnln. The functions
f, g ∈ C∞(Tn) can be expanded as Fourier series. Set, f(x) =

∑
L∈Zn

fLEL(x) and

g(x) =
∑

L∈Zn

gLEL(x) where fL and gL are the Fourier coefficients of the functions f

and g, respectively. Therefore fL and gL are given by the following integral formulas

fL =

∫
Tn

f(x)e−2iπ⟨x,L⟩dx, gL =

∫
Tn

g(x)e−2iπ⟨x,L⟩dx.

If f and g are square-integrable, then the coefficients fL and gL satisfy the following
conditions∑

L∈Zn

|fL|2 <∞,
∑
L∈Zn

|gL|2 <∞.

Every distribution T on Tn can be written as T (x) =
∑

L∈Zn

TLEL(x). The family of

real numbers TL is of polynomial growth, that is, there exist r ∈ N and a constant
C > 0 such that |TL| ≤ C|L|r for every L ∈ Zn.
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Proposition 2.3. [1, 3] Let T =
∑

L∈Zn

TLEL be a series (where TL are real numbers).

Then the following assertions are equivalent.

(1) T is a regular distribution (T is a smooth function).
(2) For every r ∈ N, the series

∑
L∈Zn

|fL|2r|TL|2 is convergence.

(3) For every r ∈ N, the series
∑

L∈Zn

|fL|r|TL| is convergence.

We consider a fractional-order vector field on n-torus Tn of the form

ψα =
n∑

i=1

vi
∂α

∂xαi
. The following definition is important.

Definition 2.4. [20] A fractional-order vector field ψα =
n∑

i=1

vi
∂α

∂xαi
is Diophantine

(or Liouville) if V = (v1, · · · , vn) satisfies Diophantine (or Liouville) condition.

Theorem 2.5. Let ψα =
n∑

i=1

vi
∂α

∂xαi
be a fractional-order vector field on Tn where

v1, · · · , vn are Linearly independent over Q. Let the subgroup generated by V =
(v1, · · · , vn) be dense in Tn.

(1) Suppose V = (v1, · · · , vn) is Diophantine. Then the equation
ψα(f) = g has a solution f ∈ C∞(Tn) if and only if

∫
Tn g(x)dx = 0.

(2) Suppose V = (v1, · · · , vn) is Liouville. Therefore there exists an infinite family
of Linearly independent functions g satisfying

∫
Tn g(x)dx = 0 such that the

equation ψα(f) = g has no solution.

Proof. Let g ∈ C∞(Tn) such that
∫
Tn g(x)dx = 0. Let us consider the Fourier devel-

opment of f, g as follows

f(x) =
∑
L∈Zn

fLEL(x), g(x) =
∑
L∈Zn

gLEL(x)·

According to the properties of the Liouville fractional derivative, we have

Dα
+e

λx = λαeλx·

With the notation EL(x) = e2iπ⟨x,L⟩, we have

∂α

∂xαi
(EL(x)) = (2πilk)

α(EL(x))·
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Under the hypotheses of Theorem, we obtain

∑
L∈Zn

gLEL(x) = ψα(
∑
L∈Zn

fLEL(x))

=
n∑

k=1

vk
∂α

∂xαk
(
∑
L∈Zn

fLEL(x))

=
∑
L∈Zn

(

n∑
k=1

vk
∂α

∂xαk
(fLEL(x)))

=
∑
L∈Zn

fL(
n∑

k=1

vk
∂α

∂xαk
(EL(x)))

=
∑
L∈Zn

fL(
n∑

k=1

vk(2πilk)
α(EL(x)))

=
∑
L∈Zn

fL(
n∑

k=1

vk(2πilk)
α)EL(x)·

It follows that

fL(
n∑

k=1

vk(2πilk)
α) = gL with L ∈ Zn·

We conclude from the necessary condition
∫
Tn g(x)dx = 0 that g0 = 0.

