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1. Introduction

The theory of measure chains was introduced and developed by Hilger [7]. It
has been created in order to unify continuous and discrete analysis, and it allows
a simultaneous treatment of differential and difference equations, extending those
theories to so-called dynamic equations. A time scale T is an arbitrary nonempty
closed subset of real numbers with the topology and ordering inherited from R, and
the cases when this time scale is equal to the reals or to the integers represent the
classical theories of differential and of difference equations. Of course, many other
interesting time scales exist, and they give rise to plenty of applications, for example,
in the study of insect population models, neural networks, heat transfer and epidemic
models. We refer the reader to the excellent introductory text by Bohner and Peterson
[9] as well as the recent research monograph [3]. In recent years, there has been much
research activity concerning the existence of solutions of various dynamic equations
on time scales, e.g., see [8, 12] and the references cited therein. Throughout this
paper, by an interval (a, b), we mean the intersection of the real interval (a, b) with
the given time scale T.

In this work, we’ll be concerned with the following boundary value problems of
non-singular type
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y∆∆(t) + Φ(t)f(t, y, y∆) = 0, t ∈ (a, b)

y(a) = y∆(σ(b)) = 0,
(1.1)

where f : [a, b] × [0,∞)2 → [0,∞) and Φ : (a, σ(b)) → (0,∞) are continuous. We
assume that σ(b) is right dense, so that (σ(b))2 = σ(b).

This paper provides a new technique for showing that (1.1) has a solution y > 0
on (a, b]. Non-singular problems have been discussed in detail in [1, 2, 4, 5, 6, 11].
Our theory complements and generalizes these results for the boundary value problem
(1.1) on time scales.

In this section, we present some necessary theorems and preliminary results that
will be used to prove our main result. In Section 2, we put forward and prove our
main result and give some examples to illustrate the main result.

Our existence principles will be proved using the following fixed point result [10].

Theorem 1.1. Assume U is a relatively open subset of a convex set C in a normed
space E. Let N : Ū → C be a compact map with 0 ∈ U . Then either

(A1) N has a fixed point in Ū ; or
(A2) there is a u ∈ ∂U and a λ ∈ (0, 1) such that u = λNu.

Theorem 1.2. Suppose the following conditions are satisfied, Assume

Φ ∈ C(a, σ(b)) with Φ > 0 on (a, σ(b)) and Φ ∈ L1(a, σ(b)). (1.2)

and

F : [0, 1]× R2 → R is continuous. (1.3)

are satisfied. In addition assume there is a constant M , independent of λ with
|y|1 = max{|y|0, |y∆|0} ̸= M for any solutions y ∈ C1[a, σ(b)] ∩ C2(a, σ(b)) to

y∆∆ + λΦ(t)F (t, y, y∆) = 0, t ∈ (a, b)

y(a) = y∆(σ(b)) = 0,
(1.4)

for each λ ∈ (0, 1); here |y|0 = sup[a,σ(b)]|y(t)| and |y∆|0 = sup[a,σ(b)]|y∆(t)|. Then
(1.4) has a solution y ∈ C1[a, σ(b)] ∩ C2(a, σ(b))) with |y|1 ≤ M .

Proof. Solving (1.4) is equivalent to the fixed point problem y = λNy, where

Ny(t) =

∫ t

a

∫ s

a

Φ(u)F (u, y(u), y∆(u)∆u∆s.

Let K[a, σ(b)] = {y ∈ C[a0, σ(b)] : y
∆ ∈ C(a, σ(b)) with norm |y|1} which is a Banach

space. It is a easy to see that N : K[a, σ(b)] → K[a, σ(b)] is continuous and completely
continuous. Let U = {y ∈ K[a, σ(b)] : |y|1 < M} and C = E = K[a, σ(b)]. Now,
apply Theorem 1.1 implies that N has a fixed point in Ū since the condition (A2)
cannot occur. □

Lemma 1.1. Let y∆∆(t) < 0 on (a, b) and y(a) ≥ 0, then y(t) ≥ t− a

σ(b)− a
y(σ(b)) for

t ∈ (a, σ(b)).
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Proof. If y∆∆(t) < 0 on (a, b), then y∆(t) is non-increasing on (a, σ(b)).

Thus, we get y(t)− y(a) =

∫ t

a

y∆(s)∆s ≥ (t− a)y∆(t) and so y(t) ≥ y(a) + (t−

a)y∆(t).

