تعداد نشریات | 36 |
تعداد شمارهها | 920 |
تعداد مقالات | 11,017 |
تعداد مشاهده مقاله | 11,599,714 |
تعداد دریافت فایل اصل مقاله | 10,658,757 |
Toward a new understanding of cohomological method for fractional partial differential equations | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 13 دی 1399 اصل مقاله (264.54 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2020.39020.1710 | ||
نویسندگان | ||
Akbar Dehghan Nezhad ![]() ![]() | ||
1School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846 -13114, Iran | ||
2School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846 -13114, Iran. | ||
چکیده | ||
One of the aims of this article is to investigate the solvability and unsolvability conditions for fractional cohomological equation $ \psi^{\alpha} f=g $, on $ \mathbb{T}^n $. We prove that if $ f $ is not analytic, then fractional integro-differential equation $ I_t^{1-\alpha} D_x^{\alpha}u(x,t)+i I_x^{1-\alpha} D_t^{\alpha}u(x,t)=f(t) $ has no solution in $ C^1(B) $ with $0< \alpha \leq 1$. ٌWe also obtain solutions for the space-time fractional heat equations on $ \mathbb{S}^1 $ and $ \mathbb{T}^n $. At the end of this article, there are examples of fractional partial differential equations and a fractional integral equation together with their solutions. | ||
کلیدواژهها | ||
Fractional calculus؛ fractional cohomological equations؛ space-time-fractional heat equation؛ solvable and unsolvable fractional differential equations | ||
آمار تعداد مشاهده مقاله: 6 تعداد دریافت فایل اصل مقاله: 29 |