As a conclusion of the recent process, we have

fL =


0 if L = 0,

gL

(
n∑

k=1

vk(2πilk)α)
if L ̸= 0· (2.1)

Therefore the function f is formally given by its Fourier coefficients (fL)L∈Zn .
Let us check its regularity. We will divide the proof of regularity into two parts

α = 1 and α ∈ (0, 1).
The part I) If we take α = 1, then analysis similar to [1, 3]. To read more about
the details, we refer the reader to [1, 3].
The part II) Let α ∈ (0, 1). For every L ∈ Zn, we denoted [Lα] = ([|lα1 |], · · · , [|lαn |]).
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Let r ∈ N and |L|2r|gL|2 < +∞. For regularity of f , we have

| L |2r| fL |2 =| L |2r| gL
(
∑n

k=1 vk(2πilk)
α)

|2

=| L |2r| gL
(2πi)α(

∑n
k=1 vk(lk)

α)
|2

=| L |2r | gL |2

| (2πi)α |2|
∑n

k=1 vk(lk)
α |2

≤| L |2r | gL |2

| (2πi)α |2|
∑n

k=1 vk[| (lk)α |] |2

≤| L |2r | gL |2

| (2πi)α |2< V, [Lα] >
·

In the rest of the proof, we face the following two cases.
(The case I) Let V = (v1, · · · , vn) be Diophantine. Consequently, there exist δ > 0
and η > 0 such that

|L|η ≥ δ

|⟨V,L⟩|
,

for every L ∈ Zn − {0} (Diophantine condition).
Now, it is easy to verify that

| L |2r| fL |2 ≤| L |2r | gL |2

| (2πi)α |2< V, [Lα] >

≤| L |2r| gL |2 1

| (2πi)α |2< V, [Lα] >

≤| [Lα] |η| L |2r| gL |2 1

| (2πi)α |2

≤| L |2r+η| gL |2 1

| (2πi)α |2
< +∞·

(The case II) Let V = (v1, · · · , vn) be Liouville. Therefore, there exists δ > 0 such
that for every η > 0 there exists an infinite series (Lη) in Zn −{0} that (Lη) satisfies
in the following condition (Liouville condition)

|Lη|η ≤ δ

|⟨V,Lη⟩|
·

Let (ηk)k be increasing series in N∗. The corresponding Lηk
will be denoted by Lk.

Since V is Liouville, then we can find a function g by its Fourier coefficients as

gL =

{
|Lk|−ηk/2 if L ̸= Lk,

0 if not L = 0·
(2.2)
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The function g is smooth and satisfies in
∫
Tn g(x)dx = 0. According to the above

remark, we have

| fLk
|2 =

∣∣∣∣ gLk

(
n∑

k=1

vk(2πilk)α)

∣∣∣∣2

=

∣∣∣∣ | Lk |ηk/2

(
n∑

k=1

vk(2πilk)α)

∣∣∣∣2

≥ 1

δ2
| Lk |ηk ·

In this way, we can construct an infinite family of smooth Linearly independent func-
tions g that satisfies in

∫
Tn g(x)dx = 0. So the proof is complete. □

3. The space-time fractional heat equations

In the first subsection, we investigate the space-time fractional heat equation on
S1. In the second subsection, by using a solution of the space-time fractional heat
equation, we can solve the space-time fractional heat equation on Tn.

3.1. On S1. Let L2([0,∞) × S1) = L2([0,∞) × S1,C) denote the space of complex-
valued L2 functions. Consider an initial distribution f(θ) = f(0, θ) of the space-time
fractional heat on S1 that is considered to be perfectly insulated. The distribution
f(t, θ) ∈ L2([0,∞) × S1) of fractional heat at time t is governed by the space-time
fractional heat equation

(Dα
t +Dβ

θ )f(t, θ) = 0, 0 < α ≤ 1, 0 < β ≤ 2·
If f(t, θ) =

∑
n∈Z

an(t)e
inθ is the Fourier decomposition for f(t, θ) with an(0) = an as

the nth Fourier coefficient for f , then

0 =
∑
n∈Z

((Dα
t an(t)e

inθ) + (Dβ
θ an(t)e

inθ))

=
∑
n∈Z

(einθ(Dα
t an(t)) + (an(t)D

β
θ e

inθ))·

By using the Liouville fractional derivatives of exponential functions, we obtain

Dβ
θ e

inθ = iβ(n)βeinθ = (n)β(cos
πβ

2
+ i sin

πβ

2
)einθ·

Consequently,

0 =
∑
n∈Z

(einθDα
t an(t) + (an(t)i

β(n)βeinθ))

=
∑
n∈Z

(Dα
t an(t) + an(t)i

β(n)β)einθ·

It follows that for every n ∈ Z,
Dα

t an(t) + an(t)i
β(n)β = 0, (3.1)
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where α, β were assumed constant. We solve the above equation with the help of the
Laplace transform. If we apply Laplace transformation to both sides of Eq. (3.1),
then we have