Similarly, we get y(σ(b))− y(t) =

∫ σ(b)

t

y∆(s)∆s ≤ (σ(b)− t)y∆(t) and so y(t) ≥

y(σ(b))− (σ(b)− t)y∆(t).

Together these two inequalities, we have y(t) ≥ σ(b)− t

σ(b)− a
y(a) +

t− a

σ(b)− a
y(σ(b)) ≥

t− a

σ(b)− a
y(σ(b)). □

2. Second Order Problems

In this section, we discuss the second order non-singular problem (1.1). Through-
out this section we’ll assume the following conditions hold:

Φ ∈ C(a, σ(b)) with Φ > 0 on (a, σ(b)) and Φ ∈ L1(a, σ(b)), (2.5)

f : [a, b]× [0,∞)2 → [0,∞) is continuous with f(t, u, p) > 0

for (t, u, p) ∈ [a, b]× (0,∞)2,
(2.6)

f(t, u, p) ≤ w(max{u, p}) with w > 0

continuous and nondecreasing on [0,∞),
(2.7)

supc∈(0,∞)
c

w(c)

σ(b)∫
a

Φ(s)∆s

> 1, (2.8)

for a constant H > 0 there exist a function ΨH

continuous and positive on (a, σ(b)),

and constants α, β ≥ 0 with α+ β < 1

and with f(t, u, p) ≥ ΨH(t)uαpβ on [a, b]× [0,H]2.

(2.9)

Theorem 2.1. Assume (2.5)-(2.9) hold. Then (1.1) has a solution y ∈ C1[a, σ(b)]∩
C2(a, σ(b)) with y > 0 on (a, σ(b)].

Proof. Choose M > 0 with
M

w(M)

σ(b)∫
a

Φ(s)∆s

> 1.

(2.10)
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Next choose ε > 0 and ε <
M

2
with

M

(σ(b)− a+ 1)

w(M)

σ(b)∫
a

Φ(s)∆s+ ε


> 1.

(2.11)

Let n0 ∈ {1, 2, ...} be chosen so that
1

n0
< ε and let N0 = {n0, n0 + 1, ...}. We first

show that

y∆∆(t) + Φ(t)f∗(t, y, y∆) = 0, a < t < b

y(a) = y∆(σ(b)) =
1

m
,

(2.12)

has a solution for each m ∈ N0; here

f∗(t, u, p) =


f(t, u, p), u ≥ 1

m , p ≥ 1
m

f(t, u, 1
m ), u ≥ 1

m , p < 1
m

f(t, 1
m , p), u < 1

m , p ≥ 1
m

f(t, 1
m , 1

m ), u < 1
m , p < 1

m .

To show (2.12) has a solution, we consider the family of problems

y∆∆(t) + λΦ(t)f∗(t, y, y∆) = 0, a < t < b

y(a) = y∆(σ(b)) =
1

m
, m ∈ N0

(2.13)

for 0 < λ < 1. Let y ∈ C1[a, σ(b)] ∩ C2(a, σ(b)) be any solutions of (2.13). Then

y∆(t) ≥ 1

m
and y(t) ≥ 1

m
on [a, b]. Also from (2.7) we have −y∆∆(t) ≤ Φ(t)w(|y|1)

here |y|1 = max{|y|0, |y∆|0} and |y|0 = sup[a,σ(b)]|y(t)|.
If we integrate in −y∆∆(t) ≤ Φ(t)w(|y|1) from t to σ(b), we obtain

−
σ(b)∫
t

y∆∆(s)∆s ≤
σ(b)∫
t

Φ(s)w(|y|1)∆s

−y∆(σ(b)) + y∆(t) ≤ w(|y|1)
σ(b)∫
t

Φ(s)∆s

y∆(t) ≤ w(|y|1)
σ(b)∫
t

Φ(s)∆s+
1

m
for t ∈ [a, σ(b)]. (2.14)

In particular for t = a, we have
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y∆(a) ≤ w(|y|1)
σ(b)∫
a

Φ(s)∆s+ ε < (σ(b)− a+ 1)(w(|y|1)
σ(b)∫
a

Φ(s)∆s+ ε.

(2.15)

Also again, integrate from t to σ(b) in (2.14), we get

σ(b)∫
t

y∆(t)∆s ≤
σ(b)∫
t

w(|y|1)

 σ(b)∫
s

Φ(u)∆u

∆s+
1

m

σ(b)∫
t

∆s

y(σ(b))− y(t) ≤ w(|y|1)
σ(b)∫
t

σ(b)∫
s

Φ(u)∆u∆s+
1

m
(σ(b)− t)

and

y(σ(b))− y(a) ≤ w(|y|1)
σ(b)∫
a

σ(b)∫
s

Φ(u)∆u∆s+
σ(b)− a

m
fort = a.