L(Dα
t an(t) + an(t)i

β(n)β) = 0·
With the notation L(an(t)) = An(s), we have

sαAn(s)−
m∑

k=1

bks
k−1 + iβ(n)βAn(s) = 0, (3.2)

where bk = [Dα−k
t an(t)]t=0 for k = 1, · · · ,m and m is an integer such that m − 1 <

α ≤ m. From Eq. (3.2) we conclude that

An(s) =

m∑
k=1

bks
k−1

sα + iβ(−n)β
·

By the inverse Laplace transform, we yield the solutions

an(t) =
m∑

k=1

bkt
α−kEα,α−k+1(−iβnβtα)·

It follows that

f(t, θ) =
∑
n∈Z

m∑
k=1

bkt
α−kEα,α−k+1(−iβnβtα)einθ,

where Eα,α−k+1 is the two-parameter Mittag-Leffler function. Now, we solve the
space-time fractional heat equation for α = 1

2 and 0 < β ≤ 2. From the above

discussion, if we assume [D
− 1

2
t an(t)]t=0 = C, then we have the solution

an(t) = Ct−
1
2E 1

2 ,
1
2
(−iβnβ

√
t)·

3.2. On Tn. We recall that the n-torus Tn is a Lie group. The n-torus Tn is the n
times product of the Lie group S1 with itself, i.e. Tn = S1 × · · · × S1. Consider the
space of the complex-valued L2 functions L2([0,∞)× Tn) = L2([0,∞)× Tn,C). Let
f(Θ) = f(0,Θ) be an initial distribution of the space-time fractional heat on Tn that
is considered perfectly insulated. The distribution f(t,Θ) ∈ L2([0,∞) × Tn) of the
fractional heat at time t is governed by the space-time fractional heat equation

(Dα
t +Dβ

Θ)f(t,Θ) = 0, 0 < α ≤ 1, 0 < β ≤ 2, Θ = (θ1, · · · , θn)· (3.3)

If f(t,Θ) =
∑

L∈Zn

aL(t)e
i⟨L,Θ⟩ is the Fourier decomposition for f(t,Θ), then from

now on aL(0) = aL is the Lth Fourier coefficient for f . If L = (l1, · · · , ln) and
⟨L,Θ⟩ = l1θ1 + · · · + lnθn. Then from Eq. (3.3) and the Fourier decomposition, we
obtain

0 =
∑
L∈Zn

ei⟨L,Θ⟩(Dα
t aL(t)) +

∑
L∈Zn

aL(t)D
β
θ e

i⟨L,Θ⟩)·
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Derived formulas for the fractional derivatives of trigonometric functions are based
on the following form

Dβ
Θe

i⟨L,Θ⟩ = Dβ
Θe

i(l1θ1+···+lnθn)

= (
∂β

∂θ1
+ · · ·+ ∂β

∂θn
)ei(l1θ1+···+lnθn)

=
∂β

∂θ1
ei(l1θ1+···+lnθn) + · · ·+ ∂β

∂θn
ei(l1θ1+···+lnθn)

= iβlβ1 e
i(l1θ1+···lnθn) + · · ·+ iβlβne

i(l1θ1+···lnθn)

= iβ(lβ1 + · · ·+ lβn)e
i⟨L,Θ⟩·

Therefore, we can write

0 =
∑
L∈Zn

ei⟨L,θ⟩(Dα
t aL(t) + aL(t)(i

β(lβ1 + · · ·+β
n)).

So, for every L ∈ Zn

Dα
t aL(t) + (iβ(lβ1 + · · ·+ lβn))aL(t) = 0· (3.4)

Where α and β are constants. We solve the above equation by using the Laplace
transform. For this purpose, we apply Laplace transform on both sides of the Eq.
(3.4)

L(Dα
t aL(t) + (iβ(lβ1 + · · ·+ lβn)aL(t)) = 0·

Set L(aL(t)) = AL(s) and

iβ(lβ1 + · · ·+ lβn) = (cos
πβ

2
+ i sin

πβ

2
)(lβ1 + · · ·+ lβn) = B·

Consequently,

sαAL(s)−
m∑

k=1

bks
k−1 +BAL(s) = 0, (3.5)

where bk = [Dα−k
t aL(t)]t=0, k = 1, · · · ,m, and m is an integer such that m − 1 <

α ≤ m.
From the Eq. (3.5),

AL(s) =

m∑
k=1

bks
k−1

sα +B
·

By applying the inverse Laplace transform, we can conclude that

aL(t) =
m∑

k=1

bkt
α−kEα,α−k+1(−Btα)·

As a conclusion of former technique, we have

f(t,Θ) =
∑
L∈Zn

m∑
k=1

bkt
α−kEα,α−k+1(−Btα)ei⟨L,Θ⟩·
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4. Examples of solvable and unsolvable FDE’s

In this section, we were encouraged to construct a fractional integro-differential
equation without a solution in Theorem 4.1. In the following examples, we analyze
the system of solvable FDEs and an example of the solvable FIE.

Let B be the set {(x, t) : |x| < a, |t| < b} where a and b are two fixed positive
numbers.

Proposition 4.1. There exists a smooth function f(t) such that the fractional integro-
differential equation

I1−α
+,t D

α
+,xu(x, t) + iI1−α

+,x D
α
+,tu(x, t) = f(t), (4.1)

has no solution in C1(B).

Where 0 < α < 1 and I1−α
+,x , I1−α

+,t are the following partial Liouville fractional
integrals

I1−α
+,x u(x, t) =

1

Γ(1− α)

∫ x

0

u(y, t)

(x− y)α
dy,

and

I1−α
+,t u(x, t) =

1

Γ(1− α)

∫ t

0

u(x, s)

(t− s)α
ds·

Also, Dα
+,xu(x, t), D

α
+,tu(x, t) are the following partial Liouville fractional derivatives

Dα
+,xu(x, t) =

1

Γ(1− α)

∂

∂x

∫ x

0

u(y, t)

(x− y)α
dy,

and

Dα
+,tu(x, t) =

1

Γ(1− α)

∂

∂t

∫ t

0

u(x, s)

(t− s)α
ds·

Proof. Suppose u ∈ C1(B) is a solution of Eq. (4.1). We set

v(x, t) =
1

Γ(1− α)2

∫ x

0

∫ t

0

u(y, s)

(x− y)α(t− s)α
dsdy· (4.2)

By calculating the partial derivatives of v(x, t), we have

vx =
∂

∂x

1

Γ(1− α)2

∫ x

0

∫ t

0

u(y, s)

(x− y)α(t− s)α
dsdy

=
∂

∂x

1

Γ(1− α)2

∫ t

0

∫ x

0

u(y, s)

(x− y)α(t− c)α
dyds

=
1

Γ(1− α)

∫ t

0

1

(t− s)α
(
∂

∂x

1

Γ(1− α)

∫ x

0

u(y, s)

(x− y)α
dy)ds

= I1−α
+,t D

α
+,xu(x, t),
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and

vt =
∂

∂t

1

Γ(1− α)2

∫ x

0

∫ t

0

u(y, s)

(x− y)α(t− s)α
dsdy

=
1

Γ(1− α)

∫ x

0

1

(x− y)α
(
∂

∂t

1

Γ(1− α)

∫ t

0

u(y, s)

(t− s)α
ds)dy

= I1−α
+,x D

α
+,tu(x, t)·

From Eq. (4.1) we conclude that

vx + ivt = I1−α
+,t D

α
+,xu(x, t) + iI1−α

+,x D
α
+,tu(x, t) = f(t),

for |x| < a, |t| < b. The function g is defined by g′(t) = f(t). Therefore g is a smooth
real-valued function of t. Let

ω(x, t) = v(x, t) + ig(t)·

Since

ωx + iωt = 0, |x| < a, |t| < b,

the map ω is an analytic function. Applying Eq. (4.2) we conclude that v(0, t) = 0.
Therefore,

Re(ω(0, t)) = 0, |t| < b·

Consequently, ω(0, t) = ig(t) is an analytic function of t in B. Thus we have shown
that f is necessarily analytic a function of t. If f is smooth, then Eq. (4.1) has no
solution in C1(B). □

Example 4.2. [2] Let b > 0 be a fixed time. Let us denote by ∗ the classical
convolution. Suppose that 0 < α ≤ 1, a ̸= 0, and 0 < t ≤ b. The ordinary fractional
differential equation

(1 + aDα
t )f(t) = g(t), g(t) <∞,

has a unique solution given by f(t) = Aα(a, t) ∗ g(t) where

Aα(a, t) := a−1tα−1Eα,α(−a−1tα)·

The plot of the exact solution is shown in FIGURE 1, For a = 10, b = 50, α =
1

2
,

g(t) = sin(t).
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Figure 1. Plot of an instance of Example 4.2

Example 4.3. Consider the following FDE of the order n+ α

(Dn+α
x y)(x) = cβ(β − 1) · · · (β − n+ 1)xβ−ny2 + cxβ

( n∑
k=0

(
n

k

)
y(k)(x)y(n−k)(x)