So we have,

y(σ(b)) ≤ w(|y|1)(σ(b)− a)

σ(b)∫
a

Φ(u)∆u+ (σ(b)− a+ 1)ε

< (σ(b)− a+ 1)

w(|y|1)
σ(b)∫
a

Φ(u)∆u+ ε

 . (2.16)

Combine (2.15) and (2.16) to obtain

|y|1

(σ(b)− a+ 1)

w(|y|1)
σ(b)∫
a

Φ(u)∆u+ ε


≤ 1.

(2.17)

Now, (2.11) together with (2.17) implies |y|1 ̸= M .
Thus Theorem 1.2 implies (2.12) has a solution ym with |ym|1 ≤ M . In fact

1

m
≤ ym(t) ≤ M and

1

m
≤ y∆m(t) ≤ M for t ∈ [a, σ(b)] (2.18)

and ym satisfies

y∆∆(t) + Φ(t)f(t, y, y∆) = 0 a < t < b

y(a) = y∆(σ(b)) =
1

m
.
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Now, (2.10) guarantees existence of a continuous and positive function Ψm(t) on
(a, σ(b)), and constants α ≥ 0, β ≥ 0 with α + β < 1 and with f(t, ym(t), y∆m(t)) ≥
Ψm(t)[ym(t)]α[y∆m(t)]β for (t, ym(t), y∆m(t)) ∈ [a, b]× [0,M ]2.

Together with the differential equation and Lemma (1.1), we get

−[y∆m(t)]−βy∆∆
m (t) ≥ Ψm(t)Φ(t)

(
t− a

σ(b)− a

)α

[ym(σ(b))]αfort ∈ (a, σ(b)).

If we integrate from t to σ(b), we obtain

−
σ(b)∫
t

[y∆m(s)]−βy∆∆
m (s)∆s ≥

σ(b)∫
t

Ψm(s)Φ(s)

(
s− a

σ(b)− a

)α

[ym(σ(b))]α∆s.

For the left side of this inequality, using Theorem 5.45 [3], we get

σ(b)∫
t

[y∆m(s)]−βy∆∆
m (s)∆s = [y∆m(t)]−β − [y∆m(σ(b))]−β ]Γ

+[y∆m(σ(b))]−β

σ(b)∫
t

y∆∆
m (s)∆s,

where Γ satisfies

inf

 σ(b)∫
t

y∆∆
m (s)∆s

 < Γ < sup

 σ(b)∫
t

y∆∆
m (s)∆s

 ,

so Γ < 0.
Since the function y∆m(t) is non-decreasing on (a, σ(b)) and α, β ≥ 0 with α+β < 1,

for t < σ(b) we get

y∆m(t) > y∆m(σ(b)) ⇒ [y∆m(t)]−β < [y∆m(σ(b))]−β

⇒ [y∆m(t)]−β − [y∆m(σ(b))]−β < 0.

Thus, we get

σ(b)∫
t

[y∆m(s)]−βy∆∆
m (s)∆s ≥ [y∆m(σ(b))]−β

σ(b)∫
t

y∆∆
m (s)∆s

= [y∆m(σ(b))]−β [y∆m(σ(b))− y∆m(t)]

= [y∆m(σ(b))]−β+1 − [y∆m(σ(b))]−βy∆m(t).

Since [y∆m(σ(b))]−β+1 > 0, then
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−
σ(b)∫
t

[y∆m(s)]−βy∆∆
m (s)∆s ≤ [y∆m(σ(b))]−βy∆m(t).

Thus, we have

[y∆m(σ(b))]−βy∆m(t) ≥ −
σ(b)∫
t

[y∆m(s)]−βy∆∆
m (s)∆s

≥
σ(b)∫
t

Ψm(s)Φ(s)

(
s− a

σ(b)− a

)α

[ym(σ(b))]α∆s,

and so

y∆m(t) ≥ (ym(σ(b)))α+β

σ(b)∫
t

Ψm(s)Φ(s)

(
s− a

σ(b)− a

)α

∆s.