)
,

n ∈ N, α ∈ C, Re(α) > 0, x > 0, c, β ∈ R, c ̸= 0, β ̸= 0, 1, · · · , n− 1·

If α+ β < 1, then the above FDE has the following solution

y(x) =
Γ(1− α− β)

cΓ(1− 2α− β)
x−(α+β)·

The fractional derivative of y(x) of order α is

(Dα
xy)(x) =

(
Γ(1− α− β)

cΓ(1− 2α− β)

)2

x2α−β ,

hence (Dα
xy)(x) = cxβy2. We know

(y2)(n) =
n∑

k=0

(
n

k

)
y(k)(x)y(n−k)(x),

consequently,

(Dα+n
x y)(x) = cβ(β − 1) · · · (β − n+ 1)xβ−ny2 + cxβ

( n∑
k=0

(
n

k

)
y(k)(x)y(n−k)(x)

)
·

We conclude that y(x) is the solution of the above FDE.

The plot of the exact solution is shown in FIGURE 2, For c = 4, α =
1

7
, β =

3

7
.
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Figure 2. Plot of an instance of Example 4.3

Let g, h be two real-valued functions and n ∈ N. The Faà Bi Bruno’s formula is

dn

dxn
g(h(x)) =

∑ n!

k1!k2! · · · kn!
g(k1+k2+···+kn)(h(x))

n∏
i=1

(
g(i)(x)

i!

)ki

·

The sum is over n-tuples (k1, k2, · · · , kn) of nonnegative integers that satisfy 1.k1 +
2.k2 + · · ·+ n.kn = n [4].

Example 4.4. Consider the following FDE of order α+ n

(Dn+αy)(x) = cxβ−n√y
n−1∏
i=0

(β − i)

+ cxβ
∑ n!

k1!k2! · · · kn!
1

2
(−1

2
) · · · (3

2
− k)y

1
2−k

n∏
i=1

(
y(i)

i!

)ki

·

Where k := k1 + · · · + kn and k1 + 2k2 + · · · + nkn = n. If 2(α + β) > −1, then the
above FDE has the following solution

y(x) =

[
cΓ(α+ 2β + 1)

Γ(2α+ 2β + 1)

]2
(x− α)2(α+β),

where x > 0, c, α, β ∈ R,α > 0, c ̸= 0, and β ̸= 0, 1, · · · , n − 1. The fractional
derivative of y(x) of order α ∈ R is

(Dα
xy)(x) = c2

[
Γ(α+ 2β + 1)

Γ(2α+ 2β + 1)

]
xα+2β ·
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Therefore, (Dα
xy)(x) = cxβ [y(x)]

1
2 . By using the Faà di Bruno’s formula if n ∈ N,

then

(Dn+αy)(x) = cxβ−n√y
n−1∏
i=0

(β − i)

+ cxβ
∑ n!

k1!k2! · · · kn!
1

2
(−1

2
) · · · (3

2
− k)y

1
2−k

n∏
i=1

(
y(i)

i!

)ki

·

Consequently, y(x) is the solution of the above FDE.

The plot of the exact solution is shown in FIGURE 3, For c = −1

3
, α =

10

17
, β =

3

2
.

Figure 3. Plot of an instance of Example 4.4

Example 4.5. We want to solve the FIE

(Iαx y)(x) = xβ−1 (4.3)

where α, β ∈ R and β ≥ α ≥ 0. We apply Laplace transformation to Eq. (4.3). If we
apply inverse Laplace transformation to the obtained equation, we can show that

y(x) =
Γ(β)

Γ(β − α)
xβ−α−1,

is the solution of this FIE.

The plot of the exact solution is shown in FIGURE 4, For α =
5

3
, β =

17

5
.
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Figure 4. Plot of an instance of Example 4.5

Example 4.6. We want to solve the following FDE

Dαf(x) = af(x) +
xβ−α−1

Γ(β − α)
,

where α, β ∈ R, 0 < α < 1, and β ≥ α ≥ 0. In a similar argument of Example (4.5),
we have

f(x) = bxα−1Eα,α(ax
2) + xβ−1Eα,β(ax

2), b ∈ R,

as the solution of this FDE.

The plot of the exact solution is shown in FIGURE 5, For a = 1.5, b =
17

5
, α =

5

11
,

β =
5

4
.
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Figure 5. Plot of an instance of Example 4.6
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