If we integrate from a to σ(b), we get

σ(b)∫
a

y∆m(s)∆s ≥ (ym(σ(b)))α+β

(σ(b)− a)α

σ(b)∫
a

 σ(b)∫
s

Ψm(u)Φ(u)(u− a)α∆u

∆s

ym(σ(b)) ≥ ym(σ(b))− ym(a)

≥ (ym(σ(b)))α+β

(σ(b)− a)α

σ(b)∫
a

 σ(b)∫
t

Ψm(s)Φ(s)(s− a)α∆s

∆t

(ym(σ(b)))1−α−β ≥ 1

(σ(b)− a)α

σ(b)∫
a

 σ(b)∫
t

Ψm(s)Φ(s)(s− a)α∆s

∆t.

The other words, we get

ym(σ(b)) ≥

 1

(σ(b)− a)α

σ(b)∫
a

 σ(b)∫
t

Ψm(s)Φ(s)(s− a)α∆s

∆t


1

1−α−β

:= d0.

(2.19)

From Lemma (1.1), we have

ym(t) ≥ t− a

σ(b)− a
ym(σ(b)) ≥ d0

t− a

σ(b)− a
for t ∈ [a, σ(b)]. (2.20)
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Of course, it is immediate that y∆
j

m m∈N0
is a bounded, equicontinuous family on

[a, σ(b)] for each j = 0, 1.
The Arzela-Ascoli Theorem guarantees the existence of a subsequence N of N0

and a function y ∈ C1[a, σ(b)] with {y∆j

m } converging uniformly on [a, σ(b)) to {y∆j}
as m goes infinity through N; here j = 0, 1. Also y(a) = 0 = y∆(σ(b)) and y(t) ≥
d0

t− a

σ(b)− a
for t ∈ [a, σ(b)] (especially y > 0 on (a, σ(b)]). Now ym,m ∈ N satisfies

ym(t) =
1

m
+

t− a

m
+

t∫
a

s− a

σ(b)− a
Φ(s)f(s, ym(s), y∆m(s))∆s

+
t− a

σ(b)− a

σ(b)∫
t

Φ(s)f(s, ym(s), y∆m(s))∆s,

for t ∈ [a, σ(b)].
Fix t ∈ [a, σ(b)] and let m goes infinity through N to obtain

y(t) =

t∫
a

s− a

σ(b)− a
Φ(s)f(s, y(s), y∆(s))∆s

+
t− a

σ(b)− a

σ(b)∫
t

sΦ(s)f(s, y(s), y∆(s))∆s.

Example 2.1. Consider the boundary value problem

y∆∆(t) + yα(t)(y∆(t))β = 0 for a < t < b

y(a) = y∆(σ(b)) = 0
(2.21)

with α ≥ 0, β ≥ 0 and α + β < 1. Then, (2.21) has a solution y ∈ C1[a, σ(b)] ∩
C2(a, σ(b)) with y > 0 on [a, σ(b)].

To see we’ll apply Theorem 2.1. Notice (2.5), (2.6), (2.7) (w(x) = xα+β) and
(2.9) (ΨH = 1, α = α and β = β) hold. Also from (2.8),

1 < supc∈(0,∞)
c

w(c)

σ(b)∫
a

Φ(s)∆s

= supc∈(0,∞)
c

cα+β(σ(b)− a)
= ∞

hold. Again Theorem 2.1 establish the result.

Remark 2.1. Notice y ≡ 0 is also a solution of (2.21) if α+ β ̸= 0.

Example 2.2. Consider the boundary value problem

y∆∆(t) + µ(e−(t−a))(yα(t)(y∆)β(t) + η0y
γ(t) + η1) = 0, a < t < b

y(a) = y∆(σ(b)) = 0
(2.22)
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with α, β, η0, η1 ≥ 0, γ, µ > 0 and α+ β < 1. If

(σ(b)− a)µ ≤ supc∈(0,∞)
c

cα+β + η0cγ + η1
(2.23)

then, (2.22) has a solution y ∈ C1[a, σ(b)]∩C2[a, σ(b)) with y > 0 on (a, σ(b)]. Again,
we apply Theorem 2.1.

It is easy to check (2.5), (2.6), (2.7) (w(x) = xα+β + η0x
γ + η1), and (2.9)

(ΨH = e−(t−a), α = α and β = β) hold. Also,

supc∈(0,∞)
c

w(c)

σ(b)∫
a

Φ(s)∆s

≥ supc∈(0,∞)
c

µ(σ(b)− a)[cα+β + η0cγ + η1]
,

since

σ(b)∫
a

e−(t−a)δt ≤ σ(b) − a. So (2.23) guarantees that (2.8) holds. Theorem 2.1

now establishes the result.

3. Conclusion

In this study, we showed the existence of positive solutions of the nonsingular type
second order boundary value problem on the time scale and we supported it with
some examples.
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